A Global Review of Cheese Colour: Microbial Discolouration and Innovation Opportunities
Abstract
:1. Introduction
2. Microbial Colour Defects in Cheese
2.1. Blue Colour Defect
2.2. Pink Colour Defect
2.3. Brown Colour Defect
3. Strategies to Mitigate Colour Defects in Cheese
3.1. Annatto
3.2. Paprika
3.3. β-Carotene
3.4. Lutein
3.5. Saffron
4. Strategies to Prevent Colour Defects in Cheese
4.1. Natural Biopolymers
4.1.1. Polysaccharide-Based Coatings
4.1.2. Lipid-Based Coatings
4.1.3. Protein-Based Coatings
4.2. Synthetic Polymers
5. Applications of Edible Coating for Different Types of Cheese
6. Commercial Applications and Future Trends
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheese Production Worldwide 2015–2023|Statista. Available online: https://www.statista.com/statistics/1120911/cheese-production-worldwide/ (accessed on 20 July 2024).
- Dufossé, L.; Galaup, P.; Carlet, E.; Flamin, C.; Valla, A. Spectrocolourimetry in the CIE L*a*b* Colour Space as Useful Tool for Monitoring the Ripening Process and the Quality of PDO Red-Smear Soft Cheeses. Food Res. Int. 2005, 38, 919–924. [Google Scholar] [CrossRef]
- Astuti, F.D.; Setyawardani, T.; Santosa, S.S. The Physical Characteristics of Cheese Made of Milk, Colostrum and Both during the Ripening. J. Indones Trop. Anim. Agric. 2021, 46, 75–83. [Google Scholar] [CrossRef]
- Chudy, S.; Bilska, A.; Kowalski, R.; Teichert, J. Colour of Milk and Milk Products in CIE Lab Space. Med. Weter 2020, 76, 77–81. [Google Scholar] [CrossRef]
- Shukri, M.A.; Alias, A.K.; Murad, M.; Yen, K.-S.; Cheng, L.-H. A Review of Natural Cheese and Imitation Cheese. J. Food Process Preserv. 2022, 46, 16112. [Google Scholar] [CrossRef]
- Sharma, P.; Segat, A.; Kelly, A.L.; Sheehan, J.J. Colourants in Cheese Manufacture: Production, Chemistry, Interactions, and Regulation. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1220–1242. [Google Scholar] [CrossRef]
- Khattab, A.R.; Guirguis, H.A.; Tawfik, S.M.; Farag, M.A. Cheese Ripening: A Review on Modern Technologies towards Flavor Enhancement, Process Acceleration and Improved Quality Assessment. Trends Food Sci. Technol. 2019, 88, 343–360. [Google Scholar] [CrossRef]
- Forde, A.; Fitzgerald, G.F. Biotechnological Approaches to the Understanding and Improvement of Mature Cheese Flavour. Curr. Opin. Biotechnol. 2000, 11, 484–489. [Google Scholar] [CrossRef]
- Gardini, F.; Tofalo, R.; Belletti, N.; Iucci, L.; Suzzi, G.; Torriani, S.; Guerzoni, M.E.; Lanciotti, R. Characterization of Yeasts Involved in the Ripening of Pecorino Crotonese Cheese. Food Microbiol. 2006, 23, 641–648. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. Proteolysis in Cheese during Ripening. Food Rev. Int. 1996, 12, 457–509. [Google Scholar] [CrossRef]
- Pereira, C.I.; Gomes, E.O.; Gomes, A.M.P.; Malcata, F.X. Proteolysis in Model Portuguese Cheeses: Effects of Rennet and Starter Culture. Food Chem. 2008, 108, 862–868. [Google Scholar] [CrossRef]
- Carreira, A.; Paloma, L.; Loureiro, V. Pigment Producing Yeasts Involved in the Brown Surface Discolouration of Ewes’ Cheese. Int. J. Food Microbiol. 1998, 41, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Daly, D.F.M.; McSweeney, P.L.H.; Sheehan, J.J. Pink Discolouration Defect in Commercial Cheese: A Review. Dairy Sci. Technol. 2012, 92, 439–453. [Google Scholar] [CrossRef]
- Ferraz, A.R.; Pacheco, R.; Vaz, P.D.; Pintado, C.S.; Ascens, L.; Serralheiro, M.L. Melanin: Production from Cheese Bacteria, Chemical Characterization, and Biological Activities. Int. J. Environ. Res. Public Health 2021, 18, 10562. [Google Scholar] [CrossRef] [PubMed]
- Bagheripoor, N.; Khoshgozaran-Abras, S.; Sohrabvandi, S.; Khorshidian, N.; Mortazavian, A.M.; Mollakhalili, N.; Jazaeri, S. Review Application of Active Edible Coatings to Improve the Shelf-Life of Cheese. Food Sci. Technol. Res. 2018, 24, 949–962. [Google Scholar] [CrossRef]
- Fajardo, P.; Martins, J.T.; Fuciños, C.; Pastrana, L.; Teixeira, J.A.; Vicente, A.A. Evaluation of a Chitosan-Based Edible Film as Carrier of Natamycin to Improve the Storability of Saloio Cheese. J. Food Eng. 2010, 101, 349–356. [Google Scholar] [CrossRef]
