Listeria monocytogenes: An Inconvenient Hurdle for the Dairy Industry
Abstract
:1. Introduction
2. An Overview on Listeria monocytogenes and Listeriosis
3. Pathogenesis of Listeria monocytogenes
4. Listeria monocytogenes in the Dairy Environment
Dairy Environments | Country | Site of Isolation | Serotypes | References |
---|---|---|---|---|
Dairy plants | Austria | Drain water, drain biofilm, floor drains | NS | [63] |
Sweden | Milk from farm bulk tanks, raw milk in storage | 1/2a, 1/2b | [64] | |
Ireland | Raw milk, food, floors, steps, drains | NS | [65] | |
Portugal | Processing-plant area | 1/2a, 1/2b, 1/2c, 4b | [66] | |
Austria | Drains, shoes, floors | 1/2a, 1/2b, 3a, 3b, 4b, 4d, 4e, 7 | [67] | |
Brazil | Brine, food, and non-food-contact surfaces, | 1/2b, 1/2c, 4b | [68] | |
Farm bulk tank | 1/2a | [69] | ||
Processing-room floor, raw milk, cooling tank, processing room drain | 4b, 4d, 4e | [70] | ||
Processing-room drain, brine-room floor | 1/2b, 3b, 7 | [70] | ||
Cooling-chamber drain, floors and platforms of processing rooms, plastic crates, gloves, brine | 1/2b, 1/2c, 4b | [71] | ||
Floor drain | NS | [59] | ||
Spain | Conveyor belt, floor, food soil, packaging bench, conveyor belt | 1/2a-3a, 1/2b, 1/2c-3c, 3b-7, 4b-4d-4e | [62] | |
United States | Bulk-tank milk, milk filters | 1/2a, 1/2b, 4a, 4b | [72] | |
Dairy farms | Canada | Farm animals, water supply, plant surfaces, drains, air vents | 4b/4b | [73] |
United States | Fecal-grab samples | 1/2a, 1/2b, 4b | [22] | |
Iran | Bulk-tank milk | 1/2a, 1/2c, 3a, 3c, 4b, 4d, 4e | [74] | |
Slovenia | Raw milk, bulk tank or pooled milk, silage, feces, water | NS | [16] | |
Finland | Bulk-tank milk, filter sock, barn environment | 1/2a, 1/2b, 1/2c, 3a, 3b, 4b, 4d, 4e, 7 | [75] | |
Brazil | Bulk-tank milk, milk-filter socks, milk-room floors | 2a, 4b | [76] | |
Norway | Bulk-tank milk, milk filters, feces, feed, teats, teat milk | NS | [77] | |
Spain | Forage, water, raw tank milk, milk filters, fresh feces, stored manure, soil | 2a, 2b, 4b | [19] |
5. Listeria monocytogenes in Dairy Products
Dairy Product | Country (Regional Name of the Product) | Number of Samples | Occurrence (%) | References |
---|---|---|---|---|
Milk and milk products | European Union | 2479 | NA | [123] |
Butter | Belgium | 603 | 66.0 | [116] |
United Kingdom | 33 | 0.4 | [124] | |
Cream cheese | Italy | 108 | 1.9 | [125] |
Fresh cheese | Austria * | 25 | 4.0 | [126] |
27 | 0.0 | [126] | ||
Italy * | 31 | 12.9 | [127] | |
15 | 6.7 | [91] | ||
258 | 3.5 | [128] | ||
Mexico * | 60 | 0.0 | [129] | |
149 | 3.4 | [130] | ||
100 | 6.0 | [131] | ||
16 | 6.3 | [132] | ||
16 | 37.5 | [132] | ||
75 | 9.3 | [133] | ||
Spain * | 78 | 1.3 | [134] | |
Sweden * | 78 | 0.0 | [135] | |
United States * | 204 | 2.0 | [136] | |
Ice cream | Egypt | 40 | 7.5 | [115] |
30 | 0.0 | [118] | ||
United States | 2320 | 99.0 | [117] | |
Semi-hard cheese | Brazil (Canastra) | 78 | 1.0 | [112] |
Brazil (Serro) | 256 | 0.0 | [137] | |
Turkey (Tulum) | 250 | 4.8 | [138] | |
Semi-soft cheese | Italy (Blue-veined) | 120 | 55.0 | [139] |
Italy (Gorgonzola) | 1489 | 2.1 | [140] | |
Italy (Mozzarella) | 186 | 0.0 | [125] | |
Turkey (Homemade) | 142 | 9.2 | [141] | |
Soft cheese | Austria * | 233 | 4.7 | [126] |
Belgium * | 32 | 3.1 | [142] | |
Bulgaria * | 63 | 0.0 | [143] | |
Czech Republic * | 387 | 5.2 | [144] | |
Egypt (Cottage) | 50 | 0.0 | [145] | |
Ethiopia (Cottage) | 100 | 1.0 | [146] | |
European Union * | 3452 | 0.5 | [147] | |
Greece * | 10 | 40.0 | [148] | |
Greece (Panel) | 137 | 0.0 | [127] | |
Iraq * | 50 | 2.0 | [149] | |
Italy (Panel) | 444 | 4.7 | [131] | |
894 | 2.1 | [135] | ||
Portugal * | 49 | 14.3 | [129] | |
Spain (Panel) | 163 | 0.0 | [134] | |
Sweden * | 525 | 0.4 | [150] | |
Soft fresh cheese | Brazil (Minas Frescal) | 55 | 11.0 | [69] |
Egypt (Kareesh) | 30 | 0.0 | [151] | |
Italy (Burrata) | 404 | 0.0 | [152] | |
Italy (Ricotta) | 30 | 0.0 | [91] | |
Mexico (Adobera) | 100 | 12.0 | [131] | |
16 | 18.8 | [132] | ||
Morocco (Jben) | 96 | 4.2 | [153] | |
Soft-ripened cheese | Italy (Brie) | 300 | 1.0 | [154] |
Italy (Camembert) | 178 | 0.0 | [154] | |
Traditional whey | Morocco | 52 | 5.7 | [155] |
White brined cheese | Jordan | 350 | 12.0 | [156] |
6. Outbreaks of Listeriosis Linked to Dairy Products
Period | Dairy Product | Country | Cases | Deaths (Stillbirths) | References |
---|---|---|---|---|---|
1949–1957 | ⧫ Raw milk | Germany | About 100 | NA (NA) | [87] apud [166] |
1979 | ⧫ Pasteurized milk | United States | 23 | NA (NA) | [160] |
1983 | Pasteurized milk | United States | 49 | 12 (2) | [157] |
1983–1987 | Pasteurized soft cheese | Switzerland | 122 | 33 (NA) | [167] |
1985 | * Soft cheese | United States | 142 | 48 (20) | [163] |
1986 | Pasteurized milk | Austria | 28 | 5 (0) | [25] |
1989–1990 | * Hard cheese | Denmark | 26 | 6 (NA) | [42] |
1994 | Pasteurized chocolate milk | United States | 45 | 0 (0) | [168] |
1995 | Raw soft cheese | France | 20 | 0 (4) | [169] |
1998–1999 | Pasteurized butter | Finland | 25 | 6 (6) | [170] |
2000 | Raw soft cheese | United States | 13 | 0 (5) | [171] |
2001 | * Soft cheese | Sweden | 27 | 0 (0) | [172] |
2001 | ** Cheese | Japan | 86 | NA (NA) | [173] |
2002 | Pasteurized soft cheese | Canada | 135 | NA (NA) | [73] |
2005 | Pasteurized soft cheese | Switzerland | 10 | 3 (2) | [174] |
2006–2007 | Pasteurized acid-curd cheese | Germany | 189 | 26 (NA) | [175] |
2006–2014 | * Soft cheese | Italy | 306 | NA (NA) | [176] |
2007 | Pasteurized milk | United States | 5 | 3 (1) | [177] |
2008 | Pasteurized milk cheese | Canada | 38 | 2 (3) | [178] |
2008–2009 | Pasteurized milk cheese | United States | 8 | 0 (2) | [179] |
2009 | * Acid-curd cheese | Germany and Austria | 14 | 4 (0) | [180] |
2009–2010 | * Acid-curd cheese | Austria | 34 | 8 (NA) | [181] |
2009–2012 | Pasteurized soft cheese | Portugal | 30 | 11 (1) | [182] |
2011 | Pasteurized hard cheese | Belgium | 12 | 2 (0) | [183] |
2012 | Pasteurized soft cheese | Spain | 2 | 0 (0) | [184] |
2012 | * Soft cheese | United States | 22 | 4 (1) | [185] |
2013 | Raw soft cheese | United States | 5 | 1 (1) | [186] |
2014 | Soft cheese | United States | 8 | 1 (NA) | [187] |
2014 | Raw milk | United States | 2 | 1 (0) | [188] |
2014 | Pasteurized ice cream | United States | 2 | 0 (0) | [189] |
2014 | Unpasteurized chocolate milk | United States | 2 | 1 (0) | [190] |
2014–2015 | * Ice cream | United States | 4 | NA (0) | [33] |
2015–2016 | Pasteurized chocolate milk | Canada | 34 | 4 (NA) | [103] |
2021 | Pasteurized soft cheese | United States | 13 | 1 (2) | [191] |
2021–2022 | * Ice cream | United States | 28 | 1 (NA) | [192] |
2022–ongoing | *** Sliced cheese | United States | 16 | 1 (NA) | [162] |
2023–ongoing | *** Semi-soft cheese | United Kingdom | 3 | 1 (NA) | [182] |
7. Prevention, Monitoring, and Control of Listeria monocytogenes in the Dairy Industry
Strategies for the Control of Listeria monocytogenes
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhosale, S.; Desale, R.J.; Fulpagare, Y.G. Biofilm: An Overview with Respect to Dairy Industry. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 150–160. [Google Scholar] [CrossRef]
- Statista. Dairy Market Value Worldwide, 2020–2026. Available online: https://www.statista.com/statistics/502280/global-dairy-market-value/ (accessed on 23 February 2023).
