Effect of Yogurt on the Deodorization of Raw Garlic (Allium sativum L.) Sulfur Volatiles in Breath and the Roles of Its Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Garlic and Treatments Preparation
2.2. Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) Breath Analysis
2.3. Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) Headspace Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Effect of Yogurt and Its Components on the Deodorization of Garlic Breath
3.2. Effect of Time of Consumption on the Deodorization of Garlic Breath
3.3. The Role of the Components of Yogurt in Deodorization of Garlic Sulfur Volatiles in Headspace
3.3.1. Effects of Protein pH and Type on the Deodorization of Garlic Sulfur Volatiles
Effects of Protein Type and Form on the Deodorization of Garlic Sulfur Volatiles
Effects of Protein pH on the Deodorization of Garlic Sulfur Volatiles
Effects of pH–Protein Interaction on the Deodorization of Garlic Sulfur Volatiles
3.3.2. Effects of Water and Fat pH on the Deodorization of Garlic Sulfur Volatiles
3.3.3. Effects of Fat, Protein, Fat–Protein Emulsion, and Yogurt on the Deodorization of Garlic Sulfur Volatiles
3.3.4. Effect of Yogurt’s Microbial Culture on the Deodorization of Garlic Sulfur Volatiles
3.4. Proposed Mechanism for Deodorization of Garlic Sulfur Volatiles by Yogurt
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Time (minutes) | Garlic | Yogurt | Fat | Protein | Water |
---|---|---|---|---|---|
0 | 341 ± 122 | 6.57 ± 1.87 | 5.87 ± 1.52 | 8.58 ± 1.52 | 12.7 ± 9.63 |
5 | 113 ± 39.8 | 4.91 ± 1.17 | 1.68 ± 0.52 | 2.65 ± 0.60 | 7.09 ± 5.15 |
10 | 84.2 ± 47.2 | 2.09 ± 0.53 | 1.13 ± 0.16 | 1.69 ± 0.56 | 2.96 ± 1.74 |
20 | 28.7 ± 8.11 | 0.91 ± 0.06 | 1.54 ± 0.15 | 2.09 ± 1.06 | 2.06 ± 0.79 |
30 | 16.0 ± 5.39 | 0.62 ± 0.17 | 0.94 ± 0.12 | 1.53 ± 0.70 | 1.61 ± 0.34 |
40 | 10.0 ± 2.22 | 0.22 ± 0.08 | 1.21 ± 0.18 | 2.12 ± 1.06 | 1.42 ± 0.46 |
50 | 6.77 ± 1.49 | 0.21 ± 0.15 | 1.25 ± 0.14 | 1.22 ± 0.33 | 1.54 ± 0.39 |
60 | 7.48 ± 3.01 | 0.13 ± 0.08 | 1.15 ± 0.30 | 1.09 ± 0.12 | 1.38 ± 0.31 |
Time (minutes) | Garlic | Yogurt | Fat | Protein | Water |
---|---|---|---|---|---|
0 | 67.0 ± 19.3 | 0.43 ± 0.12 | 1.29 ± 0.46 | 1.14 ± 0.15 | 2.51 ± 1.73 |
5 | 17.0 ± 7.01 | 0.31 ± 0.11 | 0.92 ± 0.45 | 0.77 ± 0.11 | 1.59 ± 0.33 |
10 | 12.0 ± 2.43 | 0.24 ± 0.26 | 0.81 ± 0.25 | 0.76 ± 0.26 | 1.39 ± 0.14 |
20 | 5.47 ± 2.26 | 0.43 ± 0.60 | 0.93 ± 0.35 | 0.82 ± 0.18 | 1.27 ± 0.17 |
30 | 3.77 ± 0.59 | 0.25 ± 0.02 | 0.82 ± 0.46 | 0.90 ± 0.13 | 1.38 ± 0.30 |
40 | 2.94 ± 0.58 | 0.18 ± 0.08 | 0.78 ± 0.36 | 1.12 ± 0.25 | 1.35 ± 0.32 |
50 | 2.80 ± 1.13 | 0.10 ± 0.04 | 0.89 ± 0.19 | 0.85 ± 0.21 | 1.81 ± 1.32 |
60 | 3.00 ± 0.44 | 0.08 ± 0.02 | 0.82 ± 0.38 | 0.82 ± 0.04 | 1.15 ± 0.11 |
Time (minutes) | Garlic | Yogurt | Fat | Protein | Water |
---|---|---|---|---|---|