- Ollé Resa, C.P.; Jagus, R.J.; Gerschenson, L.N. Effect of Natamycin, Nisin and Glycerol on the Physicochemical Properties, Roughness and Hydrophobicity of Tapioca Starch Edible Films. Mater. Sci. Eng. C 2014, 40, 281–287. [Google Scholar] [CrossRef]
- Ferraz, A.R.; Goul, M.; Santo, C.E.; Serralheiro, M.L.; Pintado, C.M.B.S. Novel, Edible Melanin-Protein-Based Bioactive Films for Cheeses: Antimicrobial, Mechanical and Chemical Characteristics. Foods 2023, 12, 1806. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Plasticizers in Edible Films and Coatings. In Innovations in Food Packaging; Academic Press: Cambridge, MA, USA, 2005; pp. 403–433. [Google Scholar] [CrossRef]
- Martin, A.J.; Revol-Junelles, A.-M.; Petit, J.; Gaiani, C.; Salas, M.L.; Nourdin, N.; Khatbane, M.; de Almeida Costa, P.M.; Ferrigno, S.; Ebel, B.; et al. Deciphering Rind Colour Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota. Foods 2024, 13, 2233. [Google Scholar] [CrossRef]
- Ritschard, J.S.; Schuppler, M. The Microbial Diversity on the Surface of Smear-Ripened Cheeses and Its Impact on Cheese Quality and Safety. Foods 2024, 13, 214. [Google Scholar] [CrossRef]
- Zottola, E.A.; Smith, L.B. Pathogens in Cheese. Food Microbiol. 1991, 8, 171–182. [Google Scholar] [CrossRef]
- De Buyser, M.L.; Dufour, B.; Maire, M.; Lafarge, V. Implication of Milk and Milk Products in Food-Borne Diseases in France and in Different Industrialised Countries. Int. J. Food Microbiol. 2001, 67, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Focardi, S. The Microbiology of Cheese and Dairy Products Is a Critical Step in Ensuring Health, Quality and Typicity. Corpus J. Dairy Vet. Sci. 2022, 3, 1043. [Google Scholar] [CrossRef]
- Asperger, H. Fermented Milk Products and Influence of Hygienic Relevant Micro-Organisms ± Part II: Quality Defects and Spoilage Caused by Micro-Organisms. Nutrition 1986, 10, 227–232. [Google Scholar]
- Weichhold, U.; Seiler, H.; Busse, M.; Klostermeyer, H. Red Discolouration of Cheese and Its Causes. Dtsch. Milchwirtsch. 1986, 46, 1671–1765. [Google Scholar]
- Davey, J.A.; Eyles, M.J. Discolouration of cottage cheese caused by rahnella aquatilis in the presence of glucono-δ-lactone. Aust. J. Dairy Technol. 1992, 47, 62. [Google Scholar]
- Nichol, A.W.; Harden, T.J. 1 Enzymic Browning in Mould Ripened Cheeses. Aust. J. Dairy Technol. 1993, 28, 71–73. [Google Scholar]
- Lange, M.; Champagne, C.P.; Goulet, J. Contribution of Lactococcus Lactis Subsp. Lactis Biovar Diacetylactis to the Browning of Brie and Camembert-Type Cheeses. Lait 1997, 74, 187–195. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, D.J.; Daly, D.; O’Sullivan, O.; Burdikova, Z.; Vana, R.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; McSweeney, P.L.H.; et al. Thermus and the Pink Discolouration Defect in Cheese. mSystems 2016, 1, 10–128. [Google Scholar] [CrossRef]
- Gómez-Torres, N.; Garde, S.; Peirotén, Á.; Ávila, M. Impact of Clostridium Spp. on Cheese Characteristics: Microbiology, Colour, Formation of Volatile Compounds and off-Flavors. Food Control 2015, 56, 186–194. [Google Scholar] [CrossRef]
- Pelaez, C.; Northolt, M.D. Factors Leading to Pink Discolouration of the Surface of Gouda Cheese. Neth. Milk Dairy J. 1988, 42, 323–336. [Google Scholar]
- Bottazzi, V.; Cappa, F.; Scolari, G.; Parisi, M.G. Occurring of Pink Discol- Oration in Grana Cheese Made with One-Strain Starter Culture. Sci. E Tec. Latt. Casearia 2000, 51, 67–74. [Google Scholar]
- Cantoni, C.; Soncini, G.; Milesi, S.; Cocolin, L.; Iacumin, L.; Comi, G. Additional Data about Some Defects of Cheeses: Discolouration and Blowing. Ind. Aliment. 2006, 45, 276–281. [Google Scholar]
- Casalinuovo, F.; Rodolfi, M.; Rippa, P.; Scognamiglio, A.; Musarella, R. Abnormal Colourations of Mozzarella Cheese Caused by Phoma glomerata (Corda) Wollenw & Hochapfel. J. Food Res. 2015, 4, 19. [Google Scholar] [CrossRef]
- Martley, F.G.; Michel, V. Pinkish Colouration in Cheddar Cheese e Description and Factors Contributing to Its Formation. J. Dairy Res. 2001, 68, 327–332. [Google Scholar] [CrossRef]
- Shannon, E.L.; Olson, N.F.; Deibel, R.H. Oxidative Metabolism of Lactic Acid Bacteria Associated with Pink Discolouration in Italian Cheese. J. Dairy Sci. 1977, 60, 1693–1697. [Google Scholar] [CrossRef]
