Meta-Analysis of Dietary Supplementation with Seaweed in Dairy Cows: Milk Yield and Composition, Nutrient Digestibility, Rumen Fermentation, and Enteric Methane Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Calculations, Statistical Analysis, Heterogeneity, and Publication Bias
2.5. Meta-Regression and Subgroup Analysis
3. Results
3.1. Milk Yield and Composition
3.2. Nutrient Digestibility, Ruminal Fermentation, and Enteric Methane Emissions
3.3. Publication Bias and Meta-Regression
3.4. Subgroup Analysis
4. Discussion
4.1. Milk Yield and Composition
4.2. Nutrient Digestibility, Ruminal Fermentation and Enteric Methane Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the contribution of milk to global nutrition. Front. Nutr. 2021, 8, 716100. [Google Scholar] [CrossRef] [PubMed]
- Eikanger, K.S.; Kjær, S.T.; Dörsch, P.; Iwaasa, A.D.; Alemu, A.W.; Schei, I.; Pope, P.B.; Hagen, L.H.; Kidane, A. Asparagopsis taxiformis inclusion in grass silage-based diets fed to Norwegian red dairy cows: Effects on ruminal fermentation, milk yield and enteric methane emission. Livest. Sci. 2024, 285, 105495. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global warming and dairy cattle: How to control and reduce methane emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.; Melgar, A.; Wasson, D.; Arndt, C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J. Dairy Sci. 2022, 105, 8543–8557. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.W.; Aasen, I.M.; Beauchemin, K.A.; Grondahl, F.; Gruninger, R.; Hayes, M.; Huws, S.; Kenny, D.A.; Krizsan, S.J.; Kirwan, S.F.; et al. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020, 10, 2432. [Google Scholar] [CrossRef] [PubMed]
- McGurrin, A.; Maguire, J.; Tiwari, B.K.; Garcia-Vaquero, M. Anti-methanogenic potential of seaweeds and seaweed-derived compounds in ruminant feed: Current perspectives, risks and future prospects. J. Anim. Sci. Biotechnol. 2023, 14, 145. [Google Scholar] [CrossRef]
- Bhowmick, G.; Hayes, M. Potential of seaweeds to mitigate production of greenhouse gases during production of ruminant proteins. Glob. Chall. 2023, 7, 2200145. [Google Scholar] [CrossRef] [PubMed]
- Narvaez-Izquiedo, J.; Fonseca-De La Hoz, J.; Kannan, G.; Bohorquez-Herrera, J. Use of macroalgae as a nutritional supplement for sustainable production of ruminants: A systematic review and an insight on the Colombian Caribbean region. Algal Res. 2023, 77, 103359. [Google Scholar] [CrossRef]
- Min, B.R.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Akbay, A.; Augyte, S. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef]
- Glasson, C.R.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Magnusson, M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Antaya, N.T.; Soder, K.J.; Kraft, J.; Whitehouse, N.L.; Guidon, N.E.; Erickson, P.S.; Conroy, A.B.; Brito, A.F. Incremental amounts of Ascophyllum nodosum meal do not improve animal performance but do increase milk iodine output in early lactation dairy cows fed high-forage diets. J. Dairy Sci. 2015, 98, 1991–2004. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.S.; Kim, E.J.; Jin, Y.C.; Lee, J.S.; Choi, Y.J.; Lee, H.G. Effects of supplementing brown seaweed by-products in the diet of Holstein cows during transition on ruminal fermentation, growth performance and endocrine responses. Asian Australas. J. Anim. Sci. 2015, 28, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Newton, E.E.; Pétursdóttir, Á.H.; Ríkharðsson, G.; Beaumal, C.; Desnica, N.; Giannakopoulou, K.; Juniper, D.; Ray, P.; Stergiadis, S. Effect of dietary seaweed supplementation in cows on milk macrominerals, trace elements and heavy metal concentrations. Foods 2021, 10, 1526. [Google Scholar] [CrossRef] [PubMed]