0 | 184 ± 51.2 | 35.4 ± 5.48 | 18.8 ± 9.92 | 28.3 ± 8.30 | 53.4 ± 10.4 |
5 | 194 ± 38.8 | 30.7 ± 6.59 | 19.5 ± 7.06 | 35.0 ± 9.14 | 56.4 ± 12.8 |
10 | 206 ± 68.7 | 23.2 ± 7.43 | 26.9 ± 7.55 | 66.1 ± 22.9 | 74.2 ± 11.3 |
20 | 185 ± 88.4 | 24.2 ± 8.87 | 28.9 ± 10.3 | 57.9 ± 13.2 | 77.7 ± 33.7 |
30 | 188 ± 97.5 | 25.6 ± 7.71 | 33.1 ± 7.40 | 54.0 ± 11.9 | 87.5 ± 41.2 |
40 | 192 ± 110 | 29.3 ± 11.2 | 34.2 ± 12.3 | 61.0 ± 15.8 | 94.2 ± 32.9 |
50 | 216 ± 94.8 | 31.6 ± 12.9 | 35.7 ± 14.6 | 57.3 ± 11.5 | 92.4 ± 19.7 |
60 | 207 ± 82.9 | 33.6 ± 11.8 | 38.1 ± 14.9 | 55.6 ± 10.2 | 97.0 ± 16.2 |
Time (minutes) | Garlic | Yogurt | Fat | Protein | Water |
---|---|---|---|---|---|
0 | 1567 ± 460 | 113 ± 26.3 | 21.0 ± 0.29 | 41.9 ± 17.7 | 125 ± 97.7 |
5 | 463 ± 145 | 57.7 ± 9.11 | 11.0 ± 3.13 | 11.7 ± 4.00 | 44.5 ± 35.1 |
10 | 333 ± 168 | 18.5 ± 2.69 | 14.8 ± 1.27 | 8.30 ± 2.59 | 21.9 ± 7.65 |
20 | 138 ± 23.4 | 10.1 ± 5.56 | 14.7 ± 5.59 | 7.06 ± 1.42 | 15.4 ± 3.88 |
30 | 85.8 ± 15.8 | 5.65 ± 2.39 | 12.5 ± 5.97 | 6.47 ± 1.58 | 13.9 ± 3.89 |
40 | 68.1 ± 13.1 | 2.77 ± 1.46 | 13.7 ± 2.21 | 7.25 ± 1.79 | 13.4 ± 4.14 |
50 | 53.9 ± 13.3 | 0.06 ± 1.07 | 11.0 ± 3.34 | 6.72 ± 1.94 | 24.6 ± 22.5 |
60 | 43.3 ± 13.2 | 0.05 ± 0.02 | 11.2 ± 0.78 | 5.81 ± 0.61 | 11.6 ± 4.28 |
Time (minutes) | Garlic | Yogurt | Fat | Protein | Water |
---|---|---|---|---|---|
0 | 290 ± 26.3 | 5.52 ± 1.59 | 3.58 ± 1.18 | 4.07 ± 0.84 | 20.0 ± 6.30 |
5 | 89.1 ± 28.2 | 3.20 ± 1.29 | 2.85 ± 0.68 | 2.69 ± 0.82 | 10.6 ± 3.67 |
10 | 62.6 ± 10.3 | 2.05 ± 1.03 | 4.04 ± 3.39 | 2.87 ± 1.36 | 6.98 ± 1.89 |
20 | 28.9 ± 8.64 | 1.45 ± 0.75 | 2.95 ± 0.94 | 3.19 ± 0.23 | 4.90 ± 1.75 |
30 | 19.5 ± 3.27 | 1.35 ± 0.82 | 2.75 ± 1.44 | 3.16 ± 0.60 | 6.22 ± 3.91 |
40 | 15.1 ± 2.09 | 0.80 ± 0.34 | 4.54 ± 3.31 | 6.24 ± 4.72 | 6.00 ± 2.65 |
50 | 15.0 ± 4.01 | 0.48 ± 0.31 | 3.64 ± 1.03 | 3.89 ± 1.28 | 6.37 ± 2.39 |
60 | 11.2 ± 3.33 | 0.14 ± 0.03 | 3.65 ± 1.54 | 4.80 ± 3.83 | 6.65 ± 2.67 |
Time (minutes) | Garlic | Yogurt before Garlic | Yogurt with Garlic | Yogurt after Garlic |
---|---|---|---|---|
0 | 341 ± 122 | 35.2 ± 22.0 | 6.57 ± 1.87 | 341 ± 122 |
5 | 113 ± 39.8 | 7.64 ± 2.72 | 4.91 ± 1.17 | 10.6 ± 7.95 |
10 | 84.2 ± 47.2 | 3.32 ± 1.18 | 2.09 ± 0.53 | 5.07 ± 0.26 |
20 | 28.7 ± 8.11 | 2.07 ± 0.27 | 0.91 ± 0.06 | 2.92 ± 0.15 |
30 | 16.0 ± 5.39 | 1.56 ± 0.14 | 0.62 ± 0.17 | 1.88 ± 0.22 |
40 | 10.0 ± 2.22 | 1.44 ± 0.08 | 0.22 ± 0.08 | 1.23 ± 0.03 |
50 | 6.77 ± 1.49 | 1.29 ± 0.06 | 0.21 ± 0.15 | 1.01 ± 0.17 |
60 | 7.48 ± 3.01 | 1.17 ± 0.07 | 0.13 ± 0.08 | 0.96 ± 0.11 |
Time (minutes) | Garlic | Yogurt before Garlic | Yogurt with Garlic | Yogurt after Garlic |
---|---|---|---|---|
0 | 67.0 ± 19.3 | 5.30 ± 3.69 | 0.43 ± 0.12 | 67.0 ± 19.3 |
5 | 17.0 ± 7.01 | 1.57 ± 0.33 | 0.31 ± 0.11 | 4.11 ± 1.82 |
10 | 12.0 ± 2.43 | 1.28 ± 0.12 | 0.24 ± 0.26 | 1.22 ± 0.62 |
