Characterization of Fatty Acids and Nutritional Health Indicators of Ghee (Butteroil) Manufactured from Bovine Colostrum and Sweet Cream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Manufacturing of Ghee (BO)
2.3. Analysis of Samples
2.3.1. Analysis of Cream Samples
2.3.2. Analysis of Butteroil/Ghee Samples
2.4. Instrumental Analysis
2.4.1. Color Values of Ghee
2.4.2. Refractive Index
2.5. Fatty Acid Composition and Nutritional Indices
2.5.1. Fatty Acid Composition/Fat (Total, Saturated, and Unsaturated) by Gas Chromatographic Method
2.5.2. Nutritional Indices (The Ratios of Fatty Acids and Health Lipid Indexes)
2.6. Statistical Analysis
3. Results and Discussions
3.1. Physicochemical Parameters and Color Values of Cream
3.2. Physicochemical Parameters and Color Values of Butteroil
3.3. Fatty Acids Profile of Cream Samples
3.4. Fatty Acids Profile of Butteroil Samples
3.5. Nutritional Indices of Cream and Butteroil Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Playford, R.J.; Weiser, M.J. Bovine colostrum: Its constituents and uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Conneely, M.; Berry, D.; Murphy, J.P.; Lorenz, I.; Doherty, M.L.; Kennedy, E. Effect of feeding colostrum at different volumes and subsequent number of transition milk feeds on the serum immunoglobulin G concentration and health status of dairy calves. J. Dairy Sci. 2014, 97, 6991–7000. [Google Scholar] [CrossRef] [PubMed]
- Elfstrand, L.; Lindmark-Månsson, H.; Paulsson, M.; Nyberg, L.; Åkesson, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Srinivasan, M. Ghee Making in the Tropical Countries and Possibilities of Its Industrial Production; Indian Dairyman: New Delhi, India, 1976. [Google Scholar]
- Mehta, B.M. Butter, butter oil, and ghee. In Gourmet and Health-Promoting Specialty Oils; AOCS Press: Urbana, IL, USA, 2009; pp. 527–559. [Google Scholar]
- Illingworth, D.; Patil, G.; Tamime, A. Anhydrous milk fat manufacture and fractionation. In Dairy Fats and Related Products; Wiley-Blackwell, Blackwell Publishing Ltd.: Ames, IA, USA, 2009; pp. 108–166. [Google Scholar]
- O’Callaghan, T.F.; O’Donovan, M.; Murphy, J.P.; Sugrue, K.; Mannion, D.; McCarthy, W.P.; Timlin, M.; Kilcawley, K.N.; Hickey, R.M.; Tobin, J.T. Evolution of the bovine milk fatty acid profile–From colostrum to milk five days post parturition. Int. Dairy J. 2020, 104, 104655. [Google Scholar] [CrossRef]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Ritvanen, T.; Putkonen, T.; Peltonen, K. A comparative study of the fatty acid composition of dairy products and margarines with reduced or substituted fat content. Food Nutr. Sci. 2012, 3, 1189–1196. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Okwuosa, I.S.; Lewsey, S.C.; Adesiyun, T.; Blumenthal, R.S.; Yancy, C.W. Worldwide disparities in cardiovascular disease: Challenges and solutions. Int. J. Cardiol. 2016, 202, 433–440. [Google Scholar] [CrossRef]
- Mangiapane, E.H.; Salter, A.M. Diet, Lipoproteins and Coronary Heart Disease: A Biochemical Perspective; CABI: Wallingford, UK, 1999. [Google Scholar]
- Salter, A. Dietary fatty acids and cardiovascular disease. Animal 2013, 7, 163–171. [Google Scholar] [CrossRef]
- Boccafoschi, F.; Habermehl, J.; Vesentini, S.; Mantovani, D. Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials 2005, 26, 7410–7417. [Google Scholar] [CrossRef]