- Krizsan, S.J.; Ramin, M.; Chagas, J.C.; Halmemies-Beauchet-Filleau, A.; Singh, A.; Schnürer, A.; Danielsson, R. Effects on rumen microbiome and milk quality of dairy cows fed a grass silage-based diet supplemented with the macroalga Asparagopsis taxiformis. Front. Anim. Sci. 2023, 4, 1112969. [Google Scholar] [CrossRef]
- Thorsteinsson, M.; Weisbjerg, M.R.; Lund, P.; Bruhn, A.; Hellwing, A.L.F.; Nielsen, M.O. Effects of dietary inclusion of 3 Nordic brown macroalgae on dairy cows’ enteric methane emission and productivity. J. Dairy Sci. 2023, 106, 6921–6937. [Google Scholar] [CrossRef] [PubMed]
- Muizelaar, W.; van Duinkerken, G.; Khan, Z.; Dijkstra, J. Evaluation of 3 northwest European seaweed species on enteric methane production and lactational performance of Holstein-Friesian dairy cows. J. Dairy Sci. 2023, 106, 4622–4633. [Google Scholar] [CrossRef] [PubMed]
- Stefenoni, H.A.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Melgar, A.; Fetter, M.E.; Smith, P.; Hennessy, M.; Vecchiarelli, B.; et al. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 2021, 104, 4157–4173. [Google Scholar] [CrossRef]
- Bošnjaković, D.; Nedić, S.; Arsić, S.; Prodanović, R.; Vujanac, I.; Jovanović, L.; Stojković, M.; Jovanović, I.B.; Djuricic, I.; Kirovski, D. Effects of brown seaweed (Ascophyllum nodosum) supplementation on enteric methane emissions, metabolic status and milk composition in peak-lactating Holstein cows. Animals 2024, 14, 1520. [Google Scholar] [CrossRef] [PubMed]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Sofyan, A.; Irawan, A.; Herdian, H.; Jasmadi; Harahap, M.A.; Sakti, A.A.; Suryani, A.E.; Novianty, H.; Kurniawan, T.; Darma, I.N.G.; et al. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Anim. Feed Sci. Technol. 2022, 294, 115503. [Google Scholar] [CrossRef]
- Lean, I.J.; Golder, H.M.; Grant, T.M.D.; Moate, P.J. A meta-analysis of effects of dietary seaweed on beef and dairy cattle performance and methane yield. PLoS ONE 2021, 16, e0249053. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A. Why most published research findings are false. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [PubMed]
- Kebreab, E.; Bannink, A.; Pressman, E.M.; Walker, N.; Karagiannis, A.; van Gastelen, S.; Dijkstra, J. A meta-analysis of the effects of 3-nitrooxyptropanol on methane production, yield, and intensity in dairy cattle. J. Dairy Sci. 2023, 106, 927–936. [Google Scholar] [CrossRef]
- Nishikawa-Pacher, A. Research questions with PICO: A universal mnemonic. Publications 2022, 10, 21. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Godina-Rodríguez, J.E.; Garay-Martínez, J.R.; Lara-Bueno, A. Capsaicin as a dietary additive for dairy cows: A meta-analysis on performance, milk composition, digestibility, rumen fermentation, and serum metabolites. Animals 2024, 14, 1075. [Google Scholar] [CrossRef]
- Hernández-García, P.A.; Orzuna-Orzuna, J.F.; Chay-Canul, A.J.; Silva, G.V.; Galván, C.D.; Ortíz, P.B.R. Meta-analysis of organic chromium dietary supplementation on growth performance, carcass traits, and serum metabolites of lambs. Small Rumin. Res. 2024, 233, 107254. [Google Scholar] [CrossRef]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav. Modif. 2016, 41, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Antaya, N.T.; Ghelichkhan, M.; Pereira, A.B.D.; Soder, K.J.; Brito, A.F. Production, milk iodine, and nutrient utilization in Jersey cows supplemented with the brown seaweed Ascophyllum nodosum (kelp meal) during the grazing season. J. Dairy Sci. 2019, 102, 8040–8058. [Google Scholar] [CrossRef]