20 | 5.47 ± 2.26 | 1.14 ± 0.09 | 0.43 ± 0.60 | 0.94 ± 0.22 |
30 | 3.77 ± 0.59 | 0.98 ± 0.07 | 0.25 ± 0.02 | 1.00 ± 0.19 |
40 | 2.94 ± 0.58 | 1.03 ± 0.10 | 0.18 ± 0.08 | 0.95 ± 0.14 |
50 | 2.80 ± 1.13 | 0.91 ± 0.09 | 0.10 ± 0.04 | 1.00 ± 0.21 |
60 | 3.00 ± 0.44 | 0.84 ± 0.02 | 0.08 ± 0.02 | 0.95 ± 0.08 |
Time (minutes) | Garlic | Yogurt before Garlic | Yogurt with Garlic | Yogurt after Garlic |
---|---|---|---|---|
0 | 184 ± 51.2 | 49.7 ± 5.48 | 35.4 ± 5.48 | 184 ± 51.2 |
5 | 194 ± 38.8 | 31.3 ± 1.94 | 30.7 ± 6.59 | 66.8 ± 13.7 |
10 | 206 ± 68.7 | 35.3 ± 2.53 | 23.2 ± 7.43 | 71.2 ± 21.1 |
20 | 185 ± 88.4 | 35.9 ± 2.58 | 24.2 ± 8.87 | 79.6 ± 25.5 |
30 | 188 ± 97.5 | 37.5 ± 0.81 | 25.6 ± 7.71 | 78.7 ± 25.4 |
40 | 192 ± 110 | 41.7 ± 0.49 | 29.3 ± 11.2 | 70.9 ± 28.1 |
50 | 216 ± 94.8 | 44.3 ± 2.85 | 31.6 ± 12.9 | 72.5 ± 23.6 |
60 | 207 ± 82.9 | 45.5 ± 0.38 | 33.6 ± 11.8 | 75.7 ± 19.6 |
Time (minutes) | Garlic | Yogurt before Garlic | Yogurt with Garlic | Yogurt after Garlic |
---|---|---|---|---|
0 | 1567 ± 460 | 195 ± 130 | 113 ± 26.3 | 1567 ± 460 |
5 | 463 ± 145 | 35.1 ± 12.4 | 57.7 ± 9.11 | 134 ± 21.3 |
10 | 333 ± 168 | 15.1 ± 2.71 | 18.5 ± 2.69 | 31.1 ± 0.53 |
20 | 138 ± 23.4 | 9.22 ± 1.65 | 10.1 ± 5.56 | 17.5 ± 4.08 |
30 | 85.8 ± 15.8 | 7.29 ± 0.87 | 5.65 ± 2.39 | 12.4 ± 1.81 |
40 | 68.1 ± 13.1 | 7.19 ± 1.13 | 2.77 ± 1.46 | 8.38 ± 0.49 |
50 | 53.9 ± 13.3 | 4.90 ± 0.49 | 0.06 ± 1.07 | 7.77 ± 0.49 |
60 | 43.3 ± 13.2 | 4.41 ± 0.75 | 0.05 ± 0.02 | 7.20 ± 0.43 |
Time (minutes) | Garlic | Yogurt before Garlic | Yogurt with Garlic | Yogurt after Garlic |
---|---|---|---|---|
0 | 290 ± 26.3 | 30.4 ± 15.6 | 5.52 ± 1.59 | 290 ± 26.3 |
5 | 89.1 ± 28.2 | 9.39 ± 2.23 | 3.20 ± 1.29 | 13.9 ± 1.29 |
10 | 62.6 ± 10.3 | 4.65 ± 1.34 | 2.05 ± 1.03 | 4.37 ± 0.86 |
20 | 28.9 ± 8.64 | 3.18 ± 0.06 | 1.45 ± 0.75 | 4.98 ± 0.95 |
30 | 19.5 ± 3.27 | 3.04 ± 0.40 | 1.35 ± 0.82 | 4.21 ± 0.90 |
40 | 15.1 ± 2.09 | 2.39 ± 0.34 | 0.80 ± 0.34 | 3.37 ± 1.01 |
50 | 15.0 ± 4.01 | 2.23 ± 0.08 | 0.48 ± 0.31 | 2.76 ± 0.69 |
60 | 11.2 ± 3.33 | 2.31 ± 0.15 | 0.14 ± 0.03 | 2.36 ± 0.63 |
Volatiles | Diallyl Disulfide | Allyl Methyl Disulfide | Allyl Methyl Sulfide | Allyl Mercaptan | Methyl Mercaptan |
---|---|---|---|---|---|
Garlic | 347,015 ± 177,444 | 66,016 ± 34,776 | 13,369 ± 7068 | 418,377 ± 124,214 | 40,383 ± 7543 |
Yogurt pH 4.4 | 12.0 ± 2.40 | 14.8 ± 5.02 | 21.7 ± 1.68 | 60.3 ± 8.29 | 66.2 ± 9.82 |
Water pH 7 | 20,027 ± 4510 | 4714 ± 990 | 88.3 ± 11.8 | 7451 ± 1123 | 2531 ± 188 |
Water pH 4.4 | 17,359 ± 281 | 3971 ± 287 | 81.7 ± 3.94 | 8187 ± 1504 | 2786 ± 181 |
Fat pH 7 | 419 ± 71.6 | 426 ± 82.9 | 29.8 ± 8.4 | 380 ± 171 | 379 ± 90.1 |
Fat pH 4.4 | 221 ± 59.2 | 385 ± 27.3 | 26.7 ± 3.13 | 814 ± 84.2 | 803 ± 164 |
WPC pH 7 | 2458 ± 440 | 1118 ± 69.6 | 25.5 ± 4.24 | 1291 ± 437 | 1472 ± 369 |
