The Season and Decade of Birth Affect Dairy Cow Longevity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Inclusion Criteria
- -
- All the farms considered were pasture-based dairy farms;
- -
- Cows born between 1 January 2000 and 31 December 2019 were selected;
- -
- A minimum of one hundred cows per herd was required for a herd to be selected;
- -
- Restriction intervals were defined: cows with HL greater than 20 years and cows with age at first calving (AFC) under 20 months and over 48 months were excluded;
- -
- No cows culled before calving were considered;
- -
- The end of the study period was 1 July 2022. Cows were considered censored observations when no updated information was available between the last recorded event and the end of the study period. “Active cows” at the end of the study period for which a culling or death date was not available were only considered and used as censored observations for survival analysis.
2.3. Statistical Analysis
2.3.1. Descriptive Analysis
- -
- Mean and median values for HL and LPL were calculated considering the 249,441 already culled cows born between 1 January 2000 and 31 December 2019;
- -
- The number of births per month and season was calculated considering the overall period and both decades separately;
- -
- Density plots for HL and LPL were constructed for each decade.
2.3.2. Inferential Analysis
- γijk = response variables herd life (HL) and length of productive life (LPL);
- µ = population mean;
- Si = ith fixed effect of the season of birth (four classes: autumn, winter, spring, summer);
- Dj = jth fixed effect of the decade of birth (two classes: 2000s and 2010s);
- (Si × Dj) = fixed effect of the ijth interaction between season and decade of birth (4 × 2 = 8 classes);
- υk = random effect of the kth herd (367 herds);
- εijk = random residual error.
2.4. Software
3. Results
3.1. Longevity Metrics
3.1.1. Longevity Metrics for the 2000 to 2019 Period
3.1.2. Longevity Metrics and Cows Born by Season of Birth
3.1.3. Longevity Metrics by Decade of Birth
3.1.4. Survival Probability Curves for HL and LPL
3.1.5. Interaction between Decade and Season for Longevity Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuster, J.C.; Barkema, H.W.; De Vries, A.; Kelton, D.F.; Orsel, K. Invited review: Academic and applied approach to evaluating longevity in dairy cows. J. Dairy Sci. 2020, 103, 11008–11024. [Google Scholar] [CrossRef]
- De Vries, A.; Marcondes, M.I. Review: Overview of factors affecting productive lifespan of dairy cows. Animal 2020, 14, s155–s164. [Google Scholar] [CrossRef]
- Bruijnis, M.R.N.; Meijboom, F.L.B.; Stassen, E.N. Longevity as an animal welfare issue applied to the case of foot disorders in dairy cattle. J. Agric. Environ. Ethics 2013, 26, 191–205. [Google Scholar] [CrossRef]
- Boulton, A.C.; Rushton, J.; Wathes, D.C. An empirical analysis of the cost of rearing dairy heifers from birth to first calving and the time taken to repay these costs. Animal 2017, 11, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.; Coffey, M.; Pollott, G. The effect of lactation length on greenhouse gas emissions from the national dairy herd. Animal 2012, 6, 1857–1867. [Google Scholar] [CrossRef] [PubMed]
- Hadley, G.L.; Wolf, C.A.; Harsh, S.B. Dairy cattle culling patterns, explanations, and implications. J. Dairy Sci. 2006, 89, 2286–2296. [Google Scholar] [CrossRef] [PubMed]
- Fetrow, J.; Nordlund, K.V.; Norman, H.D. Invited Review: Culling: Nomenclature, definitions and recommendations. J. Dairy Sci. 2006, 89, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Dallago, G.M.; Wade, K.M.; Cue, R.I.; McClure, J.T.; Lacroix, R.; Pellerin, D.; Vasseur, E. Keeping dairy cows for longer: A critical literature review on dairy cow longevity in high milk-producing countries. Animals 2021, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.E.; Rogers, A.R.; Poulouin, Y.A.; Cox, N.R.; Tucker, C.B. The amount of shade influences the behavior and physiology of dairy cattle. J. Dairy Sci. 2010, 93, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Charlton, G.L.; Rutter, S.M. The behaviour of housed dairy cattle with and without pasture access: A review. Appl. Anim. Behav. Sci. 2017, 192, 2–9. [Google Scholar] [CrossRef]
- Aubé, L.; Mialon, M.M.; Mollaret, E.; Mounier, L.; Veissier, I.; de Boyer des Roches, A. Review: Assessment of dairy cow welfare at pasture: Measures available, gaps to address, and pathways to development of ad-hoc protocols. Animal 2022, 16, 100597. [Google Scholar] [CrossRef]
- Fariña, S.R.; Chilibroste, P. Opportunities and challenges for the growth of milk production from pasture: The case of farm systems in Uruguay. Agric. Syst. 2019, 176, 102631. [Google Scholar] [CrossRef]
- Cedeño, D.A.; Vargas, B. Efecto de la raza y el manejo sobre la vida productiva del bovino lechero en Costa Rica. Arch. Zootec. 2004, 53, 129–140. [Google Scholar]
- DIEA. Anuario Estadístico Agropecuario. (Montevideo, Uruguay). 2009. Available online: https://descargas.mgap.gub.uy/DIEA/Documentos%20compartidos/Anuario2009/anuario2009_0.zip (accessed on 1 June 2023).