- Bendary, M.M.; Bassiouni, M.I.; Ali, M.F.; Gaafar, H.M.; Shamas, A.S. Effect of premix and seaweed additives on productive performance of lactating friesian cows. Int. Res. J. Agric. Sci. 2013, 1, 11–18. [Google Scholar]
- Katwal, S.; Pandya, P.R.; Trivedi, M.M.; Sorathiya, K.K.; Shah, S.V. Antimethanogenic effects of soybean straw and seaweed (Sargassum johnstonii) based total mixed ration in crossbred cows. Indian J. Dairy Sci. 2021, 74, 498–503. [Google Scholar] [CrossRef]
- Kidane, A.; Nesheim, I.L.; Larsen, H.J.S.; Thuen, E.; Jensen, S.K.; Steinshamn, H. Effects of supplementing mid-lactation dairy cows with seaweed and vitamin E on plasma and milk α -tocopherol and antibody response to immunization. J. Agric. Sci. 2015, 153, 929–942. [Google Scholar] [CrossRef]
- Lopez, C.C.; Serio, A.; Rossi, C.; Mazzarrino, G.; Marchetti, S.; Castellani, F.; Grotta, L.; Fiorentino, F.; Paparella, A.; Martino, G. Effect of diet supplementation with Ascophyllum nodosum on cow milk composition and microbiota. J. Dairy Sci. 2016, 99, 6285–6297. [Google Scholar] [CrossRef] [PubMed]
- Newton, E.E.; Theodoridou, K.; Terré, M.; Huws, S.; Ray, P.; Reynolds, C.K.; Prat, N.; Sabrià, D.; Stergiadis, S. Effect of dietary seaweed (Ascophyllum nodosum) supplementation on milk mineral concentrations, transfer efficiency, and hematological parameters in lactating Holstein cows. J. Dairy Sci. 2023, 106, 6880–6893. [Google Scholar] [CrossRef] [PubMed]
- Nyløy, E.; Prestløkken, E.; Eknæs, M.; Eikanger, K.S.; Heldal Hagen, L.; Kidane, A. Inclusion of red macroalgae (Asparagopsis taxiformis) in dairy cow diets modulates feed intake, chewing activity and estimated saliva secretion. Animals 2023, 13, 489. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Pétursdóttir, Á.H.; Humphries, D.J.; Desnica, N.; Newton, E.E.; Vanhatalo, A.; Halmemies-Beauchet-Filleau, A.; Bell, L.; Givens, D.I.; Juniper, D.T.; et al. Mineral concentrations in milk from cows fed seaweed (Saccharina latissima) under different basal protein supplementation. Food Chem. 2023, 403, 134315. [Google Scholar] [CrossRef] [PubMed]
- Reyes, D.C.; Meredith, J.; Puro, L.; Berry, K.; Kersbergen, R.; Soder, K.J.; Quigley, C.; Donihue, M.; Cox, D.; Price, N.N.; et al. Maine organic dairy producers’ receptiveness to seaweed supplementation and effect of Chondrus crispus on enteric methane emissions in lactating cows. Front. Vet. Sci. 2023, 10, 1153097. [Google Scholar] [CrossRef] [PubMed]
- Rey-Crespo, F.; López-Alconso, M.; Miranda, M. The use of seaweed from the Galician coast as a mineral supplement in organic dairy cattle. Animal 2014, 8, 580–586. [Google Scholar] [CrossRef]
- Sharma, A.; Datt, C. Supplementation effect of red seaweed powder on dry matter intake, body weight and feed conversion efficiency in crossbred cows. J. Ent. Zool. Stud. 2020, 8, 1056–1059. [Google Scholar]
- Silva, L.H.P.; Reis, S.F.; Melo, A.T.O.; Jackson, B.P.; Brito, A.F. Supplementation of Ascophyllum nodosum meal and monensin: Effects on diversity and relative abundance of ruminal bacterial taxa and the metabolism of iodine and arsenic in lactating dairy cows. J. Dairy Sci. 2022, 105, 4083–4098. [Google Scholar] [CrossRef]