WPC pH 4.4 | 1925 ± 202 | 835 ± 35.5 | 29.1 ± 1.24 | 4944 ± 1229 | 1755 ± 109 |
WPI pH 7 | 6554 ± 1039 | 1758 ± 205 | 36.0 ± 2.24 | 2520 ± 321 | 961 ± 85.5 |
WPI pH 4.4 | 4066 ± 1440 | 678 ± 110 | 39.1 ± 6.27 | 11,208 ± 2106 | 1999 ± 213 |
CC pH 7 | 8921 ± 1843 | 2888 ± 364 | 56.6 ± 7.83 | 4177 ± 490 | 1665 ± 144 |
CC pH 4.4 | 4303 ± 1171 | 935 ± 335 | 39.7 ± 10.5 | 7673 ± 815 | 1903 ± 287 |
MC pH 7 | 14,344 ± 2405 | 6948 ± 1241 | 141 ± 28.5 | 2089 ± 162 | 1625 ± 133 |
MC pH 4.4 | 6573 ± 1828 | 1101 ± 360 | 44.9 ± 11.6 | 12,041 ± 1831 | 2606 ± 733 |
MPC pH 7 | 10,821 ± 1634 | 5084 ± 706 | 101 ± 19.6 | 1575 ± 95.8 | 1168 ± 158 |
MPC pH 4.4 | 8645 ± 2262 | 1693 ± 718 | 52.9 ± 12.7 | 11,670 ± 1269 | 2670 ± 688 |
MPI pH 7 | 14,254 ± 1290 | 6461 ± 427 | 106 ± 7.26 | 1723 ± 251 | 1510 ± 428 |
MPI pH 4.4 | 11,454 ± 2115 | 3210 ± 366 | 92.5 ± 13.1 | 14,728 ± 1674 | 3896 ± 429 |
WPC-Fat emulsion pH 4.4 | 110 ± 8.11 | 196 ± 60.1 | 33.7 ± 4.75 | 8062 ± 1156 | 2531 ± 201 |
MPC-Fat emulsion pH 4.4 | 39.5 ± 12.5 | 55.9 ± 11.8 | 10.2 ± 1.43 | 390 ± 180 | 194 ± 3.78 |
Volatiles | Garlic | Non-Fat Milk | Microbial Culture in Non-Fat Milk |
---|---|---|---|
Diallyl disulfide | 85,150 ± 17,591 | 1364 ± 213 | 110 ± 8.96 |
Allyl methyl disulfide | 24,920 ± 5154 | 379 ± 94.1 | 49.8 ± 18.2 |
Allyl methyl sulfide | 1578 ± 376 | 14.6 ± 2.17 | 14.5 ± 0.99 |
Allyl mercaptan | 146,965 ± 7961 | 4758 ± 965 | 1872 ± 741 |
Methyl mercaptan | 33,849 ± 1971 | 1382 ± 299 | 658 ± 256 |
References
- Lawson, L.D. The composition and chemistry of garlic cloves and processed garlic. In Garlic: The Science and Therapeutic Application of Allium Sativum L. and Related Species; Williams & Wilkins: Baltimore, MD, USA, 1996; pp. 37–109. [Google Scholar]
- Haggard, H.W.; Greenberg, L.A. Breath odors from alliaceous substance: Cause and remedy. J. Am. Med. Assoc. 1935, 104, 2160–2163. [Google Scholar] [CrossRef]
- Laakso, I.; Seppane-Laakso, T.; Hiltunen, R.; Muller, B.; Jansen, H.; Knobloch, K. Volatile garlic odor components: Gas phases and adsorbed exhaled air analyzed by headspace gas chromatography-mass spectrometry. Planta Med. 1989, 55, 257–261. [Google Scholar] [CrossRef]
- Minami, T.; Boku, T.; Inada, K.; Morita, M.; Okazaki, Y. Odor components of human breath after the ingestion of grated raw garlic. J. Food Sci. 1989, 54, 763–765. [Google Scholar] [CrossRef]
- Suarez, F.; Springfield, J.; Furne, J.; Levitt, M. Differentiation of mouth versus gut as site of origin of odoriferous breath gases after garlic ingestion. Am. J. Physiol. 1999, 276, G425–G430. [Google Scholar] [CrossRef]
- Tamaki, K.; Sonoki, S.; Tamaki, T.; Ehara, K. Measurement of odour after in vitro or in vivo ingestion of raw or heated garlic, using electronic nose, gas chromatography and sensory analysis. Int. J. Food Sci. Technol. 2008, 43, 130–139. [Google Scholar] [CrossRef]