- Alberghini, L.; Tallone, G.; Giaccone, V. Un Caso Di Nuova Alterazione Cromatica Della Ricotta a New Discolouration of Ricotta Cheese. Ital. J. Food Saf. 2010, 8–11. [Google Scholar]
- Park, H.S.; Reinbold, G.W.; Hammond, E.G. Role of Propionibacteria in Split Defect of Swiss Cheese. J. Dairy Sci. 1967, 50, 820–823. [Google Scholar] [CrossRef]
- Del Olmo, A.; Calzada, J.; Nuñez, M. The blue discoloration of fresh cheeses: A worldwide defect associated to specific contamination by Pseudomonas fluorescens. Food Control 2018, 86, 359–366. [Google Scholar] [CrossRef]
- Rodríguez, J.; Lobato, C.; Vázquez, L.; Mayo, B.; Flórez, A.B. Prodigiosin-Producing Serratia Marcescens as the Causal Agent of a Red Colour Defect in a Blue Cheese. Foods 2023, 12, 2388. [Google Scholar] [CrossRef]
- Remenant, B.; Jaffrès, E.; Dousset, X.; Pilet, M.-F.; Zagorec, M. Bacterial Spoilers of Food: Behavior, Fitness and Functional Properties. Food Microbiol. 2015, 45, 45–53. [Google Scholar] [CrossRef]
- Carlo, C.; Stella, S.; Ripamonti, B.; Marchese, R. Anomalous Colouration of Mozzarella Cheese|Request PDF. Ind. Aliment. 2001, 40, 33–35. [Google Scholar]
- Cenci-Goga, B.T.; Karama, M.; Sechi, P.; Iulietto, M.F.; Novelli, S.; Mattei, S. Evolution under Different Storage Conditions of Anomalous Blue Colouration of Mozzarella Cheese Intentionally Contaminated with a Pigment-Producing Strain of Pseudomonas Fluorescens. J. Dairy Sci. 2014, 97, 6708–6718. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.H.; Murphy, S.C.; Ralyea, R.D.; Wiedmann, M.; Boor, K.J. When Cheese Gets the Blues: Pseudomonas Fluorescens as the Causative Agent of Cheese Spoilage. J. Dairy Sci. 2011, 94, 3176–3183. [Google Scholar] [CrossRef]
- Carrascosa, C.; Mill, R. Blue Pigment in Fresh Cheese Produced by Pseudomonas Fluorescens. Food Control 2015, 54, 95–102. [Google Scholar] [CrossRef]
- Jayaseelan, S.; Ramaswamy, D.; Dharmaraj, S. Pyocyanin: Production, Applications, Challenges and New Insights. World J. Microbiol. Biotechnol. 2014, 30, 1159–1168. [Google Scholar] [CrossRef]
- Andersen, C.M.; Wold, J.P.; Mortensen, G. Light-Induced Changes in Semi-Hard Cheese Determined by Fluorescence Spectroscopy and Chemometrics. Int. Dairy J. 2006, 16, 1483–1489. [Google Scholar] [CrossRef]
- Hong, C.M.; Wendorff, W.L.; Bradley, R.L. Effects of Packaging and Lighting on Pink Discolouration and Lipid Oxidation of Annatto-Coloured Cheeses. J. Dairy Sci. 1995, 78, 1896–1902. [Google Scholar] [CrossRef]
- Mortensen, G.; Bertelsen, G.; Mortensen, B.K.; Stapelfeldt, H. Light-Induced Changes in Packaged Cheeses—A Review. Int. Dairy J. 2004, 14, 85–102. [Google Scholar] [CrossRef]
- Shannon, E.L.; Olson, N.F.; von Elbe, J.H. Effect of Lactic Starter Culture on Pink Discolouration and Oxidation-Reduction Potential in Italian Cheese. J. Dairy Sci. 1969, 52, 1557–1561. [Google Scholar] [CrossRef]
- Lourenço, I.S.S. Estudo de Fatores Associados à Produção de Pigmentos de Origem Microbiana Em Queijos Laborados Com Leite Cru. Master’s Thesis, Escola Superior Agrária, Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal, 2020. [Google Scholar]
- Yeluri Jonnala, B.R.; McSweeney, P.L.; Cotter, P.D.; Sheehan, J.J. Recreating Pink Defect in Cheese with Different Strains of Thermus Bacteria. Int. J. Dairy Technol. 2021, 74, 700–708. [Google Scholar] [CrossRef]
- Ferreira, A.R. Diversidade Genética de Isolados Bacterianos de Pseudomonas e Géneros Afins Relacionados Com Defeitos de Cor Em Queijo. Master’s Thesis, Escola Superior Agrária, Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal, 2017. [Google Scholar]
- Ferraz, A.R.; Pintado, C.M.B.S.; Serralheiro, M.L. Influence of Cynara cardunculus L. Phenolic Compounds on Pseudomonas putida Isolated from the Dairy Industry: Growth and Melanin Bioproduction. Appl. Sci. 2022, 12, 3629. [Google Scholar] [CrossRef]
- Sansinenea, E.; Ortiz, A. Melanin: A Photoprotection for Bacillus Thuringiensis Based Biopesticides. Biotechnol. Lett. 2015, 37, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Claus, H.; Decker, H. Bacterial Tyrosinases. Syst. Appl. Microbiol. 2006, 29, 3–14. [Google Scholar] [CrossRef]