- Singh, B.K.; Chopra, R.C.; Rai, S.N.; Verma, M.P.; Mohanta, R.K. Nutritional evaluation of seaweed on nutrient digestibility, nitrogen balance, milk production and composition in Sahiwal cows. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 437–443. [Google Scholar] [CrossRef]
- Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R; Springer: Berlin/Heidelberg, Germany, 2015; Volume 4784, ISBN 978-3-319-21415-3. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Takeshima, N.; Sozu, T.; Tajika, A.; Ogawa, Y.; Hayasaka, Y.; Furukawa, T.A. Which Is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med. Res. Methodol. 2014, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Der-Simonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.H.; Corcoran, J.; Pillai, V. Systematic Reviews and Meta-Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2008; pp. 111–132. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analysis. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.S. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 2005, 59, 464–468. [Google Scholar] [CrossRef]
- Koricheva, J.; Gurevitch, J.; Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution; Princeton University Press: Princeton, NJ, USA, 2013; pp. 207–236. [Google Scholar]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Guan, L.L. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci. Rep. 2021, 11, 24092. [Google Scholar] [CrossRef] [PubMed]
- Comtet-Marre, S.; Parisot, N.; Lepercq, P.; Chaucheyras-Durand, F.; Mosoni, P.; Peyretaillade, E.; Forano, E. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front. Microbiol. 2017, 8, 67. [Google Scholar] [CrossRef]
- O’Hara, E.; Terry, S.A.; Moote, P.; Beauchemin, K.A.; McAllister, T.A.; Abbott, D.W.; Gruninger, R.J. Comparative analysis of macroalgae supplementation on the rumen microbial community: Asparagopsis taxiformis inhibits major ruminal methanogenic, fibrolytic, and volatile fatty acid-producing microbes in vitro. Front. Microbiol. 2023, 14, 1104667. [Google Scholar] [CrossRef]
- Maheswari, M.; Das, A.; Datta, M.; Tyagi, A.K. Supplementation of tropical seaweed-based formulations improves antioxidant status, immunity and milk production in lactating Murrah buffaloes. J. Appl. Phycol. 2021, 33, 2629–2643. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Li, S.; Sun, Z.; Chen, X.; Wang, D.; Zhen, Y. The physiological dissimilarities of Holstein dairy cows with different milk yields. Vet. Med. Sci. 2023, 9, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Lohakare, J.; Bionaz, M. Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttranscriptional regulation. Physiol. Genom. 2016, 48, 231–256. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, K.S.; Lopetcharat, K.; Drake, M.A. Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk. J. Dairy Sci. 2017, 100, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, M.; Barbano, D.M. Lactose: Use, Measurement, and Expression of Results. J. Dairy Sci. 2021, 104, 8314–8325. [Google Scholar] [CrossRef] [PubMed]