- Tamaki, T.; Sonoki, S. Volatile sulfur compounds in human expiration after eating raw or heat-treated garlic. J. Nutr. Sci. Vitaminol. 1999, 45, 213–222. [Google Scholar] [CrossRef]
- Block, E. The Chemistry of Garlic and Onions. Sci. Am. 1985, 252, 114–119. [Google Scholar] [CrossRef]
- Cavallito, C.J.; Bailey, J.H. Allicin, the Antibacterial Principle of Allium Sativum. I. Isolation, Physical Properties and Antibacterial Action. J. Am. Chem. Soc. 1944, 66, 1950–1951. [Google Scholar] [CrossRef]
- Caporaso, N.; Smith, S.M.; Eng, R.H.K. Antifungal Activity in Human Urine and Serum After Ingestion of Garlic (Allium Sativum). Antimicrob. Agents Chemother. 1983, 23, 700–770. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.; Seebeck, E. Ueber den enzymatischen Abbau des Alliins und die Eigenschaften der Alliinase [About the enzymatic breakdown of alliin and the properties of alliinase]. Helv. Chim. Acta 1949, 32, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Rabinkov, A.; Miron, T.; Mirelman, D.; Wilchek, M.; Glozman, S.; Yavin, E.; Weiner, L. S-Allylmercaptoglutathione: The Reaction Product of Allicin with Glutathione Possesses SH-Modifying and Antioxidant Properties. Biochim. Biophys. Acta 2000, 1499, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Tudu, C.K.; Dutta, T.; Ghorai, M.; Biswas, P.; Samanta, D.; Oleksak, P.; Jha, N.K.; Kumar, M.; Radha; Proćków, J.; et al. Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front. Nutr. 2022, 9, 949554. [Google Scholar] [CrossRef] [PubMed]
- Castada, H.Z.; Mirondo, R.; Sigurdson, G.T.; Giusti, M.M.; Barringer, S. Deodorization of garlic odor by spearmint, peppermint, and chocolate mint leaves and rosmarinic acid. LWT—Food Sci. Technol. 2017, 84, 160–167. [Google Scholar] [CrossRef]
- Negishi, O.; Negishi, Y. Enzymatic Deodorization with Raw Fruits, Vegetables and Mushrooms. Food Sci. Technol. Res. 1999, 5, 176–180. [Google Scholar] [CrossRef]
- Özcan Sinir, G.; Barrınger, S. Deodorization of garlic odor by fresh and dried herbs using SIFT-MS. Gida J. Food 2021, 46, 358–366. [Google Scholar] [CrossRef]
- Munch, R.; Barringer, S.A. Deodorization of Garlic Breath Volatiles by Food and Food Components. J. Food Sci. 2014, 79, C526–C533. [Google Scholar] [CrossRef] [PubMed]
- Negishi, O.; Negishi, Y.; Ozawa, T. Effects of Food Materials on Removal of Allium-Specific Volatile Sulfur Compounds. J. Agric. Food Chem. 2002, 50, 3856–3861. [Google Scholar] [CrossRef] [PubMed]
- Mirondo, R.; Barringer, S. Deodorization of Garlic Breath by Foods, and the Role of Polyphenol Oxidase and Phenolic Compounds. J. Food Sci. 2016, 81, C2425–C2430. [Google Scholar] [CrossRef] [PubMed]
- Hansanugrum, A.; Barringer, S.A. Effect of Milk on the Deodorization of Malodorous Breath after Garlic Ingestion. J. Food Sci. 2010, 75, C549–C558. [Google Scholar] [CrossRef]