- Gopal, N.; Hill, C.; Ross, P.R.; Beresford, T.P.; Fenelon, M.A.; Cotter, P.D. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Front. Microbiol. 2015, 6, 1418. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.G.; Baglinière, F.; Marchand, S.; van Coillie, E.; Vanetti, M.C.D.; Block, J.; Heyndrickx, M. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products. Front. Microbiol. 2017, 8, 302. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Akabanda, F.; Agyei, D.; Jespersen, L. Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms 2020, 8, 752. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Itani, T.; Inomata, N.; Hara, K.; Takimoto, I.; Iseki, S.; Hamada, K.; Adachi, K.; Okuyama, S.; Shimada, Y.; et al. Listeria monocytogenes Septicemia and Meningitis Caused by Listeria Enteritis Complicating Ulcerative Colitis. Intern. Med. 2017, 56, 2655–2659. [Google Scholar] [CrossRef]
- Choi, M.H.; Park, Y.J.; Kim, M.; Seo, Y.H.; Kim, Y.A.; Choi, J.Y.; Yong, D.; Jeong, S.H.; Lee, K. Increasing Incidence of Listeriosis and Infection-Associated Clinical Outcomes. Ann. Lab. Med. 2018, 38, 102–109. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A Review of Listeria monocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, J.; Wu, Q.; Zhang, J.; Chen, Y.; Zeng, H.; Ye, Q.; Wu, S.; Cai, S.; Wang, J.; et al. Prevalence, Potential Virulence, and Genetic Diversity of Listeria monocytogenes Isolates From Edible Mushrooms in Chinese Markets. Front. Microbiol. 2018, 9, 1711. [Google Scholar] [CrossRef]
- Moran, L.J.; Verwiel, Y.; Khomami, M.B.; Roseboom, T.J.; Painter, R.C. Nutrition and Listeriosis during Pregnancy: A Systematic Review. J. Nutr. Sci. 2018, 7, e25. [Google Scholar] [CrossRef]
- Matle, I.; Mbatha, K.R.; Madoroba, E. A Review of Listeria monocytogenes from Meat and Meat Products: Epidemiology, Virulence Factors, Antimicrobial Resistance and Diagnosis. Onderstepoort J. Vet. Res. 2020, 87, 1–20. [Google Scholar] [CrossRef]
- Santos, J.S.; Biduski, B.; Santos, L.R. Listeria monocytogenes: Health Risk and a Challenge for Food Processing Establishments. Arch. Microbiol. 2021, 203, 5907–5919. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes—How This Pathogen Survives in Food-Production Environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef]
- Lee, B.H.; Cole, S.; Badel-Berchoux, S.; Guillier, L.; Felix, B.; Krezdorn, N.; Hébraud, M.; Bernardi, T.; Sultan, I.; Piveteau, P. Biofilm Formation of Listeria monocytogenes Strains Under Food Processing Environments and Pan-Genome-Wide Association Study. Front. Microbiol. 2019, 10, 2698. [Google Scholar] [CrossRef]
- Haase, J.K.; Didelot, X.; Lecuit, M.; Korkeala, H.; Achtman, M.; Leclercq, A.; Grant, K.; Wiedmann, M.; Apfalter, P. The Ubiquitous Nature of Listeria monocytogenes Clones: A Large-Scale Multilocus Sequence Typing Study. Environ. Microbiol. 2014, 16, 405–416. [Google Scholar] [CrossRef]
- Papić, B.; Golob, M.; Kušar, D.; Pate, M.; Zdovc, I. Source Tracking on a Dairy Farm Reveals a High Occurrence of Subclinical Mastitis Due to Hypervirulent Listeria monocytogenes Clonal Complexes. J. Appl. Microbiol. 2019, 127, 1349–1361. [Google Scholar] [CrossRef]
- Orsi, R.H.; Bakker, H.C.; Wiedmann, M. Listeria monocytogenes Lineages: Genomics, Evolution, Ecology, and Phenotypic Characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Yin, Y.; Yao, H.; Doijad, S.; Kong, S.; Shen, Y.; Cai, X.; Tan, W.; Wang, Y.; Feng, Y.; Ling, Z.; et al. A Hybrid Sub-Lineage of Listeria monocytogenes Comprising Hypervirulent Isolates. Nat. Commun. 2019, 10, 4283. [Google Scholar] [CrossRef]
- Varsaki, A.; Ortiz, S.; Santorum, P.; López, P.; López-Alonso, V.; Hernández, M.; Abad, D.; Rodríguez-Grande, J.; Ocampo-Sosa, A.A.; Martínez-Suárez, J.V. Prevalence and Population Diversity of Listeria monocytogenes Isolated from Dairy Cattle Farms in the Cantabria Region of Spain. Animals 2022, 12, 2477. [Google Scholar] [CrossRef]
- Muchaamba, F.; Eshwar, A.K.; Stevens, M.J.A.; Stephan, R.; Tasara, T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front. Microbiol. 2022, 12, 7921623736. [Google Scholar] [CrossRef]
- Rocha, P.R.D.A.; Lomonaco, S.; Bottero, M.T.; Dalmasso, A.; Dondo, A.; Grattarola, C.; Zuccon, F.; Iulini, B.; Knabel, S.J.; Capucchio, M.T.; et al. Ruminant Rhombencephalitis-Associated Listeria monocytogenes Strains Constitute a Genetically Homogeneous Group Related to Human Outbreak Strains. Appl. Environ. Microbiol. 2013, 79, 3059–3066. [Google Scholar] [CrossRef]
- Haley, B.J.; Sonnier, J.; Schukken, Y.H.; Karns, J.S.; van Kessel, J.A.S. Diversity of Listeria monocytogenes within a U.S. Dairy Herd, 2004–2010. Foodborne Pathog. Dis. 2015, 12, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Kuenne, C.; Billion, A.; Mraheil, M.A.; Strittmatter, A.; Daniel, R.; Goesmann, A.; Barbuddhe, S.; Hain, T.; Chakraborty, T. Reassessment of the Listeria monocytogenes Pan-Genome Reveals Dynamic Integration Hotspots and Mobile Genetic Elements as Major Components of the Accessory Genome. BMC Genom. 2013, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Meza-Torres, J.; Lelek, M.; Quereda, J.J.; Sachse, M.; Manina, G.; Ershov, D.; Tinevez, J.Y.; Radoshevich, L.; Maudet, C.; Chaze, T.; et al. Listeriolysin S: A Bacteriocin from Listeria monocytogenes That Induces Membrane Permeabilization in a Contact-Dependent Manner. Proc. Nat. Acad. Sci. USA 2021, 118, e2108155118. [Google Scholar] [CrossRef]
- Allerberger, F.; Wagner, M. Listeriosis: A Resurgent Foodborne Infection. Clin. Microbiol. Infect. 2010, 16, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.X.; Zhou, J.Y.; Hong, W.J.; Huang, J.; Yan, S.Q. Treatment Failure in a Patient Infected with Listeria Sepsis Combined with Latent Meningitis: A Case Report. World J. Clin. Cases 2022, 10, 10565–10574. [Google Scholar] [CrossRef]
- FDA. Get the Facts about Listeria. Available online: https://www.fda.gov/animal-veterinary/animal-health-literacy/get-facts-about-listeria (accessed on 21 February 2023).
- Schlech, W.F. Epidemiology and Clinical Manifestations of Listeria monocytogenes Infection. Microbiol. Spectr. 2019, 7, 3. [Google Scholar] [CrossRef]
- Chan, B.T.; Hohmann, E.; Barshak, M.B.; Pukkila-Worley, R. Treatment of Listeriosis in First Trimester of Pregnancy. Emerg. Infect. Dis. 2013, 19, 839–841. [Google Scholar] [CrossRef]
- Temple, M.E.; Nahata, M.C. Treatment of Listeriosis. Ann. Pharm. 2000, 34, 656–661. [Google Scholar] [CrossRef]
- Chen, J.C.; Nightingale, K.K. Pathogen Update: Listeria monocytogenes. Adv. Microbial. Food Saf. 2013, 1, 47–69. [Google Scholar] [CrossRef]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria Pathogenesis and Molecular Virulence Determinants. Clin. Microbiol. Rev. 2001, 14, 584. [Google Scholar] [CrossRef]
- Pouillot, R.; Klontz, K.C.; Chen, Y.; Burall, L.S.; Macarisin, D.; Doyle, M.; Bally, K.M.; Strain, E.; Datta, A.R.; Hammack, T.S.; et al. Infectious Dose of Listeria monocytogenes in Outbreak Linked to Ice Cream, United States, 2015. Emerg. Infect. Dis. 2016, 22, 2113. [Google Scholar] [CrossRef]
- Ranjbar, R.; Halaji, M. Epidemiology of Listeria monocytogenes Prevalence in Foods, Animals and Human Origin from Iran: A Systematic Review and Meta-Analysis. BMC Public Health 2018, 18, 1057. [Google Scholar] [CrossRef]
- Nikitas, G.; Deschamps, C.; Disson, O.; Niault, T.; Cossart, P.; Lecuit, M. Transcytosis of Listeria monocytogenes across the Intestinal Barrier upon Specific Targeting of Goblet Cell Accessible E-cadherin. J. Exp. Med. 2011, 208, 2263–2277. [Google Scholar] [CrossRef]
- Maurella, C.; Gallina, S.; Ru, G.; Adriano, D.; Bellio, A.; Bianchi, D.M.; Chiavacci, L.; Crescio, M.I.; Croce, M.; D’Errico, V.; et al. Outbreak of Febrile Gastroenteritis Caused by Listeria monocytogenes 1/2a in Sliced Cold Beef Ham, Italy, May 2016. Eur. Surveill. 2018, 23, 17-00155. [Google Scholar] [CrossRef]
- Mehmood, H.; Marwat, A.D.J.K.; Khan, N.A.J. Invasive Listeria monocytogenes Gastroenteritis Leading to Stupor, Bacteremia, Fever, and Diarrhea: A Rare Life-Threatening Condition. J. Investig. Med. High Impact Case Rep. 2017, 5, 1–3. [Google Scholar] [CrossRef]
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and Virulence of Listeria monocytogenes: A Trip from Environmental to Medical Microbiology. Virulence 2021, 12, 2509. [Google Scholar] [CrossRef]
- Luque-Sastre, L.; Arroyo, C.; Fox, E.M.; McMahon, B.J.; Bai, L.; Li, F.; Fanning, S. Antimicrobial Resistance in Listeria Species. Microbiol. Spectr. 2018, 6, 4. [Google Scholar] [CrossRef]
- Pizarro-Cerdá, J.; Cossart, P. Listeria monocytogenes: Cell Biology of Invasion and Intracellular Growth. Microbiol. Spectr. 2018, 6, 6. [Google Scholar] [CrossRef]
- Smith, J.L.; Liu, Y.; Paoli, G.C. How Does Listeria monocytogenes Combat Acid Conditions? Can. J. Microbiol. 2013, 59, 141–152. [Google Scholar] [CrossRef]
- Jensen, A.K.; Simonsen, J.; Ethelberg, S. Use of Proton Pump Inhibitors and the Risk of Listeriosis: A Nationwide Registry-Based Case-Control Study. Clin. Infect. Dis. 2017, 64, 845–851. [Google Scholar] [CrossRef]
- Kim, S.; Covington, A.; Pamer, E.G. The Intestinal Microbiota: Antibiotics, Colonization Resistance, and Enteric Pathogens. Immunol. Rev. 2017, 279, 90. [Google Scholar] [CrossRef] [PubMed]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a Complete Picture of Its Physiology and Pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Becattini, S.; Littmann, E.R.; Carter, R.A.; Kim, S.G.; Morjaria, S.M.; Ling, L.; Gyaltshen, Y.; Fontana, E.; Taur, Y.; Leiner, I.M.; et al. Commensal Microbes Provide First Line Defense against Listeria monocytogenes Infection. J. Exp. Med. 2017, 214, 1973–1989. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, T.; Buys, E.M. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022, 10, 1522. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Sousa, S.; Cabanes, D. How Listeria monocytogenes Organizes Its Surface for Virulence. Front. Cell Infect. Microbiol. 2014, 4, 48. [Google Scholar] [CrossRef]