- Andjelić, B.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Mladenović, J.; Čukić, A. Relationships between milk and blood biochemical parameters and metabolic status in dairy cows during lactation. Metabolites 2022, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- Sadovnikova, A.; Garcia, S.C.; Hovey, R.C. A Comparative Review of the Cell Biology, Biochemistry, and Genetics of Lactose Synthesis. J. Mammary Gland. Biol. Neoplasia 2021, 26, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Price, W.J.; Shafii, B. A meta-analysis on the relationship between intake of nutrients and body weight with milk volume and milk protein yield in dairy cows. J. Dairy Sci. 2005, 88, 2860–2869. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Zadeh, N.G. Milk urea nitrogen is genetically associated with production and reproduction performance of dairy cows: A meta-analysis. Livest. Sci. 2024, 283, 105461. [Google Scholar] [CrossRef]
- Jiménez-Granado, R.; Molina, A.; Sánchez Rodríguez, M.; Ziadi, C.; Menéndez Buxadera, A. Relationship between somatic cell score and fat plus protein yield in the first three lactations in Spanish Florida goats. Dairy 2024, 5, 1–12. [Google Scholar] [CrossRef]
- Kaskous, S.; Farschtschi, S.; Pfaffl, M.W. Physiological aspects of milk somatic cell count in small ruminants—A review. Dairy 2023, 4, 26–42. [Google Scholar] [CrossRef]
- Wang, B.; Ormston, S.; Płatosz, N.; Parker, J.K.; Qin, N.; Humphries, D.J.; Stergiadis, S. Effect of dietary protein source and Saccharina latissima on nutritional and safety characteristics of milk. J. Sci. Food Agrc. 2024. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ding, S.; Lu, J.; Li, Y. Global, regional, and national burdens of common micronutrient deficiencies from 1990 to 2019: A secondary trend analysis based on the Global Burden of Disease 2019 study. eClinicalMedicine 2022, 12, 101299. [Google Scholar] [CrossRef] [PubMed]
- Rjiba-Ktita, S.; Chermiti, A.; Valdés, C.; López, S. Digestibility, Nitrogen Balance and Weight Gain in Sheep Fed with Diets Supplemented with Different Seaweeds. J. Appl. Phycol. 2019, 31, 3255–3263. [Google Scholar] [CrossRef]
- Susanto, I.; Wiryawab, K.G.; Suharti, S.; Retnani, Y.; Zahera, R.; Jayanegara, A. Evaluation of Megasphaera elsdenii supplementation on rumen fermentation, production performance, carcass traits and health of ruminants: A meta-analysis. Anim. Biosci. 2023, 36, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Liu, H.; Zhao, J.; Gu, X.; Wei, X.; Zhang, X.; Ma, N.; Johnston, L.J.; Bai, Y.; Zhang, W.; et al. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci. Total Environ. 2021, 800, 149596. [Google Scholar] [CrossRef] [PubMed]
- Orpin, C.G.; Greenwood, Y.; Hall, F.J.; Paterson, I.W. The rumen microbiology of seaweed digestion in Orkney sheep. J. Appl. Bacteriol. 1985, 58, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Alexander, T.W.; McAllister, T.A. In vitro effects of phlorotannins from Ascophyllum nodosum on rumen bacterial populations and fermentation. J. Sci. Food Agric. 2009, 89, 2252–2260. [Google Scholar] [CrossRef]
- Rémond, D.; Chaise, J.P.; Delval, E.; Poncet, C. Net transfer of urea and ammonia across the ruminal wall of sheep. J. Anim. Sci. 1993, 71, 2785–2792. [Google Scholar] [CrossRef]
- Spanghero, M.; Braidot, M.; Fabro, C.; Romanzin, A. A meta-analysis on the relationship between rumen fermentation parameters and protozoa counts in in vitro batch experiments. Anim. Feed Sci. Technol. 2022, 293, 115471. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Prachumchai, R.; Dagaew, G.; Matra, M.; Phupaboon, S.; Sommai, S.; Suriyapha, C. Potential use of seaweed as a dietary supplement to mitigate enteric methane emission in ruminants. Sci. Total Environ. 2024, 931, 173015. [Google Scholar] [CrossRef] [PubMed]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Norman, H.C.; Kinley, R.D.; Laurence, M.; Wilmot, M.; Bender, H.; de Nys, R.; Tomkins, N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2018, 58, 681–688. [Google Scholar] [CrossRef]