- Kaur, M.; Barringer, S. Effect of Yogurt and Its Components on the Deodorization of Raw and Fried Garlic Volatiles. Molecules 2023, 28, 5714. [Google Scholar] [CrossRef]
- Guyot, C.; Bonnafont, C.; Lesschaeve, I.; Issanchou, S.; Voilley, A.; Spinnler, H.E. Effect of fat content on odor intensity of three aroma compounds in model emulsions: D-decalactone, diacetyl, and butyric acid. J. Agric. Food Chem. 1996, 44, 2341–2348. [Google Scholar] [CrossRef]
- Mottram, D.S.; Nóbrega, I.C. Interaction between Sulfur-Containing Flavor Compounds and Proteins in Foods. In Flavor Release; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2000; Volume 763, pp. 274–281. [Google Scholar] [CrossRef]
- Hofmann, T.; Schieberle, P.; Grosch, W. Model Studies on the Oxidative Stability of Odor-Active Thiols Occurring in Food Flavors. J. Agric. Food Chem. 1996, 44, 251–255. [Google Scholar] [CrossRef]
- Taylor, A.J. Flavour Matrix Interactions. In Current Topics in Flavours and Fragrances; Swift, K.A.D., Ed.; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Mottram, D.S.; Szauman-Szumski, C.; Dodson, A.T. Interaction of Thiol and Disulfide Flavor Compounds with Food Components. J. Agric. Food Chem. 1996, 44, 2349–2351. [Google Scholar] [CrossRef]
- O’Neill, T.; Kinselle, J.E. Effect of Heat Treatment and Modification on Conformation and Flavor Binding by β-Lactoglobulin. J. Food Sci. 1988, 53, 906–909. [Google Scholar] [CrossRef]
- Wilde, S.C.; Keppler, J.K.; Palani, K.; Schwarz, K. β-Lactoglobulin as nanotransporter—Part I: Binding of organosulfur compounds. Food Chem. 2016, 197, 1015–1021. [Google Scholar] [CrossRef]
- Haque, Z.; Kinsella, J.E. Interaction between κ-casein and β-lactoglobulin: Predominance of hydrophobic interactions in the initial stages of complex formation. J. Dairy Res. 1988, 55, 67–80. [Google Scholar] [CrossRef]
- Suzuki, N.; Higuchi, T.; Nakajima, M.; Fujimoto, A.; Morita, H.; Yoneda, M.; Hanioka, T.; Hirofuji, T. Inhibitory Effect of Enterococcus faecium WB2000 on Volatile Sulfur Compound Production by Porphyromonas gingivalis. Int. J. Dent. 2016, 2016, 8241681. [Google Scholar] [CrossRef]
- Bonifait, I.; Chandad, F.; Grenier, D. Probiotics for oral health: Myth or reality. J. Assoc. Dent. Canad. 2009, 75, 585–590. [Google Scholar] [PubMed]
- Lee, S.H.; Baek, D.H. Effects of Streptococcus thermophilus on volatile sulfur compounds produced by Porphyromonas gingivalis. Arch. Oral Biol. 2014, 59, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Hori, Y.; Myoda, T. Volatile compounds of fresh and processed garlic. Exp. Ther. Med. 2020, 19, 1585–1593. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 11617, Diallyl Sulfide. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Diallyl-sulfide (accessed on 23 January 2023).