- Forauer, E.; Wu, S.T.; Etter, A.J. Listeria monocytogenes in the Retail Deli Environment: A Review. Food Control 2021, 119, 107443. [Google Scholar] [CrossRef]
- Lotoux, A.; Milohanic, E.; Bierne, H. The Viable But Non-Culturable State of Listeria monocytogenes in the One-Health Continuum. Front. Cell Infect. Microbiol. 2022, 12, 178. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, W.; Yang, G. A Novel Antioxidant Activity Index (AAU) for Natural Products Using the DPPH Assay. Food Chem. 2011, 125, 1430–1435. [Google Scholar] [CrossRef]
- Cheng, M.I.; Chen, C.; Engström, P.; Portnoy, D.A.; Mitchell, G. Actin-Based Motility Allows Listeria monocytogenes to Avoid Autophagy in the Macrophage Cytosol. Cell Microbiol. 2018, 20, e12854. [Google Scholar] [CrossRef]
- Duze, S.T.; Marimani, M.; Patel, M. Tolerance of Listeria monocytogenes to Biocides Used in Food Processing Environments. Food Microbiol. 2021, 97, 103758. [Google Scholar] [CrossRef]
- Bierne, H.; Milohanic, E.; Kortebi, M. To Be Cytosolic or Vacuolar: The Double Life of Listeria monocytogenes. Front. Cell Infect. Microbiol. 2018, 8, 136. [Google Scholar] [CrossRef]
- Lecuit, M. Listeria monocytogenes, a Model in Infection Biology. Cell Microbiol. 2020, 22, e13186. [Google Scholar] [CrossRef]
- Blériot, C.; Dupuis, T.; Jouvion, G.; Eberl, G.; Disson, O.; Lecuit, M. Liver-Resident Macrophage Necroptosis Orchestrates Type 1 Microbicidal Inflammation and Type-2-Mediated Tissue Repair during Bacterial Infection. Immunity 2015, 42, 145–158. [Google Scholar] [CrossRef]
- Byun, K.H.; Han, S.H.; Choi, M.W.; Park, S.H.; Ha, S.D. Effect of Sublethal Concentrations of Bactericidal Antibiotics on Mutation Frequency and Stress Response of Listeria monocytogenes. Food Res. Int. 2022, 151, 110903. [Google Scholar] [CrossRef]
- Panera-Martínez, S.; Rodríguez-Melcón, C.; Serrano-Galán, V.; Alonso-Calleja, C.; Capita, R. Prevalence, Quantification and Antibiotic Resistance of Listeria monocytogenes in Poultry Preparations. Food Control 2022, 135, 108608. [Google Scholar] [CrossRef]
- Rostamian, M.; Kooti, S.; Mohammadi, B.; Salimi, Y.; Akya, A. A Systematic Review and Meta-Analysis of Listeria monocytogenes Isolated from Human and Non-Human Sources: The Antibiotic Susceptibility Aspect. Diagn Microbiol. Infect. Dis. 2022, 102, 115634. [Google Scholar] [CrossRef]
- Oxaran, V.; Dittmann, K.K.; Lee, S.H.I.; Chaul, L.T.; de Oliveira, C.A.F.; Corassin, C.H.; Alves, V.F.; de Martinis, E.C.P.; Gram, L. Behavior of Foodborne Pathogens Listeria monocytogenes and Staphylococcus aureus in Mixed-Species Biofilms Exposed to Biocides. Appl. Environ. Microbiol. 2018, 84, e02038-18. [Google Scholar] [CrossRef]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes Persistence in Food-Associated Environments: Epidemiology, Strain Characteristics, and Implications for Public Health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef]
- Hurley, D.; Luque-Sastre, L.; Parker, C.T.; Huynh, S.; Eshwar, A.K.; Nguyen, S.V.; Andrews, N.; Moura, A.; Fox, E.M.; Jordan, K.; et al. Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. mSphere 2019, 4, e00252-19. [Google Scholar] [CrossRef]
- Melero, B.; Stessl, B.; Manso, B.; Wagner, M.; Esteban-Carbonero, Ó.J.; Hernández, M.; Rovira, J.; Rodriguez-Lázaro, D. Listeria monocytogenes Colonization in a Newly Established Dairy Processing Facility. Int. J. Food Microbiol. 2019, 289, 64–71. [Google Scholar] [CrossRef]
- Dzieciol, M.; Schornsteiner, E.; Muhterem-Uyar, M.; Stessl, B.; Wagner, M.; Schmitz-Esser, S. Bacterial Diversity of Floor Drain Biofilms and Drain Waters in a Listeria monocytogenes Contaminated Food Processing Environment. Int. J. Food Microbiol. 2016, 223, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Waak, E.; Tham, W.; Danielsson-Tham, M.L. Prevalence and Fingerprinting of Listeria monocytogenes Strains Isolated from Raw Whole Milk in Farm Bulk Tanks and in Dairy Plant Receiving Tanks. Appl. Environ. Microbiol. 2002, 68, 3366–3370. [Google Scholar] [CrossRef] [PubMed]
- Kells, J.; Gilmour, A. Incidence of Listeria monocytogenes in Two Milk Processing Environments, and Assessment of Listeria monocytogenes Blood Agar for Isolation. Int. J. Food Microbiol. 2004, 91, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.; Magalhães, R.; Carneiro, L.; Santos, I.; Silva, J.; Ferreira, V.; Hogg, T.; Teixeira, P. Foci of Contamination of Listeria monocytogenes in Different Cheese Processing Plants. Int. J. Food Microbiol. 2013, 167, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Rückerl, I.; Muhterem-Uyar, M.; Muri-Klinger, S.; Wagner, K.H.; Wagner, M.; Stessl, B. L. monocytogenes in a Cheese Processing Facility: Learning from Contamination Scenarios over Three Years of Sampling. Int. J. Food Microbiol. 2014, 189, 98–105. [Google Scholar] [CrossRef]
- Barancelli, G.V.; Camargo, T.M.; Gagliardi, N.G.; Porto, E.; Souza, R.A.; Campioni, F.; Falcão, J.P.; Hofer, E.; Cruz, A.G.; Oliveira, C.A.F. Pulsed-Field Gel Electrophoresis Characterization of Listeria monocytogenes Isolates from Cheese Manufacturing Plants in São Paulo, Brazil. Int. J. Food Microbiol. 2014, 173, 21–29. [Google Scholar] [CrossRef]
- Brito, J.R.F.; Santos, E.M.P.; Arcuri, E.F.; Lange, C.C.; Brito, M.A.V.P.; Souza, G.N.; Cerqueira, M.M.P.O.; Beitran, J.M.S.; Call, J.E.; Liu, Y.; et al. Retail Survey of Brazilian Milk and Minas Frescal Cheese and a Contaminated Dairy Plant to Establish Prevalence, Relatedness, and Sources of Listeria monocytogenes Isolates. Appl. Environ. Microbiol. 2008, 74, 4954–4961. [Google Scholar] [CrossRef]
- Prates, D.D.F.; Haubert, L.; de Fátima Würfel, S.; Cavicchioli, V.Q.; Nero, L.A.; da Silva, W.P. Listeria monocytogenes in Dairy Plants in Southern Brazil: Occurrence, Virulence Potential, and Genetic Diversity. J. Food Saf. 2019, 39, e12695. [Google Scholar] [CrossRef]
- Lee, S.H.; Barancelli, G.V.; de Camargo, T.M.; Corassin, C.H.; Rosim, R.E.; da Cruz, A.G.; Cappato, L.P.; de Oliveira, C.A.F. Biofilm-Producing Ability of Listeria monocytogenes Isolates from Brazilian Cheese Processing Plants. Food Res. Int. 2017, 91, 88–91. [Google Scholar] [CrossRef]
- Sonnier, J.L.; Karns, J.S.; Lombard, J.E.; Kopral, C.A.; Haley, B.J.; Kim, S.-W.; van Kessel, J.A.S. Prevalence of Salmonella enterica, Listeria monocytogenes, and Pathogenic Escherichia coli in Bulk Tank Milk and Milk Filters from US Dairy Operations in the National Animal Health Monitoring System Dairy 2014 Study. J. Dairy Sci. 2018, 101, 1943–1956. [Google Scholar] [CrossRef]
- McIntyre, L.; Wilcott, L.; Naus, M. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources. BioMed Res. Int. 2015, 2015, 131623. [Google Scholar] [CrossRef]
- Jamali, H.; Radmehr, B.; Thong, K.L. Prevalence, Characterisation, and Antimicrobial Resistance of Listeria Species and Listeria monocytogenes Isolates from Raw Milk in Farm Bulk Tanks. Food Control 2013, 34, 121–125. [Google Scholar] [CrossRef]
- Castro, H.; Jaakkonen, A.; Hakkinen, M.; Korkeala, H.; Lindström, M. Occurrence, Persistence, and Contamination Routes of Listeria monocytogenes Genotypes on Three Finnish Dairy Cattle Farms: A Longitudinal Study. Appl. Environ. Microbiol. 2018, 84, e02000-17. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Pedrosa, G.T.S.; Kamimura, B.A.; Furtado, M.M.; Baptista, R.C.; Nascimento, H.M.; Alvarenga, V.O.; Magnani, M.; Sant’Ana, A.S. Growth Potential of Three Strains of Listeria monocytogenes and Salmonella enterica in Frescal and Semi-Hard Artisanal Minas Microcheeses: Impact of the Addition of Lactic Acid Bacteria with Antimicrobial Activity. LWT 2022, 158, 113169. [Google Scholar] [CrossRef]
- Idland, L.; Granquist, E.G.; Aspholm, M.; Lindbäck, T. The Prevalence of Campylobacter spp., Listeria monocytogenes and Shiga Toxin-producing Escherichia coli in Norwegian Dairy Cattle Farms: A Comparison between Free Stall and Tie Stall Housing Systems. J. Appl. Microbiol. 2022, 132, 3959. [Google Scholar] [CrossRef]
- Nightingale, K.K.; Schukken, Y.H.; Nightingale, C.R.; Fortes, E.D.; Ho, A.J.; Her, Z.; Grohn, Y.T.; McDonough, P.L.; Wiedmann, M. Ecology and Transmission of Listeria monocytogenes Infecting Ruminants and in the Farm Environment. Appl. Environ. Microbiol. 2004, 70, 4458–4467. [Google Scholar] [CrossRef]
- Queiroz, O.C.M.; Ogunade, I.M.; Weinberg, Z.; Adesogan, A.T. Silage Review: Foodborne Pathogens in Silage and Their Mitigation by Silage Additives. J. Dairy Sci. 2018, 101, 4132–4142. [Google Scholar] [CrossRef]
- Terentjeva, M.; Šteingolde, Ž.; Meistere, I.; Elferts, D.; Avsejenko, J.; Streikiša, M.; Gradovska, S.; Alksne, L.; Ķibilds, J.; Bērziņš, A. Prevalence, Genetic Diversity and Factors Associated with Distribution of Listeria monocytogenes and Other Listeria spp. in Cattle Farms in Latvia. Pathogens 2021, 10, 851. [Google Scholar] [CrossRef]
- Rawool, D.B.; Malik, S.V.S.; Shakuntala, I.; Sahare, A.M.; Barbuddhe, S.B. Detection of Multiple Virulence-Associated Genes in Listeria monocytogenes Isolated from Bovine Mastitis Cases. Int. J. Food Microbiol. 2007, 113, 201–207. [Google Scholar] [CrossRef]
- Palma, F.; Brauge, T.; Radomski, N.; Mallet, L.; Felten, A.; Mistou, M.Y.; Brisabois, A.; Guillier, L.; Midelet-Bourdin, G. Dynamics of Mobile Genetic Elements of Listeria monocytogenes Persisting in Ready-to-Eat Seafood Processing Plants in France. BMC Genom. 2020, 21, 130. [Google Scholar] [CrossRef]