- Saminathan, M.; Sieo, C.C.; Gan, H.M.; Abdullah, N.; Wong, C.M.V.L.; Ho, Y.W. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Anim. Feed Sci. Technol. 2016, 216, 146–160. [Google Scholar] [CrossRef]
- Hutchings, J.L.; Grebneva, Y.; Dilmetz, S.J.; Pincher, D.W.; Hoffmann, P. Analytical methods for the analysis of bromoform in red seaweed Asparagopsis armata and Asparagopsis taxiformis–A review. Algal Res. 2024, 79, 103478. [Google Scholar] [CrossRef]
Reference | Breed | ED | DIM, d | SP, d | SW Dose (g/kg DM) | SW Specie | SW Type | Forage, g/kg DM |
---|---|---|---|---|---|---|---|---|
Antaya et al. [11] | Jersey | Rotative | 40 | 21 | 3.2, 6.3, 9.7 | Ascophyllum nodosum | Brown | 642 |
Antaya et al. [29] | Jersey | Continuous | 142 | 28 | 5.8, 6.6, 6.8 | Ascophyllum nodosum | Brown | 700 |
Bendary et al. [30] | Holstein | Continuous | 7 | 150 | 2.9 | Ascophyllum nodosum | Brown | 600 |
Bošnjaković et al. [18] | Holstein | Rotative | 174 | 21 | 20, 40 | SL, SM, AN | Brown | 611 |
Eikanger et al. [2] | Norwegian | Continuous | 95 | 39 | 1.25, 2.50 | Asparagopsis taxiformis | Red | 650 |
Hong et al. [12] | Holstein | Continuous | 30 | 360 | 20, 40 | Blend-1 | Brown | 650 |
Katwal et al. [31] | Crossbreed | Rotative | NR | 45 | 80.00 | Sargassum johnsonii | Brown | 600 |
Kidane et al. [32] | Norwegian | Rotative | 164 | 28 | 8.9 | Ascophyllum nodosum | Brown | 840 |
Krizsan et al. [14] | Nordic Red | Rotative | 122 | 21 | 5.0 | Asparagopsis taxiformis | Red | 600 |
López et al. [33] | Holstein | Continuous | 302 | 38 | 4.8 | Ascophyllum nodosum | Brown | 770 |
Muizelaar et al. [16] | Holstein | Rotative | 91 | 63 | 6.6, 6.5, 6.7 | CHC, SL, Blend-2 | Red, Brown | 750 |
Newton et al. [13] | Iceland | Continuous | 168 | 49 | 0.9, 3.5 | Blend-3 | Brown | 550 |
Newton et al. [34] | Holstein | Continuous | 168 | 63 | 13.4 | Ascophyllum nodosum | Brown | 710 |
Nyloy et al. [35] | Norwegian | Continuous | 95 | 52 | 1.25, 2.5 | Asparagopsis taxiformis | Red | 650 |
Qin et al. [36] | Holstein | Rotative | NR | 28 | 2.1 | SL | Brown | 750 |
Reyes et al. [37] | Holstein and Jersey | Continuous | 150 | 84 | 60 | CHC | Red | 670 |
Roque et al. [19] | Holstein | Rotative | 201 | 21 | 5.0, 10.0 | Asparagopsis armata | Red | NR |
Rey-Crespo et al. [38] | Holstein | Continuous | 154 | 70 | 5.3 | Blend-4 | Blend | 765 |
Sharma y Datt [39] | Crossbreed | Continuous | NR | 150 | 15, 30 | Laminaria digitata | Brown | NR |
Silva et al. [40] | Jersey | Rotative | 102 | 28 | 2.7, 5.4, 8.1 | Ascophyllum nodosum | Brown | 663 |
Singh et al. [41] | Sahiwal | Continuous | 56 | 56 | 20 | Sargassum wightii | Brown | 750 |
Stefenoni et al. [17] | Holstein | Rotative | 95 | 28 | 2.5, 5.0 | Asparagopsis taxiformis | Red | 603 |
Thorsteinsson et al. [15] | Holstein | Continuous | 174 | 21 | 0.23, 0.46 | Ascophyllum nodosum | Brown | 534 |
Outcomes | N (NC) | Heterogeneity | ||||
---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value 1 | I2 (%) | ||
DMI, kg/d | 21 (41) | 19.85 (4.93) | −0.218 (−0.488; 0.052) | 0.113 | <0.001 | 67.99 |
MY, kg/d | 18 (35) | 26.17 (7.43) | −0.100 (−0.718; 0.519) | 0.752 | <0.001 | 78.85 |
ECMY, kg/d | 11 (21) | 25.59 (8.55) | −0.525 (−1.823; 0.774) | 0.428 | <0.001 | 91.92 |
FE, DMI/MY | 9 (17) | 1.164 (0.351) | −0.010 (−0.028; 0.009) | 0.296 | 0.309 | 12.39 |
MFY, kg/d | 8 (18) | 1.06 (0.33) | −0.004 (−0.037; 0.030) | 0.829 | 0.769 | 0.00 |