- DIEA. Anuario Estadístico Agropecuario. (Montevideo, Uruguay). 2021. Available online: https://descargas.mgap.gub.uy/DIEA/Anuarios/Anuario2021/LIBRO%20ANUARIO%202021%20Web.pdf (accessed on 1 June 2023).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw. 2011, 40, 1–25. [Google Scholar] [CrossRef]
- Therneau, T. A Package for Survival Analysis in R. R package version 3.2-13. 2021. Available online: https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf (accessed on 1 February 2023).
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves using ‘ggplot2’. R package version 0.4.9. 2021. Available online: https://cran.r-project.org/web/packages/survminer/survminer.pdf (accessed on 1 February 2023).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Vargas-Leitón, B.; Romero-Zúñiga, J.J.; Castillo-Badilla, G.; Saborío-Montero, A. Optimal Age at First Calving in Pasture-Based Dairy Systems. Dairy 2023, 4, 581–593. [Google Scholar] [CrossRef]
- Froidmont, E.; Mayeres, P.; Picron, P.; Turlot, A.; Planchon, V.; Stilmant, D. Association between age at first calving, year and season of first calving and milk production in Holstein cows. Animal 2013, 7, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Jenko, J.; Perpar, T.; Kovač, M. Genetic relationship between the lifetime milk production, longevity and first lactation milk yield in Slovenian Brown cattle breed. Mljekarstvo 2015, 65, 111–120. [Google Scholar] [CrossRef]
- Chavatte-Palmer, P.; Velazquez, M.A.; Jammes, H.; Duranthon, V. Review: Epigenetics, developmental programming and nutrition in herbivores. Animal 2018, 12 (Suppl. S2), s363–s371. [Google Scholar] [CrossRef]
- Huber, E.; Notaro, U.S.; Recce, S.; Rodriguez, F.M.; Ortega, H.H.; Salvetti, N.R.; Rey, F. Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Anim. Reprod. Sci. 2020, 216, 106348. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, L.; Laporta, J.; Dahl, G.E. Programming effects of late gestation heat stress in dairy cattle. Reprod. Fert. Develop. 2022, 35, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Dahl, G.E. Invited review: Heat stress effects during late gestation on dry cows and their calves. J. Dairy Sci. 2013, 96, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Le Cozler, Y.; Lollivier, V.; Lacasse, P.; Disenhaus, C. Rearing strategy and optimizing first-calving targets in dairy heifers: A review. Animal 2008, 2, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.H. Developmental programming: Prenatal and postnatal consequences of hyperthermia in dairy cows and calves. Domest. Anim. Endocrinol. 2022, 80, 106723. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Liang, Y.; Guo, J.; Wang, M.; Li, M.; Zhang, H.; Arbab, A.A.I.; Karrow, N.A.; Yang, Z.; Mao, Y. Effects of Seasonal Heat Stress during Late Gestation on Growth Performance, Metabolic and Immuno-Endocrine Parameters of Calves. Animals 2022, 12, 716. [Google Scholar] [CrossRef] [PubMed]
- Chester-Jones, H.; Heins, B.J.; Ziegler, D.; Schimek, D.; Schuling, S.; Ziegler, B.; de Ondarza, M.B.; Sniffen, C.J.; Broadwater, N. Relationships between early-life growth, intake, and birth season with first-lactation performance of Holstein dairy cows. J. Dairy Sci. 2017, 100, 3697–3704. [Google Scholar] [CrossRef] [PubMed]
- Dallago, G.M.; Cue, R.I.; Wade, K.M.; Lacroix, R.; Vasseur, E. Birth conditions affect the longevity of Holstein offspring. J. Dairy Sci. 2022, 105, 1255–1264. [Google Scholar] [CrossRef]
- Bettolli, M.L.; Del Carmen, M.Á.A.; Cruz Brasesco, G.; Rudorff, F.; Martínez Ortiz, A.; Arroyo, J.; Armoa, J. Pastura natural de salto (Uruguay): Relación con la variabilidad climática y análisis de contextos futuros de cambio climático. Rev. Bras. De Meteorol. 2010, 25, 2. [Google Scholar] [CrossRef]
- Méndez, M.N.; Chilibroste, P.; Aguerre, M. Pasture dry matter intake per cow in intensive dairy production systems: Effects of grazing and feeding management. Animal 2020, 14, 846–853. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; Lima, F.S.; Greco, L.F.; Bisinotto, R.S.; Monteiro, A.P.; Favoreto, M.; Ayres, H.; Marsola, R.S.; Martinez, N.; Thatcher, W.W.; et al. Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates. J. Dairy Sci. 2013, 96, 5682–5697. [Google Scholar] [CrossRef]
- Hennessy, D.; Delaby, L.; van den Pol-van Dasselaar, A.; Shalloo, L. Increasing Grazing in Dairy Cow Milk Production Systems in Europe. Sustainability 2020, 12, 2443. [Google Scholar] [CrossRef]
- Samolovac, L.; Hristov, S.; Stankovic, B.; Maletic, R.; Relic, R. Influence of rearing conditions and birth season on calf welfare in the first month of life. Turk. J. Vet. Anim. Sci. 2019, 43, 102–109. [Google Scholar] [CrossRef]
- Perez, E.; Noordhuizen, J.P.T.M.; van Wuijkhuise, L.A.; Stassen, E.N. Management factors related to calf morbidity and mortality rates. Livest. Prod. Sci. 1990, 25, 79–93. [Google Scholar] [CrossRef]
- Olsson, S.O.; Viring, S.; Emanuelsson, S.; Jacobsson, O. Calf diseases and mortality in swedish dairy herds. Acta Vet. Scand. 1993, 34, 263–269. [Google Scholar] [CrossRef] [PubMed]
- INALE. Precio de la Leche en Tambo y Composición. 2022. Available online: https://www.inale.org/estadisticas/precio-al-productor-y-composicion-de-la-leche/ (accessed on 1 June 2023).
