Antioxidant Activity and Oxidative Stress Survival of Limosilactobacillus reuteri LR92 in Fermented Milk with Juçara Pulp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Juçara Pulp
2.3. Production of Fermented Milk with the Addition of Juçara Pulp (JFM)
2.4. Physicochemical Analysis
2.5. Total Phenolic Compounds and Antioxidant Activity
2.6. Evaluation of Resistance to Reactive Oxygen Species (ROS)
2.6.1. Evaluation of Resistance to Hydrogen Peroxide
2.6.2. Evaluation of Resistance to Superoxide Anions
2.6.3. Evaluation of Resistance to Hydroxyl Radicals
2.7. Statistical Analyses
3. Results and Discussion
3.1. Centesimal Composition
3.2. Color
3.3. Determination of Phenolic Compounds and Antioxidant Activity
3.4. Resistance to Reactive Oxygen Species (ROS)
3.4.1. Resistance to Superoxide Anions
3.4.2. Resistance to Hydrogen Peroxide
3.4.3. Resistance to Hydroxyl Radicals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akal, C.; Turkmen, N.; Özer, B. Technology of Dairy-Based Beverages. In Milk-Based Beverages; Woodhead Publishing: Sawston, UK, 2019; Volume 1, pp. 331–372. [Google Scholar]
- López-García, G.; Cilla, A.; Barberá, R.; Genovés, S.; Martorell, P.; Alegría, A. Effect of plant sterol and galactooligosaccharides Caenorhabditis elegans enriched beverages on oxidative stress and longevity. J. Funct. Foods 2019, 10, 37–47. [Google Scholar] [CrossRef]
- Leite, S.T.; Roberto, C.D.; Silva, P.I.; de Carvalho, R.V. Polpa de juçara: Fonte de compostos fenólicos, aumento da atividade antioxidante e da viabilidade de bactérias probióticas de iogurte. Rev. Ceres 2018, 65, 16–23. [Google Scholar] [CrossRef]
- Shah, N.P. Probiotic bacteria: Selective enumeration and survival in dairy foods. J. Dairy Sci. 2000, 83, 894–907. [Google Scholar] [CrossRef]
- Kumar, H.; Dhalaria, R.; Guleria, S.; Cimler, R.; Sharma, R.; Siddiqui, S.A.; Kuča, K. Antioxidant potential of plants and probiotic spp. in alleviating oxidative stress induced by H2O2. Biomed. Pharmacother. 2023, 165, 115022. [Google Scholar] [CrossRef]
- Fernandes, M.T.C.; Guergoletto, K.B.; Watanabe, L.S.; Nixdorf, S.L.; Oliveira, A.G.; Garcia, S. Milk with Juçara (Euterpe edulis Martius) Pulp: Fermentation by L. reuteri LR92 and Reuterin Production in Situ. Braz. Arch. Biol. Technol. 2020, 63, e20190286. [Google Scholar] [CrossRef]
- Tsuda, H. Production of reuterin by Lactobacillus coryniformis and its antimicrobial activities. J. Dairy Res. 2023, 90, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Cunha de Souza Pereira, D.; dos Santos Gomes, F.; Valeriano Tonon, R.; Beres, C.; Maria Corrêa Cabral, L. Towards chemical characterization and possible applications of juçara fruit: An approach to remove Euterpe edulis Martius from the extinction list. J. Food Sci. Technol. 2023, 60, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhong, X.; Liu, X.; Wang, X.; Gao, X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective from Gut Microbiota. Front. Nutr. 2021, 8, 693412. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, J.; Liu, Y.; Meng, Q.; Liu, H.; Yao, Q.; Chen, X. The Role of Potential Probiotic Strains Lactobacillus reuteri in Various Intestinal Diseases: New Roles for an Old Player. Front. Microbiol. 2023, 14, 1095555. [Google Scholar] [CrossRef]