- Pavan, M.E.; López, N.I.; Pettinari, M.J. Melanin Biosynthesis in Bacteria, Regulation and Production Perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 1357–1370. [Google Scholar] [CrossRef]
- Arslan, S.; Eyi, A.; Özdemir, F. Spoilage Potentials and Antimicrobial Resistance of Pseudomonas spp. Isolated from Cheeses. J. Dairy Sci. 2011, 94, 5851–5856. [Google Scholar] [CrossRef]
- Dogan, B.; Boor, K.J. Genetic Diversity and Spoilage Potentials among Pseudomonas spp. Isolated from Fluid Milk Products and Dairy Processing Plants. Appl. Environ. Microbiol. 2003, 69, 130–138. [Google Scholar] [CrossRef]
- De Jonghe, V.; Coorevits, A.; Van Hoorde, K.; Messens, W.; Van Landschoot, A.; De Vos, P.; Heyndrickx, M. Influence of Storage Conditions on the Growth of Pseudomonas Species in Refrigerated Raw Milk. Appl. Environ. Microbiol. 2011, 77, 460–470. [Google Scholar] [CrossRef]
- Morales-Oyervides, L.; Fuciños, P.; David Hall, R.; Joshi, G.K.; Rana, B.; Bhattacharyya, M.; Patni, B.; Arya, M. The Realm of Microbial Pigments in the Food Colour Market. Front Sustain. Food Syst. 2021, 5, 603892. [Google Scholar] [CrossRef]
- European Parliament and Council Directive 94/36/EC of 30 June 1994 On Colours For Use In Foodstuffs. Off. J. Eur. Union 1994. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31994L0036 (accessed on 18 November 2024).
- Silva, M.M.; Reboredo, F.H.; Lidon, F.C. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products and Health Side Effects. Foods 2022, 11, 379. [Google Scholar] [CrossRef]
- Food, E.P. on F.A. and N.S. added to F. (ANS); S.O. on the re-evaluation of M.C. (E 160a (i)) and beta-C. (E 160a (ii)) as a Scientific Opinion on the Re- Evaluation of Mixed Carotenes (E 160a (i)) and Beta-Carotene (E 160a (Ii)) as a Food Additive. EFSA J. 2012, 10, 2593. [Google Scholar] [CrossRef]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for Ruminants: From Forages to Dairy Products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Shegokar, R.; Mitri, K. Carotenoid Lutein: A Promising Candidate for Pharmaceutical and Nutraceutical Applications. J. Diet. Suppl. 2012, 9, 183–210. [Google Scholar] [CrossRef] [PubMed]
- Sobral, D.; Bueno Costa, R.G.; Machado, G.M.; Jacinto de Paula, J.C.; Martins Teodoro, V.A.; Nunes, N.M.; dos Santos Pires, A.C.; Pinto, M.S. Can Lutein Replace Annatto in the Manufacture of Prato Cheese? LWT-Food Sci. Technol. 2016, 68, 349–355. [Google Scholar] [CrossRef]
- European Parliament and Council Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives. Off. J. Eur. Union 2011, L295, 1–177. [CrossRef]
- Carmona, M.; Zalacain Aramburu, A.; Alonso Díaz-Mart, G. El Colour, Sabor y Aroma Del Azafrán Especial; Altabán Ediciones: Albacete, Spain, 2006. [Google Scholar]
- Licón, C.C.; Carmona, M.; Molina, A.; Berruga, M.I. Chemical, Microbiological, Textural, Colour, and Sensory Characteristics of Pressed Ewe Milk Cheeses with Saffron (Crocus sativus L.) during Ripening. J. Dairy Sci. 2012, 95, 4263–4274. [Google Scholar] [CrossRef]
- Licón, C.C.; Carmona, M.; Rubio, R.; Molina, A.; Berruga, M.I. Preliminary Study of Saffron (Crocus sativus L. Stigmas) Colour Extraction in a Dairy Matrix. Dye. Pigment. 2012, 92, 1355–1360. [Google Scholar] [CrossRef]
- Aktypis, A.; Christodoulou, E.D.; Manolopoulou, E.; Georgala, A.; Daferera, D.; Polysiou, M. Fresh Ovine Cheese Supplemented with Saffron (Crocus sativus L.): Impact on Microbiological, Physicochemical, Antioxidant, Colour and Sensory Characteristics during Storage. Small Rumin. Res. 2018, 167, 32–38. [Google Scholar] [CrossRef]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of Edible Films and Coatings in Cheese Preservation: Opportunities and Challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Lima, Á.M.; Souza, B.W.S.; Teixeira, J.A.; Moreira, R.A.; Vicente, A.A. Functional Polysaccharides as Edible Coatings for Cheese. J. Agric. Food Chem. 2009, 57, 1456–1462. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Salehabadi, A.; Mohammadi Nafchi, A.; Oladzadabbasabadi, N.; Jafari, S.M. Cheese Packaging by Edible Coatings and Biodegradable Nanocomposites; Improvement in Shelf Life, Physicochemical and Sensory Properties. Trends Food Sci. Technol. 2021, 116, 218–231. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Conte, A.; Faccia, M.; Del Nobile, M.A.; Zambrini, A.V. Combined Effect of Active Coating and Modified Atmosphere Packaging on Prolonging the Shelf Life of Low-Moisture Mozzarella Cheese. J. Dairy Sci. 2014, 97, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Rossi-Márquez, G.; Dávalos-Saucedo, C.A.; Di Pierro, P. Edible Films and Coatings Applied in the Food Industry. Coatings 2023, 13, 670. [Google Scholar] [CrossRef]