- Castro, H.; Douillard, F.P.; Korkeala, H.; Lindström, M. Mobile Elements Harboring Heavy Metal and Bacitracin Resistance Genes Are Common among Listeria monocytogenes Strains Persisting on Dairy Farms. mSphere 2021, 6, e00383-21. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Liedtke, J.; Plattes, S.; Lipski, A. Bacterial Community Composition of Biofilms in Milking Machines of Two Dairy Farms Assessed by a Combination of Culture-Dependent and –Independent Methods. PLoS ONE 2019, 14, e0222238. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, T.; Cervantes-Huamán, B.R.H.; Bermúdez-Capdevila, M.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms 2021, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Latorre, A.A.; van Kessel, J.A.S.; Karns, J.S.; Zurakowski, M.J.; Pradhan, A.K.; Zadoks, R.N.; Boor, K.J.; Schukken, Y.H. Molecular Ecology of Listeria monocytogenes: Evidence for a Reservoir in Milking Equipment on a Dairy Farm. Appl. Environ. Microbiol. 2009, 75, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Lundén, J.; Tolvanen, R.; Korkeala, H. Human Listeriosis Outbreaks Linked to Dairy Products in Europe. J. Dairy Sci. 2004, 87 (Suppl. S1), E6–E12. [Google Scholar] [CrossRef]
- Borucki, M.K.; Peppin, J.D.; White, D.; Loge, F.; Call, D.R. Variation in Biofilm Formation among Strains of Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7336–7342. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.P.P.; Harada, A.M.M.; Kabuki, D.Y. Competitive and/or Cooperative Interactions of Listeria monocytogenes with Bacillus cereus in Dual-Species Biofilm Formation. Front. Microbiol. 2020, 11, 177. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Møretrø, T. Microbial Diversity and Ecology of Biofilms in Food Industry Environments Associated with Listeria monocytogenes Persistence. Curr. Opin. Food Sci. 2021, 37, 171–178. [Google Scholar] [CrossRef]
- Parisi, A.; Latorre, L.; Fraccalvieri, R.; Miccolupo, A.; Normanno, G.; Caruso, M.; Santagada, G. Occurrence of Listeria spp. in Dairy Plants in Southern Italy and Molecular Subtyping of Isolates Using AFLP. Food Control 2013, 29, 91–97. [Google Scholar] [CrossRef]
- Fox, E.; O’Mahony, T.; Clancy, M.; Dempsey, R.; O’Brien, M.; Jordan, K. Listeria monocytogenes in the Irish Dairy Farm Environment. J. Food Prot. 2009, 72, 1450–1456. [Google Scholar] [CrossRef]
- Belias, A.; Sullivan, G.; Wiedmann, M.; Ivanek, R. Factors That Contribute to Persistent Listeria in Food Processing Facilities and Relevant Interventions: A Rapid Review. Food Control 2022, 133, 108579. [Google Scholar] [CrossRef]
- Gupta, P.; Adhikari, A. Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022, 11, 1760. [Google Scholar] [CrossRef]
- Mendonça, K.S.; Michael, G.B.; von Laer, A.E.; Menezes, D.B.; Cardoso, M.R.I.; da Silva, W.P. Genetic Relatedness among Listeria monocytogenes Isolated in Foods and Food Production Chain in Southern Rio Grande Do Sul, Brazil. Food Control 2012, 28, 171–177. [Google Scholar] [CrossRef]
- Ho, A.J.; Lappi, V.R.; Wiedmann, M. Longitudinal Monitoring of Listeria monocytogenes Contamination Patterns in a Farmstead Dairy Processing Facility. J. Dairy Sci. 2007, 90, 2517–2524. [Google Scholar] [CrossRef]
- Kabuki, D.Y.; Kuaye, A.Y.; Wiedmann, M.; Boor, K.J. Molecular Subtyping and Tracking of Listeria monocytogenes in Latin-Style Fresh-Cheese Processing Plants. J. Dairy Sci. 2004, 87, 2803–2812. [Google Scholar] [CrossRef]
- Sauders, B.D.; D’Amico, D.J. Listeria monocytogenes Cross-Contamination of Cheese: Risk throughout the Food Supply Chain. Epidemiol. Infect. 2016, 144, 2693–2697. [Google Scholar] [CrossRef]
- Filipello, V.; Gallina, S.; Amato, E.; Losio, M.N.; Pontello, M.; Decastelli, L.; Lomonaco, S. Diversity and Persistence of Listeria monocytogenes within the Gorgonzola PDO Production Chain and Comparison with Clinical Isolates from the Same Area. Int. J. Food Microbiol. 2017, 245, 73–78. [Google Scholar] [CrossRef]
- Bergholz, T.M.; den Bakker, H.C.; Katz, L.S.; Silk, B.J.; Jackson, K.A.; Kucerova, Z.; Joseph, L.A.; Turnsek, M.; Gladney, L.M.; Halpin, J.L.; et al. Determination of Evolutionary Relationships of Outbreak-Associated Listeria monocytogenes Strains of Serotypes 1/2a and 1/2b by Whole-Genome Sequencing. Appl. Environ. Microbiol. 2015, 82, 928–938. [Google Scholar] [CrossRef]
- Stessl, B.; Fricker, M.; Fox, E.; Karpiskova, R.; Demnerova, K.; Jordan, K.; Ehling-Schulz, M.; Wagner, M. Collaborative Survey on the Colonization of Different Types of Cheese-Processing Facilities with Listeria monocytogenes. Foodborne Pathog. Dis. 2014, 11, 8–14. [Google Scholar] [CrossRef]
- Wagner, M.; Eliskases-Lechner, F.; Rieck, P.; Hein, I.; Allerberger, F. Characterization of Listeria monocytogenes Isolates from 50 Small-Scale Austrian Cheese Factories. J. Food Prot. 2006, 69, 1297–1303. [Google Scholar] [CrossRef]
- Hanson, H.; Whitfield, Y.; Lee, C.; Badiani, T.; Minielly, C.; Fenik, J.; Makrostergios, T.; Kopko, C.; Majury, A.; Hillyer, E.; et al. Listeria monocytogenes Associated with Pasteurized Chocolate Milk, Ontario, Canada. Emerg. Infect. Dis. 2019, 25, 581. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.I.; Cappato, L.P.; Guimarães, J.T.; Balthazar, C.F.; Rocha, R.S.; Franco, L.T.; da Cruz, A.G.; Corassin, C.H.; de Oliveira, C.A.F. Listeria monocytogenes in Milk: Occurrence and Recent Advances in Methods for Inactivation. Beverages 2019, 5, 14. [Google Scholar] [CrossRef]
- CDC. Prevention. Listeria. Available online: https://www.cdc.gov/listeria/prevention.html (accessed on 23 February 2023).
- Ulusoy, B.H.; Chirkena, K. Two Perspectives of Listeria monocytogenes Hazards in Dairy Products: The Prevalence and the Antibiotic Resistance. Food Qual. Saf. 2019, 3, 233–241. [Google Scholar] [CrossRef]
- Doyle, M.P.; Glass, K.A.; Beery, J.T.; Garcia, G.A.; Pollard, D.J.; Schultz, R.D. Survival of Listeria monocytogenes in Milk during High-Temperature, Short-Time Pasteurization. Appl. Environ. Microbiol. 1987, 53, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Gérard, A.; El-Hajjaji, S.; Niyonzima, E.; Daube, G.; Sindic, M. Prevalence and Survival of Listeria monocytogenes in Various Types of Cheese—A Review. Int. J. Dairy Technol. 2018, 71, 825–843. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Gonzales-Barron, U.; Pilão Cadavez, V.A.; Sant’Ana, A.S.; Schaffner, D.W. Quantitative Risk Assessment of Listeria monocytogenes in Traditional Minas Cheeses: The Cases of Artisanal Semi-Hard and Fresh Soft Cheeses. Food Control 2018, 92, 370–379. [Google Scholar] [CrossRef]
- Engstrom, S.K.; Cheng, C.; Seman, D.; Glass, K.A. Growth of Listeria monocytogenes in a Model High-Moisture Cheese on the Basis of PH, Moisture, and Acid Type. J. Food Prot. 2020, 83, 1335–1344. [Google Scholar] [CrossRef]
- Shrestha, S.; Grieder, J.A.; McMahon, D.J.; Nummer, B.A. Survival of Listeria monocytogenes Introduced as a Post-Aging Contaminant during Storage of Low-Salt Cheddar Cheese at 4, 10, and 21 °C. J. Dairy Sci. 2011, 94, 4329–4335. [Google Scholar] [CrossRef]
- Campos, G.Z.; Lacorte, G.A.; Jurkiewicz, C.; Hoffmann, C.; Landgraf, M.; Franco, B.D.G.M.; Pinto, U.M. Microbiological Characteristics of Canastra Cheese during Manufacturing and Ripening. Food Control 2021, 121, 107598. [Google Scholar] [CrossRef]
- Chatelard-Chauvin, C.; Pelissier, F.; Hulin, S.; Montel, M.C. Behaviour of Listeria monocytogenes in Raw Milk Cantal Type Cheeses during Cheese Making, Ripening and Storage in Different Packaging Conditions. Food Control 2015, 54, 53–65. [Google Scholar] [CrossRef]
- Bellio, A.; Astegiano, S.; Traversa, A.; Bianchi, D.M.; Gallina, S.; Vitale, N.; Zuccon, F.; Decastelli, L. Behaviour of Listeria monocytogenes and Staphylococcus aureus in Sliced, Vacuum-Packaged Raw Milk Cheese Stored at Two Different Temperatures and Time Periods. Int. Dairy J. 2016, 57, 15–19. [Google Scholar] [CrossRef]
- Elshinawy, S.H.; Arafa, M.M.S.; Zeinhom, M.M.A.; Hafez, D.A.A. Incidence of Listeria Species In Some Dairy Products Inbeni-Suef Governorate. Assiut. Vet. Med. J. 2017, 63, 5–13. [Google Scholar] [CrossRef]
- El-Hajjaji, S.; Gérard, A.; de Laubier, J.; di Tanna, S.; Lainé, A.; Patz, V.; Sindic, M. Assessment of Growth and Survival of Listeria monocytogenes in Raw Milk Butter by Durability Tests. Int. J. Food Microbiol. 2020, 321, 108541. [Google Scholar] [CrossRef]
- Chen, Y.; Burall, L.S.; Macarisin, D.; Pouillot, R.; Strain, E.; de Jesus, A.J.; Laasri, A.; Wang, H.; Ali, L.; Tatavarthy, A.; et al. Prevalence and Level of Listeria monocytogenes in Ice Cream Linked to a Listeriosis Outbreak in the United States. J. Food Prot. 2016, 79, 1828–1832. [Google Scholar] [CrossRef]
- Ewida, R.M.; Hasan, W.S.; Elfaruk, M.S.; Alayouni, R.R.; Hammam, A.R.A.; Kamel, D.G. Occurrence of Listeria spp. in Soft Cheese and Ice Cream: Effect of Probiotic Bifidobacterium spp. on Survival of Listeria monocytogenes in Soft Cheese. Foods 2022, 11, 3443. [Google Scholar] [CrossRef]
- Salazar, J.K.; Stewart, D.; Shazer, A.; Tortorello, M.L. Short Communication: Long-Term −20 °C Survival of Listeria monocytogenes in Artificially and Process-Contaminated Ice Cream Involved in an Outbreak of Listeriosis. J. Dairy Sci. 2020, 103, 172–175. [Google Scholar] [CrossRef]
- Lin, C.M.; Takeuchi, K.; Zhang, L.; Dohm, C.B.; Meyer, J.D.; Hall, P.A.; Doyle, M.P. Cross-Contamination between Processing Equipment and Deli Meats by Listeria monocytogenes. J. Food Prot. 2006, 69, 71–79. [Google Scholar] [CrossRef]
- Russini, V.; Spaziante, M.; Zottola, T.; Fermani, A.G.; di Giampietro, G.; Blanco, G.; Fabietti, P.; Marrone, R.; Parisella, R.; Parrocchia, S.; et al. A Nosocomial Outbreak of Invasive Listeriosis in An Italian Hospital: Epidemiological and Genomic Features. Pathogens 2021, 10, 591. [Google Scholar] [CrossRef]
- CDC. Investigation Details. Listeria Outbreak Linked to Deli Meat and Cheese. Available online: https://www.cdc.gov/listeria/outbreaks/deli-11-22/details.html (accessed on 23 February 2023).