- Borgonovi, T.F.; Casarotti, S.N.; Penna, A.L.B. Lacticaseibacillus casei SJRP38 and buriti pulp increased bioactive compounds and probiotic potential of fermented milk. LWT 2021, 143, 111124. [Google Scholar] [CrossRef]
- Morais, R.A.; Teixeira, G.L.; Ferreira, S.R.S.; Cifuentes, A.; Block, J.M. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion. Nutrients 2022, 14, 4009. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Antioxidant and juçara fruits (Euterpe edulis Martius): Potential applications in toxicology. In Toxicology; Academic Press: Cambridge, MA, USA, 2021; pp. 329–336. [Google Scholar]
- Vannuchi, N.; Jamar, G.; Pisani, L.; Braga, A.R.C.; de Rosso, V.V. Chemical Composition, Bioactive Compounds Extraction, and Observed Biological Activities from Jussara (Euterpe edulis): The Exotic and Endangered Brazilian Superfruit. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3192–3224. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Hao, M.; Li, Y.; Zhang, J.; Ding, Y.; Lyu, F. Fortification of yogurt with bioactive functional foods and ingredients and associated challenges—A review. Trends Food Sci. Technol. 2022, 129, 558–580. [Google Scholar] [CrossRef]
- Guergoletto, K.B.; Mauro, C.S.I.; Garcia, S. Juçara (Euterpe edulis) pulp as a substrate for probiotic bacteria fermentation: Optimisation process and antioxidant activity. Em. J. Food Agric. 2017, 29, 949–959. [Google Scholar] [CrossRef]
- Nogueira, O.L.; Figueirêdo, F.J.C.; Muller, A.A. Açaí; Embrapa Amazônia Oriental: Belém, Brazil, 2005; Volume 4, p. 137. [Google Scholar]
- Langa, S.; Martín-Cabrejas, I.; Montiel, R.; Landete, J.M.; Medina, M.; Arqués, J.L. Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. J. Dairy Sci. 2014, 97, 6116–6121. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO A.O.A.C.—Association of Official Agricultural Chemists. Official Methods of Analysis, 15th ed.; FAO/WHO A.O.A.C.—Association of Official Agricultural Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Hung, P.V.; Maeda, T.; Miyatake, K.; Morita, N. Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res. Int. 2009, 42, 185–190. [Google Scholar] [CrossRef]
- Swain, T.; Hills, W.E. The phenolic constituents of Prunus domestica. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sánchez-González, I.; Jiménez-Escrig, A.; Saura-Calixto, F. In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). Food Chem. 2005, 90, 133–139. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Kullisaar, T.; Zilmer, M.; Mikelsaar, M.; Vihalemm, T.; Annuk, H.; Kairane, C.; Kilk, A. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 2002, 72, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Wajs, J.; Brodziak, A.; Król, J. Shaping the Physicochemical, Functional, Microbiological and Sensory Properties of Yoghurts Using Plant Additives. Foods 2023, 12, 1275. [Google Scholar] [CrossRef]
- Hunter Laboratories. Measuring Color Using Hunter L, a, b versus CIE 1976 L*a*b*. Available online: https://www.hunterlab.com/an-1005b.pdf1005b.pdf (accessed on 7 July 2024).