- Leonardos, G.; Kendall, D.; Barnard, N. Odor threshold determination of 53 odorant chemicals. J. Air Pollut. Cont. Assoc. 1969, 19, 91–95. [Google Scholar] [CrossRef]
- Taucher, J.; Hansel, A.; Jordan, A.; Lindinger, W. Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry. J. Agric. Food Chem. 1996, 44, 3778–3782. [Google Scholar] [CrossRef]
- Persson, S.; Edlund, M.; Claesson, R.; Carlsson, J. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbio. Imm. 1990, 5, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.R.; Scully, C. Oral malodour (halitosis). BMJ (Clin. Res. Ed.) 2006, 333, 632–635. [Google Scholar] [CrossRef] [PubMed]
- van den Velde, S.; Quirynen, M.; van Hee, P.; van Steenberghe, D. Differences between alveolar air and mouth air. Anal. Chem. 2007, 79, 3425–3429. [Google Scholar] [CrossRef]
- Qin, W.; Huber, K.; Popp, M.; Bauer, P.; Buettner, A.; Sharapa, C.; Scheffler, L.; Loos, H.M. Quantification of Allyl Methyl Sulfide, Allyl Methyl Sulfoxide, and Allyl Methyl Sulfone in Human Milk and Urine After Ingestion of Cooked and Roasted Garlic. Front. Nutr. 2020, 7, 565496. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S. Allicin and Other Functional Active Components in Garlic: Health Benefits and Bioavailability. Int. J. Food Prop. 2007, 10, 245–268. [Google Scholar] [CrossRef]
- Bautista, D.M.; Movahed, P.; Hinman, A.; Axelsson, H.E.; Sterner, O.; Hogestatt, E.D.; Julius, D.; Jordt, S.; Zygmunt, P.M. Pungent Products from Garlic Activate the Sensory Ion Channel TRPA1. Proc. Natl. Acad. Sci. USA 2005, 102, 12248–12252. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef]
- DeWit, J.N.; Klarenbeek, G. Effects of Various Heat Treatments on Structure and Solubility of Whey Proteins. J. Dairy Sci. 1984, 67, 2701–2710. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Falvo, M.J. Protein-which is best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar] [PubMed]
- Hofmann, T.; Schieberle, P. Evaluation of the key odorants in a thermally treated solution of ribose and cysteine by aroma extract dilution techniques. J. Agric. Food Chem. 1995, 43, 2187–2194. [Google Scholar] [CrossRef]
- Badem, A.; Uçar, G. Production of caseins and their usages. Int. J. Food Sci. Nutr. 2017, 2, 4–9. [Google Scholar]
- Jocelyn, P.C. Biochemistry of the SH Group: The Occurrence, Chemical Properties, Metabolism and Biological Function of Thiols and Disulphides; Academic Press: London, UK, 1972; Corpus ID: 83078098. [Google Scholar]
- Whitesides, G.M.; Houk, J.; Patterson, M.A.K. Activation parameters for thiolate-disulfide interchange reactions in aqueous solution. J. Org. Chem. 1983, 48, 112–115. [Google Scholar] [CrossRef]
- Anantharamkrishnan, V.; Hoye, T.; Reineccius, G.A. Covalent Adduct Formation Between Flavor Compounds of Various Functional Group Classes and the Model Protein β-Lactoglobulin. J. Agric. Food Chem. 2020, 68, 6395–6402. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.E.; Parthasarathy, R.; Dunitz, J.D. Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc. 1977, 99, 4860–4862. [Google Scholar] [CrossRef]
- Shaked, Z.; Szajewski, R.P.; Whitesides, G.M. Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pKa values. Biochemistry 1980, 19, 4156–4166. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Whitesides, G.M. Comparison of Rate Constants for Thiolate-Disulfide Interchange in Water and in Polar Aprotic Solvents Using Dynamic 1H NMR Line Shape Analysis. J. Am. Chem. Soc. 1990, 112, 1190–1197. [Google Scholar] [CrossRef]
- Alvarez, B.; Salinas, G. Chapter 1—Basic concepts of thiol chemistry and biology. In Redox Chemistry and Biology of Thiols; Academic Press: Cambridge, MA, USA, 2022; pp. 1–18. ISBN 9780323902199. [Google Scholar] [CrossRef]