- European Food Safety Authority & European Centre for Disease Prevention and Control. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2015. EFSA J. 2016, 14, 4634. [Google Scholar] [CrossRef]
- Lewis, H.C.; Little, C.L.; Elson, R.; Greenwood, M.; Grant, K.A.; McLauchlin, J. Prevalence of Listeria monocytogenes and Other Listeria Species in Butter from United Kingdom Production, Retail, and Catering Premises. J. Food Prot. 2006, 69, 1518–1526. [Google Scholar] [CrossRef]
- Pinto, A.D.; Novello, L.; Montemurro, F.; Bonerba, E.; Tantillo, G. Occurrence of Listeria monocytogenes in Ready-to-Eat Foods from Supermarkets in Southern Italy. New Microbiol. 2010, 33, 249–252. [Google Scholar] [PubMed]
- Wagner, M.; Auer, B.; Trittremmel, C.; Hein, I.; Schoder, D. Survey on the Listeria Contamination of Ready-to-Eat Food Products and Household Environments in Vienna, Austria. Zoonoses Public Health 2007, 54, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Angelidis, A.S.; Georgiadou, S.S.; Zafeiropoulou, V.; Velonakis, E.N.; Papageorgiou, D.K.; Vatopoulos, A. A Survey of Soft Cheeses in Greek Retail Outlets Highlights a Low Prevalence of Listeria spp. Dairy Sci. Technol. 2012, 92, 189–201. [Google Scholar] [CrossRef]
- Pesavento, G.; Calonico, C.; Bilia, A.R.; Barnabei, M.; Calesini, F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; di Martino, M.C.; lo Nostro, A. Antibacterial Activity of Oregano, Rosmarinus and Thymus Essential Oils against Staphylococcus aureus and Listeria monocytogenes in Beef Meatballs. Food Control 2015, 54, 188–199. [Google Scholar] [CrossRef]
- Almeida, G.; Figueiredo, A.; Rôla, M.; Barros, R.M.; Gibbs, P.; Hogg, T.; Teixeira, P. Microbiological Characterization of Randomly Selected Portuguese Raw Milk Cheeses with Reference to Food Safety. J. Food Prot. 2007, 70, 1710–1716. [Google Scholar] [CrossRef]
- Moreno-Enriquez, R.I.; Garcia-Galaz, A.; Acedo-Felix, E.; Gonzalez-Rios, H.; Call, J.E.; Luchansky, J.B.; Diaz-Cinco, M.E. Prevalence, Types, and Geographical Distribution of Listeria monocytogenes from a Survey of Retail Queso Fresco and Associated Cheese Processing Plants and Dairy Farms in Sonora, Mexico. J. Food Prot. 2007, 70, 2596–2601. [Google Scholar] [CrossRef]
- Torres-Vitela, M.R.; Mendoza-Bernardo, M.; Castro-Rosas, J.; Gomez-Aldapa, C.A.; Garay-Martinez, L.E.; Navarro-Hidalgo, V.; Villarruel-López, A. Incidence of Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, and Staphylococcal Enterotoxin in Two Types of Mexican Fresh Cheeses. J. Food Prot. 2012, 75, 79–84. [Google Scholar] [CrossRef]
- Rosas-Barbosa, B.T.; Morales, A.L.-J.; Alaniz-de la O, R.; Ramírez-Álvarez, A.; Soltero-Ramos, J.P.; Mora-Quiro, R.; MartiN, P.; Jacquet, C. Presence and Persistence of Listeria in Four Artisanal Cheese Plants in Jalisco, Mexico. E-CUCBA 2014, 2, 3–37. Available online: http://e-cucba.cucba.udg.mx/index.php/e-Cucba/article/view/17/pdf_10 (accessed on 21 February 2023).
- Beltran, M.S.; Gerba, C.P.; Porto Fett, A.; Luchansky, J.B.; Chaidez, C. Prevalence and Characterization of Listeria monocytogenes, Salmonella and Shiga Toxin-Producing Escherichia coli Isolated from Small Mexican Retail Markets of Queso Fresco. Int. J. Environ. Health Res. 2015, 25, 140–148. [Google Scholar] [CrossRef]
- Cabedo, L.; Picart, I.; Barrot, L.; Teixidó, I.; Canelles, A. Prevalence of Listeria monocytogenes and Salmonella in Ready-to-Eat Food in Catalonia, Spain. J. Food Prot. 2008, 71, 855–859. [Google Scholar] [CrossRef]
- Iannetti, L.; Acciari, V.A.; Antoci, S.; Addante, N.; Bardasi, L.; Bilei, S.; Calistri, P.; Cito, F.; Cogoni, P.; D’Aurelio, R.; et al. Listeria monocytogenes in Ready-to-Eat Foods in Italy: Prevalence of Contamination at Retail and Characterisation of Strains from Meat Products and Cheese. Food Control 2016, 68, 55–61. [Google Scholar] [CrossRef]
- Kinde, H.; Mikolon, A.; Rodriguez-Lainz, A.; Adams, C.; Walker, R.L.; Cernek-Hoskins, S.; Treviso, S.; Ginsberg, M.; Rast, R.; Harris, B.; et al. Recovery of Salmonella, Listeria monocytogenes, and Mycobacterium bovis from Cheese Entering the United States through a Noncommercial Land Port of Entry. J. Food Prot. 2007, 70, 47–52. [Google Scholar] [CrossRef]
- Martins, J.M.; Galinari, É.; Pimentel-Filho, N.J.; Ribeiro, J.I.; Furtado, M.M.; Ferreira, C.L.L.F. Determining the Minimum Ripening Time of Artisanal Minas Cheese, a Traditional Brazilian Cheese. Braz. J. Microbiol. 2015, 46, 219–230. [Google Scholar] [CrossRef]
- Colak, H.; Hampikyan, H.; Bingol, E.B.; Ulusoy, B. Prevalence of L. monocytogenes and Salmonella spp. in Tulum Cheese. Food Control 2007, 18, 576–579. [Google Scholar] [CrossRef]
- Bernini, V.; Dalzini, E.; Lazzi, C.; Bottari, B.; Gatti, M.; Neviani, E. Cutting Procedures Might Be Responsible for Listeria monocytogenes Contamination of Foods: The Case of Gorgonzola Cheese. Food Control 2016, 61, 54–61. [Google Scholar] [CrossRef]
- Manfreda, G.; de Cesare, A.; Stella, S.; Cozzi, M.; Cantoni, C. Occurrence and Ribotypes of Listeria monocytogenes in Gorgonzola Cheeses. Int. J. Food Microbiol. 2005, 102, 287–293. [Google Scholar] [CrossRef]
- Arslan, S.; Özdemir, F. Prevalence and Antimicrobial Resistance of Listeria spp. in Homemade White Cheese. Food Control 2008, 19, 360–363. [Google Scholar] [CrossRef]
- Lahou, E.; Uyttendaele, M. Growth Potential of Listeria monocytogenes in Soft, Semi-Soft and Semi-Hard Artisanal Cheeses after Post-Processing Contamination in Deli Retail Establishments. Food Control 2017, 76, 13–23. [Google Scholar] [CrossRef]
- Gyurova, E.; Krumova-Vulcheva, G.; Daskalov, H.; Gogov, Y. Prevalence of Listeria monocytogenes in Ready-To-Eat Foods in Bulgaria. J. Hyg. Eng. Des. 2014, 7, 112–118. Available online: https://keypublishing.org/jhed/wp-content/uploads/2020/07/13.-Hristo-Daskalov.pdf (accessed on 21 February 2023).
