Potential Effect of Bovine Colostrum on Mesenchymal Stem Cells for Regenerative Therapy
Abstract
:1. Introduction
2. Bovine-Colostrum-Based Therapeutic Strategies to Achieve Tissue Regeneration and Repair
2.1. Exploring the Effects of Bovine Colostrum’s Capability to Induce the Osteoblastic Differentiation of Human Mesenchymal Stem Cells and to Sustain Bone Metabolism in Rats
2.2. Investigating the Use of MSC Injection with the Administration of Bovine Colostrum to Treat Rat Liver Fibrosis
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, C.; McKee, C.; Bakshi, S.; Walker, K.; Hakman, E.; Halassy, S.; Svinarich, D.; Dodds, R.; Govind, C.K.; Chaudhry, G.R. Mesenchymal stem cells: Cell therapy and regeneration potential. J. Tissue Eng. Regen. Med. 2019, 13, 1738–1755. [Google Scholar] [CrossRef]
- Chiarella, E.; Lombardo, N.; Lobello, N.; Piazzetta, G.L.; Morrone, H.L.; Mesuraca, M.; Bond, H.M. Deficit in Adipose Differentiation in Mesenchymal Stem Cells Derived from Chronic Rhinosinusitis Nasal Polyps Compared to Nasal Mucosal Tissue. Int. J. Mol. Sci. 2020, 21, 9214. [Google Scholar] [CrossRef]
- Chiarella, E.; Aloisio, A.; Scicchitano, S.; Lucchino, V.; Montalcini, Y.; Galasso, O.; Greco, M.; Gasparini, G.; Mesuraca, M.; Bond, H.M.; et al. ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells. Int. J. Mol. Sci. 2018, 19, 4095. [Google Scholar] [CrossRef]
- Hoch, A.I.; Leach, J.K. Concise Review: Optimizing Expansion of Bone Marrow Mesenchymal Stem/Stromal Cells for Clinical Applications. Stem Cells Transl. Med. 2015, 4, 412. [Google Scholar] [CrossRef]
- Khasawneh, R.R.; Al Sharie, A.H.; Abu-El Rub, E.; Serhan, A.O.; Obeidat, H.N. Addressing the impact of different fetal bovine serum percentages on mesenchymal stem cells biological performance. Mol. Biol. Rep. 2019, 46, 4437–4441. [Google Scholar] [CrossRef]
- Tonarova, P.; Lochovska, K.; Pytlik, R.; Kalbacova, M.H. The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism. Stem Cells Int. 2021, 2021, 6659244. [Google Scholar] [CrossRef]
- Boga, B.; Akbulut, M.; Maytalman, E.; Kozanoglu, I. Effect of milk and whey on proliferation and differentiation of placental stromal cells. Cytotechnology 2023, 75, 391–401. [Google Scholar] [CrossRef]
- Mehra, R.; Garhwal, R.; Sangwan, K.; Guiné, R.P.F.; Lemos, E.T.; Buttar, H.S.; Visen, P.K.S.; Kumar, N.; Bhardwaj, A.; Kumar, H. Insights into the Research Trends on Bovine Colostrum: Beneficial Health Perspectives with Special Reference to Manufacturing of Functional Foods and Feed Supplements. Nutrients 2022, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Heinrichs, A. Invited review: The importance of colostrum in the newborn dairy calf. J. Dairy Sci. 2022, 105, 2733–2749. [Google Scholar] [CrossRef] [PubMed]
- Quigley, J. Passive immunity in newborn calves. Adv. Dairy Technol. 2002, 14, 273–292. [Google Scholar]
- Feeney, S.; Morrin, S.T.; Joshi, L.; Hickey, R.M. The Role of Immunoglobulins from Bovine Colostrum and Milk in Human Health Promotion. In Novel Proteins for Food, Pharmaceuticals and Agriculture; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Ceniti, C.; Costanzo, N.; Morittu, V.M.; Tilocca, B.; Roncada, P.; Britti, D. Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. Food Rev. Int. 2022, 39, 4636–4664. [Google Scholar] [CrossRef]
- Bagwe, S.; Tharappel, L.J.; Kaur, G.; Buttar, H.S. Bovine colostrum: An emerging nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Scumaci, D.; Trimboli, F.; Dell’aquila, L.; Concolino, A.; Pappaianni, G.; Tammè, L.; Vignola, G.; Luciani, A.; Morelli, D.; Cuda, G.; et al. Proteomics-Driven Analysis of Ovine Whey Colostrum. PLoS ONE 2015, 10, e0117433. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Ceniti, C.; Ambrosio, R.L.; Bria, J.; Di Vito, A.; Tilocca, B.; Anastasio, A.; Britti, D.; Morittu, V.M.; Chiarella, E. Utilization of Dairy By-Products as a Source of Functional and Health Compounds—The Role of Ovine Colostrum and Milk Whey on Chronic Myeloid Leukemia Cells. Foods 2023, 12, 1752. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Kim, H.; Kim, D.E.; Ahn, Y.; Kim, J.; Jang, Y.J.; Kim, K.; Yang, Y.; Kim, S.H. The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics 2022, 14, 307. [Google Scholar] [CrossRef]