- Srivastava, A.; Akoh, C.C.; Yi, W.; Fischer, J.; Krewer, G. Effect of Storage Conditions on the Biological Activity of Phenolic Compounds of Blueberry Extract Packed in Glass Bottles. J. Agric. Food Chem. 2007, 55, 2705–2713. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.B.; Lee, B.; Kim, C.Y. Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef] [PubMed]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Patel, J.S.; Patel, N.J.; Talati, J.G. Storage of Fruits and Vegetables in Refrigerator Increases their Phenolic Acids but Decreases the Total Phenolics, Anthocyanins and Vitamin C with Subsequent Loss of their Antioxidant Capacity. Antioxidants 2017, 6, 59. [Google Scholar] [CrossRef]
- Guergoletto, K.B.; Costabile, A.; Flores, G.; Garcia, S.; Gibson, G.R. In Vitro Fermentation of Juçara Pulp (Euterpe edulis) by Human Colonic Microbiota. Food Chem. 2016, 196, 251–258. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.A.; Torres, A.G.; Perrone, D.; Monteiro, M. Effect of High Hydrostatic Pressure Processing on the Anthocyanins Content, Antioxidant Activity, Sensorial Acceptance and Stability of Jussara (Euterpe edulis) Juice. Foods 2021, 10, 2246. [Google Scholar] [CrossRef]
- Tunin, L.M.; de Paula, M.N.; Matioli, G.; de Medeiros Araújo, D.C.; Novello, C.R.; Ferreira, E.D.F.; de Mello, J.C.P. Method development and validation for analysis of microencapsulated cyanidin-3-O-rutinoside in dairy samples containing juçara palm fruit by high-performance liquid chromatography. J. Sci. Food Agric. 2024, 104, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Larsen, L.R. Influence of Fruit Juice Processing on Anthocyanin Stability. Food Res. Int. 2017, 100, 354–365. [Google Scholar] [CrossRef]
- Sikorski, Z. Fennema’s Food Chemistry (Fifth Edition)—Edited by Srinivasan Damodaran and Kirk L. Parkin. J. Food Biochem. 2018, 42, e12483. [Google Scholar] [CrossRef]
- Aprodu, I.; Milea, Ș.A.; Enachi, E.; Râpeanu, G.; Bahrim, G.; Stănciuc, N. Thermal Degradation Kinetics of Anthocyanins Extracted from Purple Maize Flour Extract and the Effect of Heating on Selected Biological Functionality. Foods 2020, 9, 1593. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Fredes, C. The Encapsulation of Anthocyanins from Berry-Type Fruits. Molecules 2015, 20, 5875–5888. [Google Scholar] [CrossRef]
- Begunova, A.V.; Savinova, O.S.; Glazunova, O.A.; Moiseenko, K.V.; Rozhkova, I.V.; Fedorova, T.V. Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow’s Milk: Fermentation and Peptidomics Study. Foods 2021, 10, 17. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Freitas, R.B.; Rômulo, D.N.; Bianca, G.M.; Eliziária, C.S.; Murilo, S.A.; Luciano, G.F.; Luciana, M.L.; Maria do Carmo, P.; Reggiani, V.G.; João Paulo, V.L. Euterpe edulis Extracts Positively Modulates the Redox Status and Expression of Inflammatory Mediators. Food Agric. Immunol. 2017, 29, 95–108. [Google Scholar] [CrossRef]
- Lenzen, S.; Lushchak, V.I.; Scholz, F. The pro-radical hydrogen peroxide as a stable hydroxyl radical distributor: Lessons from pancreatic beta cells. Arch. Toxicol. 2022, 96, 1915–1920. [Google Scholar] [CrossRef]