- Gelbíčová, T.; Tomáštíková, Z.; Koláčková, I.; Karpíšková, R. A Survey on Prevalence and Sources of Listeria monocytogenes in Ripened and Steamed Cheeses from the Retail Market in the Czech Republic. J. Food Nutr. Res. 2017, 56, 42–47. [Google Scholar]
- Reda, W.W.; Abdel-Moein, K.; Hegazi, A.; Mohamed, Y.; Abdel-Razik, K. Listeria monocytogenes: An Emerging Food-Borne Pathogen and Its Public Health Implications. J. Infect. Dev. Ctries. 2016, 10, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Gebretsadik, S.; Kassa, T.; Alemayehu, H.; Huruy, K.; Kebede, N. Isolation and Characterization of Listeria monocytogenes and Other Listeria Species in Foods of Animal Origin in Addis Ababa, Ethiopia. J. Infect. Public Health 2011, 4, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Rakhmawati, T.W.; Nysen, R.; Aerts, M. Statistical Analysis of the Listeria monocytogenes EU-wide Baseline Survey in Certain Ready-to-eat Foods Part A: Listeria monocytogenes Prevalence Estimates. EFSA J. 2017, 10, EN-441. [Google Scholar] [CrossRef]
- Filiousis, G.; Johansson, A.; Frey, J.; Perreten, V. Prevalence, Genetic Diversity and Antimicrobial Susceptibility of Listeria monocytogenes Isolated from Open-Air Food Markets in Greece. Food Control 2009, 20, 314–317. [Google Scholar] [CrossRef]
- Ahmed, S.S.T.S.; Tayeb, B.A. Isolation and Molecular Detection of Listeria monocytogenes in Minced Meat, Frozen Chicken and Cheese in Duhok Province, Kurdistan Region of Iraq. J. Food Microbiol. Saf. Hyg. 2017, 2, 118. [Google Scholar] [CrossRef]
- Lambertz, S.T.; Nilsson, C.; Brådenmark, A.; Sylvén, S.; Johansson, A.; Jansson, L.M.; Lindblad, M. Prevalence and Level of Listeria monocytogenes in Ready-to-Eat Foods in Sweden 2010. Int. J. Food Microbiol. 2012, 160, 24–31. [Google Scholar] [CrossRef]
- Ismaiel, A.A.R.; Ali, A.E.S.; Enan, G. Incidence of Listeria in Egyptian Meat and Dairy Samples. Food Sci. Biotechnol. 2014, 23, 179–185. [Google Scholar] [CrossRef]
- Dambrosio, A.; Quaglia, N.C.; Saracino, M.; Malcangi, M.; Montagna, C.; Quinto, M.; Lorusso, V.; Normanno, G. Microbiological Quality of Burrata Cheese Produced in Puglia Region: Southern Italy. J. Food Prot. 2013, 76, 1981–1984. [Google Scholar] [CrossRef]
- El-Marnissi, B.; Bennani, L.; Cohen, N.; Lalami, A.E.; Belkhou, R. Presence of Listeria monocytogenes in Raw Milk and Traditional Dairy Products Marketed in the North-Central Region of Morocco. Afr. J. Food Sci. 2013, 7, 87–91. [Google Scholar] [CrossRef]
- Prencipe, V.; Migliorati, G.; Matteucci, O.; Calistri, P.; Giannatale, E.D. Assessment of Hygienic Quality of Some Types of Cheese Sampled from Retail Outlets. Vet. Ital. 2010, 46, 233–242. Available online: https://www.izs.it/vet_italiana/2010/46_2/233.pdf (accessed on 21 February 2023).
- Bouymajane, A.; Filali, F.R.; Oulghazi, S.; Lafkih, N.; Ed-Dra, A.; Aboulkacem, A.; el Allaoui, A.; Ouhmidou, B.; Moumni, M. Occurrence, Antimicrobial Resistance, Serotyping and Virulence Genes of Listeria monocytogenes Isolated from Foods. Heliyon 2021, 7, e06169. [Google Scholar] [CrossRef]
- Robertson, M.H. Listeriosis. Postgrad. Med. J. 1977, 53, 618–622. [Google Scholar] [CrossRef]
- Fleming, D.W.; Cochi, S.L.; MacDonald, K.L.; Brondum, J.; Hayes, P.S.; Plikaytis, B.D.; Holmes, M.B.; Audurier, A.; Broome, C.V.; Reingold, A.L. Pasteurized Milk as a Vehicle of Infection in an Outbreak of Listeriosis. N. Engl. J. Med. 1985, 312, 404–407. [Google Scholar] [CrossRef]
- Seeliger, H.P.R. Listeriosis-History and Actual Developments. Infection 1988, 16 (Suppl. S2), S80–S84. [Google Scholar] [CrossRef]
- Mclauchlin, J. Human Listeriosis in Britain, 1967–1985, a Summary of 722 Cases. 2. Listeriosis in Non-Pregnant Individuals, a Changing Pattern of Infection and Seasonal Incidence. Epidemiol. Infect. 1990, 104, 191. [Google Scholar] [CrossRef]
- Ho, J.L.; Shands, K.N.; Friedland, G.; Eckind, P.; Fraser, D.W. An Outbreak of Type 4b Listeria monocytogenes Infection Involving Patients From Eight Boston Hospitals. Arch. Intern. Med. 1986, 146, 520–524. [Google Scholar] [CrossRef]
- Erdmann, G.; Potel, J. Listeriosis in Newborn: Granulomatosis Infantiseptica, until Now so-Called Pseudotuberculosis. Z. Kinderheilkd. 1953, 73, 113–132. [Google Scholar] [CrossRef]
- CDC. Listeria (Listeriosis). Listeria. Available online: https://www.cdc.gov/listeria/index.html (accessed on 22 February 2023).
- Linnan, M.J.; Mascola, L.; Lou, X.D.; Goulet, V.; May, S.; Salminen, C.; Hird, D.W.; Yonekura, M.L.; Hayes, P.; Weaver, R.; et al. Epidemic Listeriosis Associated with Mexican-Style Cheese. N. Engl. J. Med. 1988, 319, 823–828. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Y.; Carleton, H.; Timme, R.; Melka, D.; Muruvanda, T.; Wang, C.; Kastanis, G.; Katz, L.S.; Turner, L.; et al. Whole Genome and Core Genome Multilocus Sequence Typing and Single Nucleotide Polymorphism Analyses of Listeria monocytogenes Isolates Associated with an Outbreak Linked to Cheese, United States, 2013. Appl. Environ. Microbiol. 2017, 83, e00633-17. [Google Scholar] [CrossRef]
- Jackson, B.R.; Tarr, C.; Strain, E.; Jackson, K.A.; Conrad, A.; Carleton, H.; Katz, L.S.; Stroika, S.; Gould, L.H.; Mody, R.K.; et al. Implementation of Nationwide Real-Time Whole-Genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation. Clin. Infect. Dis. 2016, 63, 380–386. [Google Scholar] [CrossRef]
- Seeliger, H.P.R. Listeriosis, 2nd ed.; Hafner Publishing Company: New York, NY, USA, 1961. [Google Scholar]
- Anses—Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail. Raw-Milk Cheeses: What Are the Associated Health Risks and What Preventive Measures Can Be Taken? Available online: https://www.anses.fr/en/content/raw-milk-cheeses-what-are-associated-health-risks-and-what-preventive-measures-can-be-taken (accessed on 23 February 2023).
- Dalton, C.B.; Austin, C.C.; Sobel, J.; Hayes, P.S.; Bibb, W.F.; Graves, L.M.; Swaminathan, B.; Proctor, M.E.; Griffin, P.M. An Outbreak of Gastroenteritis and Fever Due to Listeria monocytogenes in Milk. N. Engl. J. Med. 1997, 336, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Goulet, V.; Jacquet, C.; Vaillant, V.; Rebière, I.; Mouret, E.; Lorente, C.; Maillot, E.; Staïner, F.; Rocourt, J. Listeriosis from Consumption of Raw-Milk Cheese. Lancet 1995, 345, 1581–1582. [Google Scholar] [CrossRef] [PubMed]
- Lyytikäinen, O.; Autio, T.; Maijala, R.; Ruutu, P.; Honkanen-Buzalski, T.; Miettinen, M.; Hatakka, M.; Mikkola, J.; Anttila, V.J.; Johansson, T.; et al. An Outbreak of Listeria monocytogenes Serotype 3a Infections from Butter in Finland. J. Infect. Dis. 2000, 181, 1838–1841. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, P.D.M.; Whitwam, R.E.; Boggs, J.D.; MacCormack, J.N.; Anderson, K.L.; Reardon, J.W.; Saah, J.R.; Graves, L.M.; Hunter, S.B.; Sobel, J. Outbreak of Listeriosis among Mexican Immigrants as a Result of Consumption of Illicitly Produced Mexican-Style Cheese. Clin. Infect. Dis. 2005, 40, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Carrique-Mas, J.J.; Hökeberg, I.; Andersson, Y.; Arneborn, M.; Tham, W.; Danielsson-Tham, M.L.; Osterman, B.; Leffler, M.; Steen, M.; Eriksson, E.; et al. Febrile Gastroenteritis after Eating On-Farm Manufactured Fresh Cheese—An Outbreak of Listeriosis? Epidemiol. Infect. 2003, 130, 79–86. [Google Scholar] [CrossRef]
- Makino, S.I.; Kawamoto, K.; Takeshi, K.; Okada, Y.; Yamasaki, M.; Yamamoto, S.; Igimi, S. An Outbreak of Food-Borne Listeriosis Due to Cheese in Japan, during 2001. Int. J. Food Microbiol. 2005, 104, 189–196. [Google Scholar] [CrossRef]
- Bille, J.; Blanc, D.S.; Schmid, H.; Boubaker, K.; Baumgartner, A.; Siegrist, H.H.; Tritten, M.L.; Lienhard, R.; Berner, D.; Anderau, R.; et al. Outbreak of Human Listeriosis Associated with Tomme Cheese in Northwest Switzerland, 2005. Eurosurveillance 2006, 11, 91–93. [Google Scholar] [CrossRef]
- Koch, J.; Dworak, R.; Prager, R.; Becker, B.; Brockmann, S.; Wicke, A.; Wichmann-Schauer, H.; Hof, H.; Werber, D.; Stark, K. Large Listeriosis Outbreak Linked to Cheese Made from Pasteurized Milk, Germany, 2006-2007. Foodborne Pathog. Dis. 2010, 7, 1581–1584. [Google Scholar] [CrossRef]
- Amato, E.; Filipello, V.; Gori, M.; Lomonaco, S.; Losio, M.N.; Parisi, A.; Huedo, P.; Knabel, S.J.; Pontello, M. Identification of a Major Listeria monocytogenes Outbreak Clone Linked to Soft Cheese in Northern Italy—2009–2011. BMC Infect. Dis. 2017, 17, 342. [Google Scholar] [CrossRef]
- CDC. Outbreak of Listeria monocytogenes Infections Associated with Pasteurized Milk from a Local Dairy—Massachusetts. 2007. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5740a1.htm (accessed on 23 February 2023).