- Mussano, F.; Cusani, A.B.; Brossa, A.; Carossa, S.; Bussolati, G.; Bussolati, B. Presence of osteoinductive factors in bovine colostrum. Biosci. Biotechnol. Biochem. 2014, 78, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Kydonaki, E.K.; Freitas, L.; Fonseca, B.M.; Reguengo, H.; Simón, C.R.; Bastos, A.R.; Fernandes, E.M.; Canadas, R.F.; Oliveira, J.M.; Correlo, V.M.; et al. Bovine Colostrum Supplementation Improves Bone Metabolism in an Osteoporosis-Induced Animal Model. Nutrients 2021, 13, 2981. [Google Scholar] [CrossRef]
- Kydonaki, E.K.; Freitas, L.; Reguengo, H.; Simón, C.R.; Bastos, A.R.; Fernandes, E.M.; Canadas, R.F.; Oliveira, J.M.; Correlo, V.M.; Reis, R.L.; et al. Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model. Nutrients 2022, 14, 2837. [Google Scholar] [CrossRef]
- Parlati, L.; Régnier, M.; Guillou, H.; Postic, C. New targets for NAFLD. JHEP Rep. 2021, 3, 100346. [Google Scholar] [CrossRef] [PubMed]
- Gunadi, E.E.; Prajoko, Y.W.; Putra, A. Effectiveness of Mesenchymal Stem Cells and Bovine Colostrum on Decreasing Tumor Necrosis Factor—A Levels and Enhancement of Macrophages M2 in Remnant Liver. Open Access Maced. J. Med. Sci. 2021, 9, 1195–1202. [Google Scholar] [CrossRef]
- Sinn, D.H.; Gwak, G.-Y.; Kwon, Y.J.; Paik, S.W. Anti-fibrotic effect of bovine colostrum in carbon tetrachloride-induced hepatic fibrosis. Precis. Futur. Med. 2017, 1, 88–94. [Google Scholar] [CrossRef]
- Peverill, W.; Powell, L.W.; Skoien, R. Evolving Concepts in the Pathogenesis of NASH: Beyond Steatosis and Inflammation. Int. J. Mol. Sci. 2014, 15, 8591–8638. [Google Scholar] [CrossRef] [PubMed]
- Kusumo, D.A.; Putra, A.; Adrianto, A.A.; Prabowo, E.; Riwanto, I. The Effectiveness of Mesenchymal Stem Cell and Colostrum Bovine Combination in Post Hepatectomy Liver Failure with Liver Fibrosis Animal Model. In Proceedings of the 1st Jenderal Soedirman International Medical Conference in Conjunction with the 5th Annual Scientific Meeting (Temilnas) Consortium of Biomedical Science Indonesia, Purwokerto, Indonesia, 28–29 November 2020. [Google Scholar] [CrossRef]
- Hendrawijaya, A.E.; Budiono, B.P.; Riwanto, I.; Putra, A.; Prabowo, E. The effectivity of bovine colostrum and Mesenchymal Stem Cell (MSC) on the improvement of Alkaline Phosphatase (ALP) and Takeda G-Protein Coupled Receptor-5 (TGR5) level in post-hepatectomy Wistar rats. Bali Med. J. 2021, 10, 824–829. [Google Scholar] [CrossRef]
- Hartanto, M.M.; Prajoko, Y.W.; Putra, A.; Amalina, N.D. The Combination of Mesenchymal Stem Cells and Bovine Colostrum in Reducing α-SMA Expression and NLR Levels in Wistar Rats after 50% Fibrotic Liver Resection. Open Access Maced. J. Med. Sci. 2022, 10, 1634–1639. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, H.; Wang, B.; Xu, W.F.; Xu, J.; Zhu, Y. Sorafenib and fluvastatin synergistically alleviate hepatic fibrosis via inhibiting the TGFβ1/Smad3 pathway. Dig. Liver Dis. 2018, 50, 381–388. [Google Scholar] [CrossRef]
- Chiarella, E.; Nisticò, C.; Di Vito, A.; Morrone, H.L.; Mesuraca, M. Targeting of Mevalonate-Isoprenoid Pathway in Acute Myeloid Leukemia Cells by Bisphosphonate Drugs. Biomedicines 2022, 10, 1146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiarella, E.; Ceniti, C.; Castagna, F.; Britti, D. Potential Effect of Bovine Colostrum on Mesenchymal Stem Cells for Regenerative Therapy. Dairy 2024, 5, 173-179. https://doi.org/10.3390/dairy5010014
Chiarella E, Ceniti C, Castagna F, Britti D. Potential Effect of Bovine Colostrum on Mesenchymal Stem Cells for Regenerative Therapy. Dairy. 2024; 5(1):173-179. https://doi.org/10.3390/dairy5010014
Chicago/Turabian StyleChiarella, Emanuela, Carlotta Ceniti, Fabio Castagna, and Domenico Britti. 2024. "Potential Effect of Bovine Colostrum on Mesenchymal Stem Cells for Regenerative Therapy" Dairy 5, no. 1: 173-179. https://doi.org/10.3390/dairy5010014
APA StyleChiarella, E., Ceniti, C., Castagna, F., & Britti, D. (2024). Potential Effect of Bovine Colostrum on Mesenchymal Stem Cells for Regenerative Therapy. Dairy, 5(1), 173-179. https://doi.org/10.3390/dairy5010014