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed]
- von Keyserlingk, M.A.; Rushen, J.; de Passillé, A.M.; Weary, D.M. Invited review: The welfare of dairy cattle—Key concepts and the role of science. J. Dairy Sci. 2009, 92, 4101–4111. [Google Scholar] [CrossRef] [PubMed]
- Rauw, W.M.; Kanis, E.; Noordhuizen-Stassen, E.N.; Grommers, F.J. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Brickell, J.S.; Wathes, D.C. A descriptive study of the survival of Holstein-Friesian heifers through to third calving on English dairy farms. J. Dairy Sci. 2011, 94, 1831–1838. [Google Scholar] [CrossRef]
Trait | Median ± IQR | Mean ± SE |
---|---|---|
Herd life (months) | 69.3 ± 38.1 | 73.4 ± 0.06 |
Length of productive life (months) | 37.7 ± 37.2 | 42.0 ± 0.05 |
Season | N (%) 1 | HL | LPL |
---|---|---|---|
Autumn | 99,632 (42.6%) | 67.94 ± 0.068 c | 37.51 ± 0.067 a |
Winter | 58,700 (25.1%) | 67.85 ± 0.090 c | 36.67 ± 0.089 b |
Spring | 42,309 (18.1%) | 69.10 ± 0.109 a | 37.65 ± 0.107 a |
Summer | 33,185 (14.2%) | 68.38 ± 0.119 b | 36.70 ± 0.118 b |
Decade | N (%) 1 | Herd Life | Length of Productive Life |
---|---|---|---|
2000s | 135,151 (59%) | 74.72 ± 0.062 a | 41.71 ± 0.062 a |
2010s | 98,675 (41%) | 61.92 ± 0.076 b | 32.57 ± 0.075 b |
Decade | Season | N (%) 1 | HL | LPL |
---|---|---|---|---|
2000 | Autumn | 54,159 (40%) | 74.13 ± 0.092 c | 41.81 ± 0.091 b |
Winter | 34,756 (26%) | 74.53 ± 0.115 bc | 41.67 ± 0.114 b | |
Spring | 27,151 (20%) | 75.34 ± 0.130 a | 42.34 ± 0.129 a | |
Summer | 19,085 (14%) | 74.87 ± 0.155 ab | 41.00 ± 0.153 c | |
2010 | Autumn | 45,473 (46%) | 61.76 ± 0.101 b | 33.22 ± 0.099 a |
Winter | 23,944 (24%) | 61.17 ± 0.139 c | 31.67 ± 0.137 c | |
Spring | 15,158 (16%) | 62.87 ± 0.174 a | 32.97 ± 0.172 ab | |
Summer | 14,100 (14%) | 61.88 ± 0.181 b | 32.40 ± 0.179 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobadilla, P.E.; López-Villalobos, N.; Sotelo, F.; Damián, J.P. The Season and Decade of Birth Affect Dairy Cow Longevity. Dairy 2024, 5, 189-200. https://doi.org/10.3390/dairy5010016
Bobadilla PE, López-Villalobos N, Sotelo F, Damián JP. The Season and Decade of Birth Affect Dairy Cow Longevity. Dairy. 2024; 5(1):189-200. https://doi.org/10.3390/dairy5010016
Chicago/Turabian StyleBobadilla, Pablo Ernesto, Nicolás López-Villalobos, Fernando Sotelo, and Juan Pablo Damián. 2024. "The Season and Decade of Birth Affect Dairy Cow Longevity" Dairy 5, no. 1: 189-200. https://doi.org/10.3390/dairy5010016
APA StyleBobadilla, P. E., López-Villalobos, N., Sotelo, F., & Damián, J. P. (2024). The Season and Decade of Birth Affect Dairy Cow Longevity. Dairy, 5(1), 189-200. https://doi.org/10.3390/dairy5010016