- Gaulin, C.; Ramsay, D.; Bekal, S. Widespread Listeriosis Outbreak Attributable to Pasteurized Cheese, Which Led to Extensive Cross-Contamination Affecting Cheese Retailers, Quebec, Canada, 2008. J. Food Prot. 2012, 75, 71–78. [Google Scholar] [CrossRef]
- Jackson, K.A.; Biggerstaff, M.; Tobin-D’Angelo, M.; Sweat, D.; Klos, R.; Nosari, J.; Garrison, O.; Boothe, E.; Saathoff-Huber, L.; Hainstock, L.; et al. Multistate Outbreak of Listeria monocytogenes Associated with Mexican-Style Cheese Made from Pasteurized Milk among Pregnant, Hispanic Women. J. Food Prot. 2011, 74, 949–953. [Google Scholar] [CrossRef]
- Fretz, R.; Sagel, U.; Ruppitsch, W.; Pietzka, A.T.; Stöger, A.; Huhulescu, S.; Heuberger, S.; Pichler, J.; Much, P.; Pfaff, G.; et al. Listeriosis Outbreak Caused by Acid Curd Cheese “Quargel”, Austria and Germany 2009. Eurosurveillance 2010, 15, 19477. [Google Scholar] [CrossRef]
- Schoder, D.; Skandamis, P.; Wagner, M. Assessing In-House Monitoring Efficiency by Tracing Contamination Rates in Cheese Lots Recalled during an Outbreak of Listeriosis in Austria. Int. J. Food Microbiol. 2013, 167, 353–358. [Google Scholar] [CrossRef]
- Magalhães, R.; Almeida, G.; Ferreira, V.; Santos, I.; Silva, J.; Mendes, M.M.; Pita, J.; Mariano, G.; Mâncio, I.; Sousa, M.M.; et al. Cheese-Related Listeriosis Outbreak, Portugal, March 2009 to February 2012. Eurosurveillance 2015, 20, 21104. [Google Scholar] [CrossRef]
- Yde, M.; Naranjo, M.; Mattheus, W.; Stragier, P.; Pochet, B.; Beulens, K.; de Schrijver, K.; van den Branden, D.; Laisnez, V.; Flipse, W.; et al. Usefulness of the European Epidemic Intelligence Information System in the Management of an Outbreak of Listeriosis, Belgium, 2011. Eurosurveillance 2012, 17, 20279. [Google Scholar] [CrossRef]
- de Castro, V.; Escudero, J.M.; Rodriguez, J.L.; Muniozguren, N.; Uribarri, J.; Saez, D.; Vazquez, J. Listeriosis Outbreak Caused by Latin-Style Fresh Cheese, Bizkaia, Spain, August 2012. Eurosurveillance 2012, 17, 20298. [Google Scholar] [CrossRef]
- Heiman, K.E.; Garalde, V.B.; Gronostaj, M.; Jackson, K.A.; Beam, S.; Joseph, L.; Saupe, A.; Ricotta, E.; Waechter, H.; Wellman, A.; et al. Multistate Outbreak of Listeriosis Caused by Imported Cheese and Evidence of Cross-Contamination of Other Cheeses, USA, 2012. Epidemiol. Infect. 2016, 144, 2698. [Google Scholar] [CrossRef]
- Choi, M.J.; Jackson, K.A.; Medus, C.; Beal, J.; Rigdon, C.E.; Cloyd, T.C.; Forstner, M.J.; Ball, J.; Bosch, S.; Bottichio, L.; et al. Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Soft-Ripened Cheese—United States, 2013. Morb. Mortal. Wkly Rep. 2014, 63, 294. [Google Scholar]
- CDC. Multistate Outbreak of Listeriosis Linked to Roos Foods Dairy Products. Listeria. Available online: https://www.cdc.gov/listeria/outbreaks/cheese-02-14/ (accessed on 23 February 2023).
- CDC. Multistate Outbreak of Listeriosis Linked to Raw Milk Produced by Miller’s Organic Farm in Pennsylvania. Listeria. Available online: https://www.cdc.gov/listeria/outbreaks/raw-milk-03-16/index.html#print (accessed on 23 February 2023).
- Rietberg, K.; Lloyd, J.; Melius, B.; Wyman, P.; Treadwell, R.; Olson, G.; Kang, M.G.; Duchin, J.S. Outbreak of Listeria monocytogenes Infections Linked to a Pasteurized Ice Cream Product Served to Hospitalized Patients. Epidemiol. Infect. 2016, 144, 2728. [Google Scholar] [CrossRef]
- Nichols, M.; Conrad, A.; Whitlock, L.; Stroika, S.; Strain, E.; Weltman, A.; Johnson, L.; DeMent, J.; Reporter, R.; Williams, I. Short Communication: Multistate Outbreak of Listeria monocytogenes Infections Retrospectively Linked to Unpasteurized Milk Using Whole-Genome Sequencing. J. Dairy Sci. 2020, 103, 176–178. [Google Scholar] [CrossRef]
- Palacios, A.; Otto, M.; Flaherty, E.; Boyle, M.M.; Malec, L.; Holloman, K.; Low, M.; Wellman, A.; Newhart, C.; Gollarza, L.; et al. Multistate Outbreak of Listeria monocytogenes Infections Linked to Fresh, Soft Hispanic-Style Cheese—United States, 2021. Morb. Mortal. Wkly. Rep. 2022, 71, 709. [Google Scholar] [CrossRef] [PubMed]
- CDC. Listeria Outbreak Linked to Ice Cream. Available online: https://www.cdc.gov/listeria/outbreaks/monocytogenes-06-22/index.html (accessed on 23 February 2023).
- Food Standards Agency. FSA and UKHSA Warn of Listeria Risk with Baronet Soft Cheeses. Available online: https://www.food.gov.uk/news-alerts/news/fsa-and-ukhsa-warn-of-listeria-risk-with-baronet-soft-cheeses (accessed on 26 March 2023).
- FDA. Control of Listeria monocytogenes in Ready-to-Eat Foods: Guidance for Industry Draft Guidance. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-control-listeria-monocytogenes-ready-eat-foods (accessed on 21 February 2023).
- Centre for International Governance Innovation. Is Canada Ready for the Platform Regulation Debate? Available online: https://www.cigionline.org/articles/is-canada-ready-for-the-platform-regulation-debate/?utm_source=google_ads&utm_medium=grant&gclid=CjwKCAjw5pShBhB_EiwAvmnNV3pe34h1kWFJ1X7J6sJKsyZ2EUAhWRL-u4qkABKOxDXU-vzI8agVLRoCsRoQAvD_BwE (accessed on 29 March 2023).
- Zoellner, C.; Ceres, K.; Ghezzi-Kopel, K.; Wiedmann, M.; Ivanek, R. Design Elements of Listeria Environmental Monitoring Programs in Food Processing Facilities: A Scoping Review of Research and Guidance Materials. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1156–1171. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.O.; Boué, G.; Prévost, H.; Maillet, A.; Jaffres, E.; Maignien, T.; Arnich, N.; Sanaa, M.; Federighi, M. Environmental Monitoring Program to Support Food Microbiological Safety and Quality in Food Industries: A Scoping Review of the Research and Guidelines. Food Control 2021, 130, 108283. [Google Scholar] [CrossRef]
- Babu, D.; Bansal, A.; Banegas, T.; Fuentes, L.; Gurrisi, J.; Hardin, M.; Owens, E.; Raede, J.; Snyder, K.; Valadez, A.; et al. Guidance on Environmental Monitoring and Control of Listeria for the Fresh Produce Industry, 2nd ed.; United Fresh Produce Association: Washington, DC, USA, 2018; Available online: https://www.freshproduce.com/siteassets/files/reports/food-safety/guidance-on-environmental-monitoring-and-control-of-listeria.pdf (accessed on 23 February 2023).
- Innovation Center for U.S. Dairy. Control of Listeria monocytogenes Guidance for the U.S. Dairy Industry. Available online: https://www.usdairy.com/getmedia/aee7f5c2-b462-4f4f-a99d-870f53cb2ddc/control%20of%20listeria%20monocytogenes%20guidance%20for%20the%20us%20dairy%20industry.pdf.pdf (accessed on 23 February 2023).
- Ministério da Saúde | Agência Nacional de Vigilância Sanitária. Instrução Normativa—IN no 161, de 1° de Julho de 2022—Estabelece os Padrões Microbiológicos dos Alimentos. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-161-de-1-de-julho-de-2022-413366880 (accessed on 23 February 2023).
- Farber, J.M.; Zwietering, M.; Wiedmann, M.; Schaffner, D.; Hedberg, C.W.; Harrison, M.A.; Hartnett, E.; Chapman, B.; Donnelly, C.W.; Goodburn, K.E.; et al. Alternative Approaches to the Risk Management of Listeria monocytogenes in Low Risk Foods. Food Control 2021, 123, 107601. [Google Scholar] [CrossRef]
- Grinyer, L. Six Steps to Control Listeria: Key Criteria That Should Form Part of Your Listeria Management Plan. Leatherhead Food Res. 2018, 64, 1–5. Available online: https://www.leatherheadfood.com/wp-content/uploads/2018/08/Six-steps-to-control-Listeria-in-foods_3.pdf (accessed on 29 March 2023).
- PROFEL European Association of Fruit and Vegetable Processors. Hygiene Guidelines for the Control of Listeria monocytogenes in the Production of Quick-Frozen Vegetables; PROFEL European Association of Fruit and Vegetable Processors: Brussels, Belgium, 2020; pp. 1–59. Available online: https://profel-europe.eu/_library/_files/PROFEL_Listeria_mono_guidelines_November2020.pdf (accessed on 29 March 2023).
- ReportLinker. Food Safety Industry 2023. Available online: https://www.reportlinker.com/market-report/Food-Policy/462054/Food-Safety?term=food%20safety%20data&matchtype=b&loc_interest=&loc_physical=1001773&utm_term=food%20safety%20data&utm_campaign=transactionnel1&utm_source=google&utm_medium=ppc&hsa_acc=9351230540&hsa_cam=15072746546&hsa_grp=128983567385&hsa_ad=559945965001&hsa_src=g&hsa_tgt=kwd-1930401901590&hsa_kw=food%20safety%20data&hsa_mt=b&hsa_net=adwords&hsa_ver=3&gclid=CjwKCAjw5pShBhB_EiwAvmnNVwmVqiyUIGfoqpdU-q9srAo-LgzBeecT9Wrqcna7BO_HnO4nh9F0thoC9b4QAvD_BwE (accessed on 29 March 2023).