- Pintado, C.M.B.S.; Ferreira, M.A.S.S.; Sousa, I. Control of Pathogenic and Spoilage Microorganisms from Cheese Surface by Whey Protein Films Containing Malic Acid, Nisin and Natamycin. Food Control 2010, 21, 240–246. [Google Scholar] [CrossRef]
- Ramos, Ó.L.; Fernandes, J.C.; Silva, S.I.; Pintado, M.E.; Malcata, F.X. Edible Films and Coatings from Whey Proteins: A Review on Formulation, and on Mechanical and Bioactive Properties. Crit. Rev. Food Sci. Nutr. 2012, 52, 533–552. [Google Scholar] [CrossRef]
- Khoshgozaran-Abras, S.; Azizi, M.H.; Hamidy, Z.; Bagheripoor-Fallah, N. Mechanical, Physicochemical and Colour Properties of Chitosan Based-Films as a Function of Aloe Vera Gel Incorporation. Carbohydr. Polym. 2012, 87, 2058–2062. [Google Scholar] [CrossRef]
- Guimarães, A.; Abrunhosa, L.; Pastrana, L.M.; Cerqueira, M.A. Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 594–614. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.H.; Kim, H.W.; Ham, J.S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Ordoñez, R.; Contreras, C.; González-Martínez, C.; Chiralt, A. Edible Coatings Controlling Mass Loss and Penicillium roqueforti Growth during Cheese Ripening. J. Food Eng. 2021, 290, 110174. [Google Scholar] [CrossRef]
- Singh, S.; Nimse, S.B.; Mathew, D.E.; Dhimmar, A.; Sahastrabudhe, H.; Gajjar, A.; Ghadge, V.A.; Kumar, P.; Shinde, P.B. Microbial Melanin: Recent Advances in Biosynthesis, Extraction, Characterization, and Applications. Biotechnol. Adv. 2021, 53, 107773. [Google Scholar] [CrossRef]
- Kumar, N. Neeraj Polysaccharide-Based Component and Their Relevance in Edible Film/Coating: A Review. Nutr. Food Sci. 2019, 49, 793–823. [Google Scholar] [CrossRef]
- Singh, A.; Pramanik, J.; Gururani, P.; Professor, A. Different Materials Used For Edible Coating, Their Characteristics and Properties. J. Pure App. Biosci. 2020, 8, 70–77. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef]
- Khafar, E.A.A.; Zidan, N.S.; El, H.; Aboul-Anean, D. The Effect of Nano Materials On Edible Coating and Films’ Improvement. Int. J. Pharm. Res. Allied Sci. 2018, 7, 20–41. [Google Scholar]
- Saklani, P.; Siddhnath; Das, S.K.; Singh, S.M. A Review of Edible Packaging for Foods. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2885–2895. [Google Scholar] [CrossRef]
- Jebraeili, S.; Hesari, J.; Manafi, M. Edible Coating for Different Types of Cheeses: A Review. J. Food Bioprocess Eng. 2022, 5, 115–122. [Google Scholar]
- Paidari, S.; Zamindar, N.; Tahergorabi, R.; Kargar, M.; Ezzati, S.; Shirani, N.; Musavi, S.H. Edible Coating and Films as Promising Packaging: A Mini Review. J. Food Meas. Charact. 2021, 15, 4205–4214. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the Shelf Life of Low-Fat Cut Cheese Using Nanoemulsion-Based Edible Coatings Containing Oregano Essential Oil and Mandarin Fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Ksouda, G.; Sellimi, S.; Merlier, F.; Falcimaigne-cordin, A.; Thomasset, B.; Nasri, M.; Hajji, M. Composition, Antibacterial and Antioxidant Activities of Pimpinella saxifraga Essential Oil and Application to Cheese Preservation as Coating Additive. Food Chem. 2019, 288, 47–56. [Google Scholar] [CrossRef]
- Mihalca, V.; Kerezsi, A.D.; Weber, A.; Gruber-traub, C.; Schmucker, J.; Vodnar, D.C.; Dulf, F.V.; Socaci, S.A.; Fărcaș, A.; Mureșan, C.I.; et al. Protein-Based Films and Coatings for Food Industry Applications. Polymers 2021, 13, 769. [Google Scholar] [CrossRef]
- de la Cruz Pech-Canul, A.; Ortega, D.; García-Triana, A.; González-Silva, N.; Solis-Oviedo, R.L. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings 2020, 10, 197. [Google Scholar] [CrossRef]