- Hegg, P.O. Conditions for the Formation of Heat-Induced Gels of Some Globular Food Proteins. J. Food Sci. 1982, 47, 1241–1244. [Google Scholar] [CrossRef]
- Park, K.; Lund, D.B. Calorimetric Study of Thermal Denaturation of β-Lactoglobulin. J. Dairy Sci. 1984, 67, 1699–1706. [Google Scholar] [CrossRef]
- Horne, D.S. Casein interactions: Casting light on the Black Boxes, the structure in dairy products. Int. Dairy J. 1998, 8, 171–177. [Google Scholar] [CrossRef]
- Horne, D.S. Factors influencing acid-induced gelation of skim-milk. In Food Colloids: Fundamentals of Formulation; Dickinson, E., Miller, R., Eds.; Royal Society of Chemistry: Cambridge, UK, 2001; pp. 345–351. [Google Scholar] [CrossRef]
- Horne, D.S. Caseins structure, self-assembly and gelation. Curr. Opin. Colloids Interface Sci. 2002, 7, 456–461. [Google Scholar] [CrossRef]
- Roberts, D.D.; Pollien, P.; Antille, N.; Lindinger, C.; Yeretzian, C. Comparison of nosespace, headspace, and sensory intensity rating for the evaluation of flavor absorption by fat. J. Agric. Food Chem. 2003, 51, 3636–3642. [Google Scholar] [CrossRef]
- Leksrisompong, P.; Barbano, D.M.; Foegeding, A.E.; Gerard, P.; Drake, M. The roles of fat and pH on the detection thresholds and partition coefficients of three compounds: Diacetyl, δ-decalactone and furaneol. J. Sensory Stud. 2010, 25, 347–370. [Google Scholar] [CrossRef]
- Sharma, S.K.; Dalgleish, D.G. Effect of heat treatments on the incorporation of milk serum proteins into the fat globule membrane of homogenized milk. J. Dairy Res. 1994, 61, 375–384. [Google Scholar] [CrossRef]
- Ye, A.; Anema, S.G.; Singh, H. Changes in the surface protein of the fat globules during homogenization and heat treatment of concentrated milk. J. Dairy Res. 2008, 75, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Rath, S.; Mohanty, N. Probiotics—A complete oral healthcare package. J. Integ. Med. 2020, 18, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Beermann, C.; Hartung, J. Physiological properties of milk ingredients released by fermentation. Food Func. 2013, 4, 185–199. [Google Scholar] [CrossRef]
- Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. The Effect of Viscosity on the Perception of Flavour. Chem. Senses 2002, 27, 583–591. [Google Scholar] [CrossRef]
Volatile Compound | Ion Product | Reagent Ion | m/z | Reaction Rate (k) 10−9 cm3 s−1 |
---|---|---|---|---|
Allyl mercaptan | C3H6S | NO+ | 74 | 2.4 |
C3H6S.H+ | H3O+ | 75 | 2.6 | |
Allyl methyl disulfide | C4H8S2 | NO+ | 120 | 2.4 |
C4H8S2.H+ | H3O+ | 121 | 2.6 | |
Allyl methyl sulfide | C4H8S+ | NO+ | 88 | 2.5 |
C4H8S.H+ | H3O+ | 89 | 3 | |
Diallyl disulfide | (C3H5)2S2.H+ | H3O+ | 147 | 3 |
Methyl mercaptan | CH4S.H+ | H3O+ | 49 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, M.; Barringer, S. Effect of Yogurt on the Deodorization of Raw Garlic (Allium sativum L.) Sulfur Volatiles in Breath and the Roles of Its Components. Dairy 2024, 5, 316-335. https://doi.org/10.3390/dairy5020026
Kaur M, Barringer S. Effect of Yogurt on the Deodorization of Raw Garlic (Allium sativum L.) Sulfur Volatiles in Breath and the Roles of Its Components. Dairy. 2024; 5(2):316-335. https://doi.org/10.3390/dairy5020026
Chicago/Turabian StyleKaur, Manpreet, and Sheryl Barringer. 2024. "Effect of Yogurt on the Deodorization of Raw Garlic (Allium sativum L.) Sulfur Volatiles in Breath and the Roles of Its Components" Dairy 5, no. 2: 316-335. https://doi.org/10.3390/dairy5020026
APA StyleKaur, M., & Barringer, S. (2024). Effect of Yogurt on the Deodorization of Raw Garlic (Allium sativum L.) Sulfur Volatiles in Breath and the Roles of Its Components. Dairy, 5(2), 316-335. https://doi.org/10.3390/dairy5020026