MPY, kg/d | 8 (18) | 0.87 (0.31) | 0.008 (−0.013; 0.029) | 0.446 | 0.978 | 0.00 |
MLY, kg/d | 7 (17) | 1.17 (0.46) | 0.016 (−0.018; 0.049) | 0.356 | 0.998 | 0.00 |
MFC, g/kg | 17 (33) | 4.13 (0.55) | 0.070 (0.046; 0.095) | <0.001 | 0.506 | 0.00 |
MPC, g/kg | 17 (33) | 3.34 (0.30) | −0.039 (−0.068; −0.009) | 0.010 | 0.071 | 40.93 |
MLC, g/kg | 15 (32) | 4.67 (0.15) | 0.015 (0.001; 0.029) | 0.040 | 0.506 | 0.00 |
TS, g/100 g | 6 (13) | 12.61 (1.38) | 0.122 (−0.038; 0.282) | 0.135 | 0.989 | 0.00 |
MUN, mg/dL | 10 (19) | 12.27 (2.58) | −0.478 (−0.755; −0.201) | <0.001 | 0.060 | 37.63 |
SCC, ×103 cell/mL | 9 (17) | 4.98 (2.55) | −0.275 (−0.424; −0.125) | <0.001 | 0.073 | 48.34 |
Iodine, mg/dL | 9 (15) | 0.32 (0.19) | 0.805 (0.574; 1.036) | <0.001 | <0.001 | 96.87 |
Bromoform, μL | 3 (4) | 0.20 (0.11) | 0.047 (−0.008; 0.102) | 0.096 | 0.917 | 0.00 |
Outcomes | N (NC) | Heterogeneity | ||||
---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value 1 | I2 (%) | ||
DMD, g/100 g | 5 (11) | 69.95 (3.56) | −0.241 (−0.639; 0.156) | 0.234 | 0.724 | 0.00 |
OMD, g/100 g | 7 (15) | 72.63 (2.91) | −0.113 (−0.498; 0.272) | 0.565 | 0.660 | 0.00 |
CPD, g/100 g | 7 (15) | 66.67 (5.37) | −0.230 (−1.199; 0.740) | 0.642 | 0.065 | 43.97 |
NDFD, g/100 g | 6 (15) | 62.42 (5.75) | 0.308 (−0.366; 0.981) | 0.371 | 0.327 | 11.27 |
ADFD, g/100 g | 3 (9) | 62.02 (5.93) | 0.248 (−1.113; 1.609) | 0.721 | 0.236 | 23.29 |
Ruminal pH | 4 (9) | 6.21 (0.37) | 0.074 (0.014; 0.134) | 0.016 | 0.242 | 22.61 |
NH3-N, mg/dL | 4 (6) | 11.88 (4.98) | −1.643 (−3.270; −0.016) | 0.048 | <0.001 | 83.53 |
TVFA, Mm | 6 (12) | 122.73 (16.94) | −4.427 (−11.877; 3.023) | 0.244 | <0.001 | 90.85 |
Acetate, mol/100 mol | 5 (10) | 61.69 (5.02) | −1.204 (−2.412; 0.003) | 0.061 | <0.001 | 68.73 |
Propionate, mol/100 mol | 5 (10) | 21.00 (2.57) | 0.978 (−0.219; 2.175) | 0.109 | <0.001 | 71.80 |
Butyrate, mol/100 mol | 5 (10) | 13.51 (2.22) | 1.073 (0.385; 1.761) | 0.002 | <0.001 | 85.87 |
Valerate, mol/100 mol | 5 (10) | 1.59 (0.41) | 0.141 (0.025; 0.257) | 0.017 | 0.063 | 47.05 |
Acetate/propionate | 4 (8) | 3.25 (0.70) | −0.321 (−0.550; −0.093) | 0.006 | <0.001 | 82.42 |
CH4 production, g/d | 10 (22) | 411.00 (87.40) | −29.422 (−41.565; −17.280) | <0.001 | <0.001 | 89.18 |
CH4 yield, g/kg DMI | 9 (20) | 18.06 (3.61) | −1.578 (−2.204; −0.951) | <0.001 | <0.001 | 81.01 |
CH4 intensity, g/kg ECMY | 9 (19) | 15.82 (5.26) | −1.710 (−2.344; −1.076) | <0.001 | <0.001 | 66.10 |
Outcomes | Observed Significance | Target Significance | NFS Number | Number of Comparisons (n) | NFS > [5 (n) + 10] |
---|---|---|---|---|---|
DMI | 0.2878 | 0.05 | 0 | 41 | NA |
MY | 0.1915 | 0.05 | 0 | 35 | NA |
ECMY | 0.2708 | 0.05 | 0 | 21 | NA |
FE | 0.0692 | 0.05 | 0 | 17 | NA |
MFY | 0.8589 | 0.05 | 0 | 18 | NA |
MPY | 0.4246 | 0.05 | 0 | 18 | NA |
MLY | 0.3332 | 0.05 | 0 | 17 | NA |
MFC | <0.001 | 0.05 | 283 | 33 | 175 |
MPC | <0.001 | 0.05 | 247 | 33 | 175 |
MLC | 0.0775 | 0.05 | 0 | 32 | NA |
TS | 0.6746 | 0.05 | 0 | 13 | NA |
MUN | 0.0008 | 0.05 | 253 | 19 | 105 |
SCC | <0.001 | 0.05 | 324 | 17 | 95 |
Iodine | <0.001 | 0.05 | 1010 | 15 | 85 |
Bromoform | 0.0962 | 0.05 | 0 | 4 | NA |
DMD | 0.2671 | 0.05 | 0 | 11 | NA |
OMD | 0.6511 | 0.05 | 0 | 15 | NA |
CPD | 0.1890 | 0.05 | 0 | 15 | NA |
NDFD | 0.4562 | 0.05 | 0 | 15 | NA |
ADFD | 0.6531 | 0.05 | 0 | 9 | NA |
Ruminal pH | 0.0648 | 0.05 | 0 | 9 | NA |
NH3-N | 0.0729 | 0.05 | 0 | 6 | NA |
TVFA | 0.3391 | 0.05 | 0 | 12 | NA |
Acetate | 0.1211 | 0.05 | 0 | 10 | NA |