- Milani, J.M.; Tirgarian, B. An Overview of Edible Protein-Based Packaging: Main Sources, Advantages, Drawbacks, Recent Progressions and Food Applications. J. Packag. Technol. Res. 2020, 4, 103–115. [Google Scholar] [CrossRef]
- Schmid, M.; Müller, K. Whey Protein-Based Packaging Films and Coatings. In Whey Proteins: From Milk to Medicine; Academic Press: Cambridge, MA, USA, 2019; pp. 407–437. [Google Scholar] [CrossRef]
- Pintado, C.M.B.S.; Ferreira, M.A.S.S.; Sousa, I. Properties of Whey Protein-Based Films Containing Organic Acids and Nisin to Control Listeria monocytogenes. J. Food Prot. 2009, 72, 1891–1896. [Google Scholar] [CrossRef]
- Ramos, Ó.L.; Santos, A.C.; Leão, M.V.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Pintado, M.E.; Malcata, F.X. Antimicrobial Activity of Edible Coatings Prepared from Whey Protein Isolate and Formulated with Various Antimicrobial Agents. Int. Dairy J. 2012, 25, 132–141. [Google Scholar] [CrossRef]
- Razmjoo, F.; Sadeghi, E.; Rouhi, M.; Mohammadi, R.; Noroozi, R.; Safajoo, S. Polyvinyl Alcohol–Zedo Gum Edible Film: Physical, Mechanical and Thermal Properties. J. Appl. Polym. Sci. 2021, 138, 49875. [Google Scholar] [CrossRef]
- Halake, K.; Birajdar, M.; Kim, B.S.; Bae, H.; Lee, C.C.; Kim, Y.J.; Kim, S.; Kim, H.J.; Ahn, S.; An, S.Y.; et al. Recent Application Developments of Water-Soluble Synthetic Polymers. J. Ind. Eng. Chem. 2014, 20, 3913–3918. [Google Scholar] [CrossRef]
- Muller, J.; González-Martínez, C.; Chiralt, A. Combination of Poly(Lactic) Acid and Starch for Biodegradable Food Packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Kasapidou, E.; Mitlianga, P.; Mataragas, M.; Pappa, E.; Kondyli, E.; Bosnea, L. Production, Characteristics and Application of Whey Protein Films Activated with Rosemary and Sage Extract in Preserving Soft Cheese. LWT 2022, 155, 112996. [Google Scholar] [CrossRef]
- Silva, S.P.M.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C.G. Application of an Alginate-Based Edible Coating with Bacteriocin-Producing Lactococcus Strains in Fresh Cheese Preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- El-Sayed, H.S.; El-Sayed, S.M.; Mabrouk, A.M.M.; Nawwar, G.A.; Youssef, A.M. Development of Eco-Friendly Probiotic Edible Coatings Based on Chitosan, Alginate and Carboxymethyl Cellulose for Improving the Shelf Life of UF Soft Cheese. J. Polym. Environ. 2021, 29, 1941–1953. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Najafian, L.; Farsi, M. Effect of Carboxymethyl Cellulose and Sodium Alginate-Based Edible Coating Containing Wild Garlic (Allium ursinum L.) Extract on the Shelf-Life of Lactic Cheese. Q. Sci.-Res. J. Food Hyg. 2020, 10, 73–89. [Google Scholar]
- Mileriene, J.; Serniene, L.; Henriques, M.; Gomes, D.; Pereira, C.; Kondrotiene, K.; Kasetiene, N.; Lauciene, L.; Sekmokiene, D.; Malakauskas, M. Effect of Liquid Whey Protein Concentrate-Based Edible Coating Enriched with Cinnamon Carbon Dioxide Extract on the Quality and Shelf Life of Eastern European Curd Cheese. J. Dairy Sci. 2021, 104, 1504–1517. [Google Scholar] [CrossRef] [PubMed]
- Nottagh, S.; Hesari, J.; Peighambardoust, S.H.; Rezaei-Mokarram, R.; Jafarizadeh-Malmiri, H. Effectiveness of Edible Coating Based on Chitosan and Natamycin on Biological, Physico-Chemical and Organoleptic Attributes of Iranian Ultra-Filtrated Cheese. Biologia 2020, 75, 605–611. [Google Scholar] [CrossRef]
- Molina-Hernández, J.B.; Echeverri-Castro, A.; Martínez-Correa, H.A.; Andrade-Mahecha, M.M. Edible Coating Based on Achira Starch Containing Garlic/Oregano Oils to Extend the Shelf Life of Double Cream Cheese. Rev. Fac. Nac. Agron. Medellin 2020, 73, 9099–9108. [Google Scholar] [CrossRef]
- Arab, M.S.; Lashkari, H.; Niakousari, M.; Eskandari, M.H. Full Research Paper Development of Mozzarella Cheese Freshness Indicating Film by Embedding Purple Carrot Extract in Gelatin and Persian Gum Matrix. Iran. Food Sci. Technol. Res. J. 2023, 18, 167–180. [Google Scholar] [CrossRef]
- Torrijos, R.; Nazareth, T.M.; Calpe, J.; Quiles, J.M.; Mañes, J.; Meca, G. Antifungal Activity of Natamycin and Development of an Edible Film Based on Hydroxyethylcellulose to Avoid Penicillium spp. Growth on Low-Moisture Mozzarella Cheese. LWT 2022, 154, 112795. [Google Scholar] [CrossRef]