- Moussavi Javardi, M.S.; Madani, Z.; Movahedi, A.; Karandish, M.; Abbasi, B. The correlation between dietary fat quality indices and lipid profile with Atherogenic index of plasma in obese and non-obese volunteers: A cross-sectional descriptive-analytic case-control study. Lipids Health Dis. 2020, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.; Southgate, D. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- De, S. Outlines of Dairy Technology; CABI: Wallingford, UK, 1981. [Google Scholar]
- Latimer, G.W., Jr. (Ed.) AOAC Official Method 989.05Fat in Milk: Modified MojonnierEther Extraction Method. In Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Latimer, G.W., Jr. (Ed.) AOAC Official Method 991.20Nitrogen (Total) in Milk: Kjeldahl Methods. In Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Latimer, G.W., Jr. (Ed.) AOAC Official Method 925.23 Solids (Total) in Milk. In Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Latimer, G.W., Jr. (Ed.) AOAC Official Method 945.46Ash of Milk: Gravimetric Method. In Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- FSSAI. Manual of Methods of Analysis of Dairy and Dairy Products, 2nd ed.; FSSAI: New Delhi, India, 2022; Volume 42. [Google Scholar]
- Latimer, G.W., Jr. (Ed.) AOAC Official Method 963.22Methyl Esters of Fatty Acids in Oils and Fats: Gas Chromatographic Method. In Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Pilarczyk, R.; Wójcik, J.; Sablik, P.; Czerniak, P. Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S. Afr. J. Anim. Sci. 2015, 45, 30–38. [Google Scholar] [CrossRef]
- Singh, T.P.; Deshwal, G.K.; Bam, J.; Paul, V. A Comparative Appraisal of Traditional “Ghee” Derived From the Three Genotypes (Arunachali Yak, Yak–Cow Hybrid, and Cow) Reared Under Semi-Intensive Conditions. Eur. J. Lipid Sci. Technol. 2022, 124, 2100101. [Google Scholar] [CrossRef]
- Gross, J.J.; Kessler, E.C.; Bruckmaier, R.M. Colour measurement of colostrum for estimation of colostral IgG and colostrum composition in dairy cows. J. Dairy Res. 2014, 81, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.G.d.S.O.; Anaya, K.; Bezerra, M.d.F.; Macedo, C.S.; Urbano, S.A.; Borba, L.H.F.; Barbosa, I.d.M.; Ramalho, H.M.M.; Cipolat-Gotet, C.; Galdino, A.B.d.S. Physicochemical and sensory evaluation of greek style yoghurt with bovine colostrum. Food Sci. Technol. 2021, 42, e22121. [Google Scholar] [CrossRef]
- Kumar, A.; Goyal, S.; Munesh, K.V.; Kumar, L. Study on physico-chemical analysis of ghee. South Asian J. Food Technol. Environ. 2016, 2, 448–451. [Google Scholar] [CrossRef]
- Barbosa, I.d.M.; Anaya, K.; Macêdo, C.S.; Coelho, R.R.P.; Cipolat-Gotet, C.; Silva, E.G.d.S.O.; Araújo, N.G.; Chagas, B.M.E.d.; Oliveira, J.P.F.d.; Boari, C.A. Characterization of Physicochemical and Sensory Properties of Cheeses Added with Bovine Colostrum. Foods 2023, 12, 4474. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Chauhan, A.; Singh, S.; Kumari, S.; Dubey, R.P. Nutritive value of ghee residue incorporated bakery product. Indian J. Dairy Sci. 2020, 73, 51–56. [Google Scholar] [CrossRef]
- Wani, A.D.; Prasad, W.; Khamrui, K.; Jamb, S. A review on quality attributes and utilization of ghee residue, an under-utilized dairy by-product. Future Foods 2022, 5, 100131. [Google Scholar] [CrossRef]