- Walls, I. Achieving Continuous Improvement in Reductions in Foodborne Listeriosis—A Risk-Based Approach. J. Food Prot. 2005, 68, 1932–1994. [Google Scholar] [CrossRef]
- Ibarra-Sánchez, L.A.; Van Tassell, M.L.; Miller, M.J. Invited Review: Hispanic-Style Cheeses and Their Association with Listeria monocytogenes. J. Dairy Sci. 2017, 100, 2421–2432. [Google Scholar] [CrossRef]
- Simonetti, T.; Peter, K.; Chen, Y.; Jin, Q.; Zhang, G.; LaBorde, L.F.; Macarisin, D. Prevalence and Distribution of Listeria monocytogenes in Three Commercial Tree Fruit Packinghouses. Front. Microbiol. 2021, 12, 1238. [Google Scholar] [CrossRef]
- Carpentier, B.; Cerf, O. Review-Persistence of Listeria monocytogenes in Food Industry Equipment and Premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef]
- Aleksic, B.; Djekic, I.; Miocinovic, J.; Miloradovic, Z.; Memisi, N.; Smigic, N. The Application of Failure Mode Effects Analysis in the Long Supply Chain—A Case Study of Ultra Filtrated Milk Cheese. Food Control 2022, 138, 109057. [Google Scholar] [CrossRef]
- Magdovitz, B.F.; Gummalla, S.; Thippareddi, H.; Harrison, M.A. Evaluating Environmental Monitoring Protocols for Listeria spp. and Listeria monocytogenes in Frozen Food Manufacturing Facilities. J. Food Prot. 2020, 83, 172–187. [Google Scholar] [CrossRef]
- Russo, P.; Hadjilouka, A.; Beneduce, L.; Capozzi, V.; Paramithiotis, S.; Drosinos, E.H.; Spano, G. Effect of Different Conditions on Listeria monocytogenes Biofilm Formation and Removal. Czech. J. Food Sci. 2018, 36, 208–214. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Riesco-Peláez, F.; García-Fernández, C.; Alonso-Calleja, C.; Capita, R. Susceptibility of Listeria monocytogenes Planktonic Cultures and Biofilms to Sodium Hypochlorite and Benzalkonium Chloride. Food Microbiol. 2019, 82, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.A.; Panfil-Kuncewicz, H.; Laniewska-Trokenheim, Ł. Detection of Viable but Nonculturable Cells of Listeria monocytogenes with the Use of Direct Epifluorescent Filter Technique. J. Food Saf. 2015, 35, 86–90. [Google Scholar] [CrossRef]
- Dong, K.; Pan, H.; Yang, D.; Rao, L.; Zhao, L.; Wang, Y.; Liao, X. Induction, Detection, Formation, and Resuscitation of Viable but Non-Culturable State Microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 149–183. [Google Scholar] [CrossRef]
- Viazis, S.; Farkas, B.E.; Jaykus, L.A. Inactivation of Bacterial Pathogens in Human Milk by High-Pressure Processing. J. Food Prot. 2008, 71, 109–118. [Google Scholar] [CrossRef]
- Mishra, N.; Puri, V.M.; Demirci, A. Inactivation and Injury of Listeria monocytogenes under Combined Effect of Pressure and Temperature in UHT Whole Milk. J. Food Process. Eng. 2013, 36, 374–384. [Google Scholar] [CrossRef]
- Amina, M.; Kodogiannis, V.S.; Petrounias, I.P.; Lygouras, J.N.; Nychas, G.J.E. Identification of the Listeria monocytogenes Survival Curves in UHT Whole Milk Utilising Local Linear Wavelet Neural Networks. Expert. Syst. Appl. 2012, 39, 1435–1450. [Google Scholar] [CrossRef]
- Waite-Cusic, J.G.; Diono, B.H.S.; Yousef, A.E. Screening for Listeria monocytogenes Surrogate Strains Applicable to Food Processing by Ultrahigh Pressure and Pulsed Electric Field. J. Food Prot. 2011, 74, 1655–1661. [Google Scholar] [CrossRef]
- Gunter-Ward, D.M.; Patras, A.S.; Bhullar, M.; Kilonzo-Nthenge, A.; Pokharel, B.; Sasges, M. Efficacy of Ultraviolet (UV-C) Light in Reducing Foodborne Pathogens and Model Viruses in Skim Milk. J. Food Process. Preserv. 2018, 42, e13485. [Google Scholar] [CrossRef]
- Gabriel, A.A. Inactivation of Listeria monocytogenes in Milk by Multifrequency Power Ultrasound. J. Food Process. Preserv. 2015, 39, 846–853. [Google Scholar] [CrossRef]
- Gera, N.; Doores, S. Kinetics and Mechanism of Bacterial Inactivation by Ultrasound Waves and Sonoprotective Effect of Milk Components. J. Food Sci. 2011, 76, M111–M119. [Google Scholar] [CrossRef]
- Jermann, C.; Koutchma, T.; Margas, E.; Leadley, C.; Ros-Polski, V. Mapping Trends in Novel and Emerging Food Processing Technologies around the World. Innov. Food Sci. Emer. Technol. 2015, 31, 14–27. [Google Scholar] [CrossRef]
- Moradi, M.; Mardani, K.; Tajik, H. Characterization and Application of Postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in Food Models. LWT 2019, 111, 457–464. [Google Scholar] [CrossRef]
- Oliveira, L.B.A.; Sabino, Y.N.V.; Barroso, M.d.V.; Ferreira, R.K.; Lima, J.F.; Arcuri, P.B.; Carneiro, J. da C.; Mendonça, R.J. de; Ribeiro, J.B.; Ferreira-Machado, A.B.; et al. Inhibition of Listeria monocytogenes by Bacteriocin-Producing Bacillus velezensis Isolated from Silage. Res. Soc. Dev. 2021, 10, e2610917783. [Google Scholar] [CrossRef]
- Melian, C.; Segli, F.; Gonzalez, R.; Vignolo, G.; Castellano, P. Lactocin AL705 as Quorum Sensing Inhibitor to Control Listeria monocytogenes Biofilm Formation. J. Appl. Microbiol. 2019, 127, 911–920. [Google Scholar] [CrossRef]
- Guitián, M.V.; Ibarguren, C.; Soria, M.C.; Hovanyecz, P.; Banchio, C.; Audisio, M.C. Anti-Listeria monocytogenes Effect of Bacteriocin-Incorporated Agar Edible Coatings Applied on Cheese. Int. Dairy J. 2019, 97, 92–98. [Google Scholar] [CrossRef]
- Kawacka, I.; Olejnik-Schmidt, A.; Schmidt, M.; Sip, A. Effectiveness of Phage-Based Inhibition of Listeria monocytogenes in Food Products and Food Processing Environments. Microorganisms 2020, 8, 1764. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, P.; Zhu, L.; Zhang, Y.; Luo, X. Effect of Four Kinds of Natural Antimicrobial Compounds on the Biofilm Formation Ability of Listeria monocytogenes Isolated from Beef Processing Plants in China. LWT 2020, 133, 110020. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Han, J.; Dong, P.; Luo, X.; Zhang, Y.; Zhu, L. Inhibition of Biofilm Formation and Related Gene Expression of Listeria monocytogenes in Response to Four Natural Antimicrobial Compounds and Sodium Hypochlorite. Front. Microbiol. 2021, 11, 3523. [Google Scholar] [CrossRef]
- Elafify, M.; Elabbasy, M.T.; Mohamed, R.S.; Mohamed, E.A.; Saad Eldin, W.F.; Darwish, W.S.; Eldrehmy, E.H.; Shata, R.R. Prevalence of Multidrug-Resistant Listeria monocytogenes in Dairy Products with Reduction Trials Using Rosmarinic Acid, Ascorbic Acid, Clove, and Thyme Essential Oils. J. Food Qual. 2022, 2022, 9696927. [Google Scholar] [CrossRef]
- Mahmoudzadeh, P.; Aliakbarlu, J.; Moradi, M. Preparation and Antibacterial Performance of Cinnamon Essential Oil Nanoemulsion on Milk Foodborne Pathogens. Int. J. Dairy Technol. 2022, 75, 106–114. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, X.; Deng, Y.; Bu, X.; Ye, H.; Guo, N. Antimicrobial Potential Of Myristic Acid Against Listeria monocytogenes in Milk. J. Antibiot. 2019, 72, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Martín, I.; Rodríguez, A.; Delgado, J.; Córdoba, J.J. Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods 2022, 11, 542. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.; Ma, L.; Lu, X. Impact of Lactic Acid Bacteria on the Control of Listeria monocytogenes in Ready-to-Eat Foods. Food Qual. Saf. 2022, 6, fyac045. [Google Scholar] [CrossRef]
- Aljohani, A.B.; Al-Hejina, A.M.; Shori, B. Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. Food Sci. Technol. 2023, 43, e118021. [Google Scholar] [CrossRef]
- Stone, E.; Lhomet, A.; Neve, H.; Grant, I.R.; Campbell, K.; McAuliffe, O. Isolation and Characterization of Listeria monocytogenes Phage VB_LmoH_P61, a Phage with Biocontrol Potential on Different Food Matrices. Front. Sustain. Food Syst. 2020, 4, 205. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.G.; Lee, H.S.; Heo, S.; Kwon, M.; Kim, G.B. Isolation and Characterization of Listeria Phages for Control of Growth of Listeria monocytogenes in Milk. Food Sci. Anim. Resour. 2017, 37, 320–328. [Google Scholar] [CrossRef]
- Silva, E.N.G.; Figueiredo, A.C.L.; Miranda, F.A.; Almeida, R.C.D.C. Control of Listeria monocytogenes Growth in Soft Cheeses by Bacteriophage P100. Braz. J. Microbiol. 2014, 45, 11–16. [Google Scholar] [CrossRef]
- Guenther, S.; Loessner, M.J. Bacteriophage Biocontrol of Listeria monocytogenes on Soft Ripened White Mold and Red-Smear Cheeses. Bacteriophage 2011, 1, 94. [Google Scholar] [CrossRef]
- Soni, K.A.; Desai, M.; Oladunjoye, A.; Skrobot, F.; Nannapaneni, R. Reduction of Listeria monocytogenes in Queso Fresco Cheese by a Combination of Listericidal and Listeriostatic GRAS Antimicrobials. Int. J. Food Microbiol. 2012, 155, 82–88. [Google Scholar] [CrossRef]
- Komora, N.; Maciel, C.; Pinto, C.A.; Ferreira, V.; Brandão, T.R.S.; Saraiva, J.M.A.; Castro, S.M.; Teixeira, P. Non-Thermal Approach to Listeria monocytogenes Inactivation in Milk: The Combined Effect of High Pressure, Pediocin PA-1 and Bacteriophage P100. Food Microbiol. 2020, 86, 103315. [Google Scholar] [CrossRef]
Diseases | Site of Action | Clinical Manifestations |
---|---|---|
Bacteremia | Blood | Fever, chills, myalgia, prodromal symptoms such as diarrhea and nausea |
Brain abscesses | Central nervous system | Macroscopic brain abscesses, concomitant meningitis |
Cutaneous listeriosis | Skin infection, conjunctivitis | Low-grade fever, multiple papulopustular skin lesions |
Gastroenteritis | Gastrointestinal system | Fever, watery diarrhea, nausea, headache, joint, muscle pain |
Infection in pregnancy | Mother’s blood and placenta | In the mother, mild, including fever, back pain, headache, vomiting, diarrhea, muscle aches, sore throat |
Localized infections | Liver, lungs, joints | Hepatitis, liver abscesses, cholecystitis, peritonitis, splenic abscesses, pleuropulmonary infections, joint infections, co-infectious osteomyelitis |
Meningitis | Central nervous system: brainstem and meninges | Subacute bacterial meningitis: fever, headache, neck stiffness; Rhombencephalitis: fever, headache, nausea, vomiting |
Neonatal infection | Neonate | Low birth weight or miscarriage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.C.; Almeida, F.A.d.; Medeiros, M.M.; Miranda, B.R.; Pinto, U.M.; Alves, V.F. Listeria monocytogenes: An Inconvenient Hurdle for the Dairy Industry. Dairy 2023, 4, 316-344. https://doi.org/10.3390/dairy4020022
Ribeiro AC, Almeida FAd, Medeiros MM, Miranda BR, Pinto UM, Alves VF. Listeria monocytogenes: An Inconvenient Hurdle for the Dairy Industry. Dairy. 2023; 4(2):316-344. https://doi.org/10.3390/dairy4020022
Chicago/Turabian StyleRibeiro, Alessandra Casagrande, Felipe Alves de Almeida, Mariana Medina Medeiros, Bruna Ribeiro Miranda, Uelinton Manoel Pinto, and Virgínia Farias Alves. 2023. "Listeria monocytogenes: An Inconvenient Hurdle for the Dairy Industry" Dairy 4, no. 2: 316-344. https://doi.org/10.3390/dairy4020022
APA StyleRibeiro, A. C., Almeida, F. A. d., Medeiros, M. M., Miranda, B. R., Pinto, U. M., & Alves, V. F. (2023). Listeria monocytogenes: An Inconvenient Hurdle for the Dairy Industry. Dairy, 4(2), 316-344. https://doi.org/10.3390/dairy4020022