- Pratiwi, I.; Susilowati, A.; Pangastuti, A. Incorporation of Purslane Extract (Portulaca oleracea) to Chitosan Edible Film as a Packaging Material to Prevent Damage of Mozzarella Cheese during Storage. IOP Conf. Ser. Earth Environ. Sci. 2021, 828, 012026. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; Siiva, R.R.A.; de Oiiveira, T.V.; Soares, R.R.A.; Soares, N.F.F. Biodegradable Film Development by Nisin Z Addition into Hydroxypropylmethylcellulose Matrix for Mozzarella Cheese Preservation. Int. J. Food Stud. 2020, 9, 360–372. [Google Scholar] [CrossRef]
- Sh El-Sayed, S.A.; Mkkhail, W.Z.; Sobhy, H.M.; Zayan, A.F.; El-Din Aboul-Anean, H. Production and prolong shelf life of Karish (white egyptian cheese) using edible coating films. Plant Arch. 2020, 20, 8443–8449. [Google Scholar]
- Siriwardana, J.; Wijesekara, I. Analysis of the Effectiveness of an Antimicrobial Edible Coating Prepared from Sweet Whey Base to Improve the Physicochemical, Microbiological, and Sensory Attributes of Swiss Cheese. Adv. Agric. 2021, 2021, 5096574. [Google Scholar] [CrossRef]
- Lu, Z.; Saldaña, M.D.A.; Jin, Z.; Sun, W.; Gao, P.; Bilige, M.; Sun, W. Layer-by-Layer Electrostatic Self-Assembled Coatings Based on Flaxseed Gum and Chitosan for Mongolian Cheese Preservation. Innov. Food Sci. Emerg. Technol. 2021, 73, 102785. [Google Scholar] [CrossRef]
- Guimarães, A.; Ramos, Ó.; Cerqueira, M.; Venâncio, A.; Abrunhosa, L. Active Whey Protein Edible Films and Coatings Incorporating Lactobacillus buchneri for Penicillium nordicum Control in Cheese. Food Bioprocess Technol. 2020, 13, 1074–1086. [Google Scholar] [CrossRef]
Colour Defect | Cheese Type | Microorganism | Reference |
---|---|---|---|
Brown-violet | Brie | Pseudomonas spp. | [25] |
Brown | Emmental, Tilsit, Provolone, Grana, Romano, and Parmesan | Pseudomonas spp. | [26] |
Rusty-brown | Cottage | Rahnella aquatilis | [27] |
Brown | Gorgonzola | Candida catemulata Candida lipolytica | [28] |
Pink-brown | Brie-type, Camembert-type | Lactococcus lactis subsp. lactis biovar diacetylactis | [29] |
Brown | Ewes’ milk (raw) | Yarrowia lipolytica | [12] |
Brown | Pecorino Crotonese | Yarrowia lipolytica | [9] |
Brown | Goat’s milk (raw) | Pseudomonas putida | [14] |
Pink | Continental-type | Thermus thermophilus | [30] |
Slight greenish | Ewes’ milk (pasteurised) | Clostridium tyrobutyricum | [31] |
Pink | Gouda | Nitrate-reducing bacteria | [32] |
Pink | Grana | Lactobacillus helveticus | [33] |
Orange | Mozzarella | Pseudomonas aureofaciens Pseudomonas putida biovar II | [34] |
Orange-red | Mozzarella | Plantibacter flavus Plantibacter agrosticola | [34] |
Orange-red-brown | Mozzarella | Pantoea agglomerans Pseudomonas gessardii | [34] |
Greenish | Mozzarella | Pseudomonas fluorescens | [34] |
Fluorescent | Mozzarella | Pseudomonas fluorescens Pseudomonas putida | [34] |
Yellow-brown | Mozzarella | Phoma glomerata | [35] |
Pink | New Zealand Cheddar | Streptococcus thermophilus | [36] |
Pink | Romano | Lactobacillus helveticus L. delbrueckii subsp. bulgaricus | [37] |
Red | Ricotta | Serratia marcescens | [38] |
Pink | Swiss-type | Propionibacterium shermanii | [39] |
Blue | Fresh cheese | Pseudomonas fluorescens | [40] |
Red | Cabrales cheese | Serratia marcescens | [41] |
Defect | Cheese Type | Microorganism | Reference |
---|---|---|---|
Brown-violet | Brie | Pseudomonas spp. | [25] |
Brown | Emmental, Tilsit, Provolone, Grana, Romano, and Parmesan | Pseudomonas spp. | [26] |
Rusty-brown | Cottage | Rahnella aquatilis | [27] |
Brown | Gorgonzola | Candida catemulata Candida lipolytica | [28] |
Pink-brown | Brie-type, Camembert-type | Lactococcus lactis subsp. lactis biovar diacetylactis | [29] |
Brown | Ewes’ milk (raw) | Yarrowia lipolytica | [12] |
Orange-red-brown | Mozzarella | Pantoea agglomerans Pseudomonas gessardii | [34] |
Brown | Pecorino Crotonese | Yarrowia lipolytica | [9] |
Brown | Goat’s milk (raw | Pseudomonas putida | [14] |
Colourant | Cheese |
---|---|
E 160b Annatto, Bixin, norbixin | Red Leicester cheese |
E 120 Cochineal, Carminic acid, Carmines E 163 Anthocyanins | Red marbled cheese |