- Speer, H.; D’Cunha, N.M.; Alexopoulos, N.I.; McKune, A.J.; Naumovski, N. Anthocyanins and Human Health—A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants 2020, 9, 366. [Google Scholar] [CrossRef]
FM | JFM | ||||||
---|---|---|---|---|---|---|---|
Days | 1 | 15 | 30 | 1 | 15 | 30 | |
Proteins % | 3.05 ± 0.22 a | 3.47 ± 0.17 a | 3.20 ± 0.10 a | 3.47 ± 0.30 a | 3.48 ± 0.32 a | 3.56 ± 0.01 a | |
Lipids % | 0.30 ± 0.00 b | 0.30 ± 0.00 b | 0.31 ± 0.00 a;b | 0.33 ± 0.01 a;b | 0.31 ± 0.02 a;b | 0.34 ± 0.04 a;b | |
Carbohydrates % ϕ | 13.28 | 14.83 | 16.73 | 14.15 | 15.58 | 17.61 | |
Ashes % | 0.30 ± 0.01 e | 0.34 ± 0.01 d | 0.37 ± 0.01 c | 0.40 ± 0.10 b | 0.45 ± 0.02 a | 0.47 ± 0.00 a | |
Moisture % | 83.06 ± 0.00 a | 81.05 ± 0.10 b | 79.39 ± 0.10 d | 81.70 ± 0.06 b | 80.18 ± 0.03 c | 78.02 ± 0.00 e | |
Color | L* | 80.27 ± 0.70 a | 80.10 ± 1.50 a | 80.00 ± 2.14 a | 64.25 ± 0.10 a | 62.45 ± 0.10 b | 47.54 ± 0.21 c |
a* | −2.78 ± 0.20 c | −1.81 ± 0.30 b | −1.51 ± 0.80 a | 5.63 ± 0.30 a | 3.43 ± 0.10 b | 1.57 ± 0.00 c | |
b* | 8.73 ± 0.10 a | 6.93 ± 0.50 b | 5.70 ± 0.08 c | 4.91 ± 0.30 c | 5.81 ± 0.05 b | 6.05 ± 0.60 a |
Samples | Day | Total Phenolic Compounds (mg EAG.100 g−1) | DPPH (μmol TEAC.g−1) | FRAP (g TEAC.100 g.mL−1) |
---|---|---|---|---|
FM | 1 | 1.66 ± 0.17 b | 21.90 ± 5.00 c | 235.77 ± 9.80 d |
15 | 1.41 ± 0.24 b | 23.03 ± 0.09 c | 229.87 ± 9.70 d | |
30 | 1.51 ± 1.26 b | 24.50 ± 1.88 c | 229.87 d ± 9.10 d | |
JFM | 1 | 3.04 ± 0.07 a | 83.92 ± 4.00 a | 1185.64 ± 4.20 a |
15 | 3.03 ± 0.08 a | 73.86 ± 4.15 ab | 1062.05 b ± 4.90 b | |
30 | 2.81 ± 0.03 a | 67.03 ± 1.67 b | 830.00 ± 9.83 c |
Sample | ||
---|---|---|
Day | JFM | FM |
Zone of Inhibition (mm) | ||
1 | - | 8 |
15 | 11 | 21 |
30 | 11 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, M.T.C.; Farinazzo, F.S.; Mauro, C.S.I.; de Souza Rocha, T.; Guergoletto, K.B.; Garcia, S. Antioxidant Activity and Oxidative Stress Survival of Limosilactobacillus reuteri LR92 in Fermented Milk with Juçara Pulp. Dairy 2024, 5, 598-609. https://doi.org/10.3390/dairy5040045
Fernandes MTC, Farinazzo FS, Mauro CSI, de Souza Rocha T, Guergoletto KB, Garcia S. Antioxidant Activity and Oxidative Stress Survival of Limosilactobacillus reuteri LR92 in Fermented Milk with Juçara Pulp. Dairy. 2024; 5(4):598-609. https://doi.org/10.3390/dairy5040045
Chicago/Turabian StyleFernandes, Maria Thereza Carlos, Fernanda Silva Farinazzo, Carolina Saori Ishii Mauro, Thais de Souza Rocha, Karla Bigetti Guergoletto, and Sandra Garcia. 2024. "Antioxidant Activity and Oxidative Stress Survival of Limosilactobacillus reuteri LR92 in Fermented Milk with Juçara Pulp" Dairy 5, no. 4: 598-609. https://doi.org/10.3390/dairy5040045
APA StyleFernandes, M. T. C., Farinazzo, F. S., Mauro, C. S. I., de Souza Rocha, T., Guergoletto, K. B., & Garcia, S. (2024). Antioxidant Activity and Oxidative Stress Survival of Limosilactobacillus reuteri LR92 in Fermented Milk with Juçara Pulp. Dairy, 5(4), 598-609. https://doi.org/10.3390/dairy5040045