Propionate | 0.0634 | 0.05 | 0 | 10 | NA |
Butyrate | 0.1941 | 0.05 | 0 | 10 | NA |
Valerate | 0.0740 | 0.05 | 0 | 10 | NA |
Acetate/propionate | 0.0647 | 0.05 | 0 | 8 | NA |
CH4 production | <0.0001 | 0.05 | 201 | 22 | 120 |
CH4 yield | <0.0001 | 0.05 | 187 | 20 | 110 |
CH4 intensity | 0.3276 | 0.05 | 0 | 19 | NA |
Outcomes | QM | Df | p-Value | R2 (%) | |
---|---|---|---|---|---|
Experimental design | 2.879 | 1 | 0.090 | 3.53 | |
Days in milk | 1.470 | 1 | 0.480 | 0.62 | |
Forage level | 0.738 | 1 | 0.607 | 0.00 | |
Dry matter intake (DMI) | Seaweed dose | 2.133 | 2 | 0.344 | 4.27 |
Suplementation period | 0.037 | 1 | 0.848 | 0.00 | |
Seaweed type | 19.683 | 1 | <0.001 | 61.18 | |
Seaweed specie | 38.266 | 8 | <0.001 | 75.97 | |
Experimental design | 0.847 | 1 | 0.357 | 0.00 | |
Days in milk | 0.028 | 1 | 0.986 | 0.00 | |
Forage level | 4.184 | 1 | 0.123 | 0.00 | |
Milk yield (MY) | Seaweed dose | 1.551 | 2 | 0.460 | 2.41 |
Suplementation period | 0.080 | 1 | 0.778 | 0.00 | |
Seaweed type | 28.541 | 1 | <0.001 | 66.68 | |
Seaweed specie | 44.459 | 10 | <0.001 | 66.10 | |
Experimental design | 0.041 | 1 | 0.840 | 0.00 | |
Days in milk | 1.544 | 1 | 0.642 | 1.74 | |
Forage level | 0.003 | 1 | 0.955 | 0.00 | |
Energy corrected milk yield (ECMY) | Seaweed dose | 3.212 | 2 | 0.201 | 1.07 |
Suplementation period | 1.631 | 1 | 0.202 | 3.18 | |
Seaweed type | 25.074 | 1 | <0.001 | 72.40 | |
Seaweed specie | 44.150 | 5 | <0.001 | 83.08 | |
Experimental design | 2.327 | 1 | 0.127 | 2.79 | |
Days in milk | 0.536 | 1 | 0.464 | 0.00 | |
Forage level | 0.032 | 1 | 0.858 | 0.00 | |
Methane (CH4) production, g/d | Seaweed dose | 2.836 | 2 | 0.242 | 3.17 |
Suplementation period | 0.269 | 1 | 0.604 | 0.00 | |
Seaweed type | 12.184 | 1 | <0.001 | 39.68 | |
Seaweed specie | 27.526 | 7 | <0.001 | 58.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Vázquez Silva, G.; de la Torre-Hernández, M.E.; Sánchez-López, N.; Hernández-García, P.A. Meta-Analysis of Dietary Supplementation with Seaweed in Dairy Cows: Milk Yield and Composition, Nutrient Digestibility, Rumen Fermentation, and Enteric Methane Emissions. Dairy 2024, 5, 464-479. https://doi.org/10.3390/dairy5030036
Orzuna-Orzuna JF, Lara-Bueno A, Mendoza-Martínez GD, Miranda-Romero LA, Vázquez Silva G, de la Torre-Hernández ME, Sánchez-López N, Hernández-García PA. Meta-Analysis of Dietary Supplementation with Seaweed in Dairy Cows: Milk Yield and Composition, Nutrient Digestibility, Rumen Fermentation, and Enteric Methane Emissions. Dairy. 2024; 5(3):464-479. https://doi.org/10.3390/dairy5030036
Chicago/Turabian StyleOrzuna-Orzuna, José Felipe, Alejandro Lara-Bueno, Germán David Mendoza-Martínez, Luis Alberto Miranda-Romero, Gabriela Vázquez Silva, María Eugenia de la Torre-Hernández, Nallely Sánchez-López, and Pedro Abel Hernández-García. 2024. "Meta-Analysis of Dietary Supplementation with Seaweed in Dairy Cows: Milk Yield and Composition, Nutrient Digestibility, Rumen Fermentation, and Enteric Methane Emissions" Dairy 5, no. 3: 464-479. https://doi.org/10.3390/dairy5030036
APA StyleOrzuna-Orzuna, J. F., Lara-Bueno, A., Mendoza-Martínez, G. D., Miranda-Romero, L. A., Vázquez Silva, G., de la Torre-Hernández, M. E., Sánchez-López, N., & Hernández-García, P. A. (2024). Meta-Analysis of Dietary Supplementation with Seaweed in Dairy Cows: Milk Yield and Composition, Nutrient Digestibility, Rumen Fermentation, and Enteric Methane Emissions. Dairy, 5(3), 464-479. https://doi.org/10.3390/dairy5030036