E 160b Annatto, Bixin, norbixin | Mimolette cheese |
E 160a Carotenes E 160c Paprika extract E 160b Annatto, Bixin, norbixin | Ripened orange, yellow, and broken-white cheese: unflavoured processed cheese |
E 153 Vegetable carbon | Morbier cheese |
E 140 Chlorophylls, chlorophyllins E 141 Copper complexes of chlorophylls and chlorophyllins | Sage Derby cheese |
E 161b Lutein E 140 Caramel II, sulfite caramel E 100 Curcumin | Ripened cheese |
E 150d Caramel IV—sulfite ammonia caramel E 120 Carmines E 160a Carotenoids E 160c Paprika extract E 101 Riboflavins | Ripened cheese, including rind |
Cheese Type | Edible Coating Materials | Functional Properties | Reference | |
---|---|---|---|---|
Soft Cheese | Fresh cheese | Whey protein concentrate (WPC)/Rosemary + Sage | Protect the soft cheese from spoilage or pathogenic bacteria | [104] |
Alginate/Bacteriocin-producing Lactococcus strains | Protective antimicrobial barrier by reducing bacterial contamination after processing | [105] | ||
Ultra-filtered cheese | Chitosan/Sodium alginate/CMC | Improve the shelf life, decrease the loss in moisture content | [106] | |
Acid curd cheese | Sodium alginate/CMC/wild garlic extract | Prolong the shelf life of cheese | [107] | |
Panela cheese | sodium caseinate/chitosan mesoporous silica/oregano essential oil | Good antimicrobial activities and increase the shelf life of soft cheese | [37] | |
Fresh curd cheese | Liquid whey protein concentrate/Cinnamon extract | Extend the shelf life of perishable fresh curd cheese, enhance its functional value | [108] | |
Ultra-filtrated (UF) cheese | Chitosan/Natamycin | Increased shelf life, enhances the nutritive properties with no negative effects on the quality | [109] | |
Double cream | Starch/Microcrystalline cellulose Garlic + oregano oils | Inhibited the growth of pathogenic | [110] | |
Karish cheese | Whey protein concentrate/Rosemary oils/Candelilla wax | Prolong the shelf life of cheese enhanced the antimicrobial activity | [106] | |
Semi-soft cheese | Mozzarella | Gelatin/Persian gum/Purple car rot extract PCE | Improve the shelf life of mozzarella cheese | [111] |
Natamycin/hydroxyethyl cellulose | Avoid Penicillium Spp. Growth on Low-Moisture cheese | [112] | ||
Purslane extract/Chitosan | Inhibited the oxidative damage and growth of microorganism during storage at room temperature or in the refrigerator | [113] | ||
Hydroxypropylmethyl cellulose/Nisin | Good antimicrobial activity, extend the shelf life | [114] | ||
Beira Baixa goat cheese | WPI, sorbitol, melanin, citric acid, nisin, and natamycin | Improve the antimicrobial activity, extend the shelf life, avoid colour defects | [18] | |
Emmental | Sweet whey/Glycerol Sunflower oil/Guar gum | Improve the physicochemical, sensory attributes, and improve the shelf life of Swiss cheese | [115] | |
Iranian Lighvan cheese | Alginate-collagen films/betanin/cumin essential oils | Changes and oxidation of lipids, increased the quality | [116] | |
Hard Cheese | Mongolian | Casein/Chitosan/flaxseed gum | Extend the shelf life of cheese by self-assembly on its surface | [117] |
Ras cheese | Chitosan/Guar gum Roselle calyx extract/ZnO-NPs | Prolong the shelf life and improve the antioxidant and antibacterial properties, reduced weight loss | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz, A.R.; Pintado, C.S.; Serralheiro, M.L. A Global Review of Cheese Colour: Microbial Discolouration and Innovation Opportunities. Dairy 2024, 5, 768-785. https://doi.org/10.3390/dairy5040056
Ferraz AR, Pintado CS, Serralheiro ML. A Global Review of Cheese Colour: Microbial Discolouration and Innovation Opportunities. Dairy. 2024; 5(4):768-785. https://doi.org/10.3390/dairy5040056
Chicago/Turabian StyleFerraz, Ana Rita, Cristina Santos Pintado, and Maria Luísa Serralheiro. 2024. "A Global Review of Cheese Colour: Microbial Discolouration and Innovation Opportunities" Dairy 5, no. 4: 768-785. https://doi.org/10.3390/dairy5040056
APA StyleFerraz, A. R., Pintado, C. S., & Serralheiro, M. L. (2024). A Global Review of Cheese Colour: Microbial Discolouration and Innovation Opportunities. Dairy, 5(4), 768-785. https://doi.org/10.3390/dairy5040056