- Remig, V.; Franklin, B.; Margolis, S.; Kostas, G.; Nece, T.; Street, J.C. Trans fats in America: A review of their use, consumption, health implications, and regulation. J. Am. Diet. Assoc. 2010, 110, 585–592. [Google Scholar] [CrossRef] [PubMed]
- National Cholesterol Education Program (NCEP). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.; Colditz, G.A.; Rosner, B.A.; Hennekens, C.H.; Willett, W.C. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 1997, 337, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Katan, M.B.; Zock, P.L.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and coronary heart disease. N. Engl. J. Med. 1999, 340, 1994–1998. [Google Scholar] [CrossRef] [PubMed]
- Stender, S.; Astrup, A.; Dyerberg, J. Ruminant and industrially produced trans fatty acids: Health aspects. Food Nutr. Res. 2008, 52, 1651. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B.; Zock, P.L.; Mensink, R.P. Dietary oils, serum lipoproteins, and coronary heart disease. Am. J. Clin. Nutr. 1995, 61, 1368S–1373S. [Google Scholar] [CrossRef] [PubMed]
- Temme, E.; Mensink, R.P.; Hornstra, G. Comparison of the effects of diets enriched in lauric, palmitic, or oleic acids on serum lipids and lipoproteins in healthy women and men. Am. J. Clin. Nutr. 1996, 63, 897–903. [Google Scholar] [CrossRef]
- Parodi, P.W. Has the association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? Int. Dairy J. 2009, 19, 345–361. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Givens, D.I.; Shingfield, K. Optimising dairy milk fatty acid composition. In Improving the Fat Content of Foods; Elsevier: Amsterdam, The Netherlands, 2006; pp. 252–280. [Google Scholar]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. The influence of the position of palmitate in infant formula triacylglycerols on health outcomes. Nutr. Res. 2017, 44, 1–8. [Google Scholar] [CrossRef]
- Bar-Yoseph, F.; Lifshitz, Y.; Cohen, T. Review of sn-2 palmitate oil implications for infant health. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Lecerf, J.-M. Fatty acids and cardiovascular disease. Nutr. Rev. 2009, 67, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Hammad, S.; Pu, S.; Jones, P.J. Current evidence supporting the link between dietary fatty acids and cardiovascular disease. Lipids 2016, 51, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Hornstra, G. Lipids in functional foods in relation to cardiovascular disease. Lipid Fett 1999, 101, 456–466. [Google Scholar] [CrossRef]
- Popova, T.; Lorenzo, J.M.; Franco, D.; López-Pedrouso, M. Lipids in human health: Importance of n-3 long-chain and CLA. In Food Lipids; Elsevier: Amsterdam, The Netherlands, 2022; pp. 287–321. [Google Scholar]
- Picard, F.; Steg, P.G. Cardiovascular disease risk reduction in mild-moderate hypertriglyceridemia: Integrating prescription of Omega-3 with standard treatment. Curr. Atheroscler. Rep. 2021, 23, 27. [Google Scholar] [CrossRef]
- Reaven, P.D.; Grasse, B.J.; Tribble, D.L. Effects of linoleate-enriched and oleate-enriched diets in combination with alpha-tocopherol on the susceptibility of LDL and LDL subfractions to oxidative modification in humans. Arterioscler. Thromb. J. Vasc. Biol. 1994, 14, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Regnstrom, J.; Nilsson, J.; Tornvall, P.; Hamsten, A.; Landou, C. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet 1992, 339, 1183–1186. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Chapkin, R.S. Importance of dietary γ-linolenic acid in human health and nutrition. J. Nutr. 1998, 128, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, A.T.; Anthony, J.C.; Diersen-Schade, D.A.; Rumsey, S.C.; Lawrence, P.; Li, C.; Nathanielsz, P.W.; Brenna, J.T. The influence of moderate and high dietary long chain polyunsaturated fatty acids (LCPUFA) on baboon neonate tissue fatty acids. Pediatr. Res. 2007, 61, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Brenna, J.T.; Chao, A.C.; Tschanz, C.; Diersen-Schade, D.A.; Hung, H.-C. Differential Tissue Dose Responses of (n-3) and (n-6) PUFA in Neonatal Piglets Fed Docosahexaenoate and Arachidonoate. J. Nutr. 2007, 137, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Legrand, P.; Rioux, V. Specific roles of saturated fatty acids: Beyond epidemiological data. Eur. J. Lipid Sci. Technol. 2015, 117, 1489–1499. [Google Scholar] [CrossRef]
- Kuiper, H.C.; Wei, N.; McGunigale, S.L.; Vesper, H.W. Quantitation of trans-fatty acids in human blood via isotope dilution-gas chromatography-negative chemical ionization-mass spectrometry. J. Chromatogr. B 2018, 1076, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, R.; Pierce, G.N. Trans fat involvement in cardiovascular disease. Mol. Nutr. Food Res. 2012, 56, 1090–1096. [Google Scholar] [CrossRef]
- Tang, J. Palmitoleic acid in health and disease. In Advances in Dietary Lipids and Human Health; Elsevier: Amsterdam, The Netherlands, 2022; pp. 293–302. [Google Scholar]
- Pan, A.; Chen, M.; Chowdhury, R.; Wu, J.H.; Sun, Q.; Campos, H.; Mozaffarian, D.; Hu, F.B. α-Linolenic acid and risk of cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1262–1273. [Google Scholar] [CrossRef]
- Wendland, E.; Farmer, A.; Glasziou, P.; Neil, A. Effect of α linolenic acid on cardiovascular risk markers: A systematic review. Heart 2006, 92, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Poławska, E.; Marchewka, J.; Cooper, R.G.; Sartowska, K.; Pomianowski, J.; Jóźwik, A.; Strzałkowska, N.; Horbańczuk, J.O. The ostrich meat-an updated review. II. Nutritive value. Anim. Sci. Pap. Rep. 2011, 29, 89–97. [Google Scholar]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L.M. A blend of land animal fats can replace up to 75% fish oil without affecting growth and nutrient utilization of European seabass. Aquaculture 2018, 487, 22–31. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Paszczyk, B.; Łuczyńska, J. The comparison of fatty acid composition and lipid quality indices in hard cow, sheep, and goat cheeses. Foods 2020, 9, 1667. [Google Scholar] [CrossRef] [PubMed]
Parameters | SC | CC-1 | CC-2 |
---|---|---|---|
Fat (%) | 65.86 ± 2.22 | 66.54 ± 3.14 | 67.51 ± 2.59 |
TS (%) | 66.13 ± 6.97 | 72.34 ± 0.52 | 74.19 ± 5.13 |
Protein (%) | 1.24 ± 0.11 | 1.34 ± 0.35 | 1.30 ± 0.03 |
Ash (%) | 0.33 ± 0.03 | 0.31 ± 0.04 | 0.29 ± 0.01 |
Color Values | |||
L* | 55.29 ± 0.81 | 51.87 ± 0.41 | 52.63 ± 2.84 |
a* | −1.69 ± 0.08 b | 0.71 ± 0.45 a | 0.87 ± 0.18 a |
b* | 8.88 ± 0.92 b | 24.56 ± 2.14 a | 23.78 ± 2.19 a |
Parameters | BO | CBO-1 | CBO-2 |
---|---|---|---|
Moisture (%) | 0.13 ± 0.05 b | 0.21 ± 0.01 a | 0.19 ± 0.02 a |
Fat (%) | 99.89 ± 0.05 a | 99.80 ± 0.02 b | 99.78 ± 0.01 b |
Acid Value (%) | 1.04 ± 0.50 | 1.34 ± 0.20 | 1.20 ± 0.23 |
Free fatty Acids (% oleic acid) | 0.52 ± 0.25 | 0.67 ± 0.10 | 0.60 ± 0.11 |
Refractive Index | 1.416 ± 0.00 | 1.416 ± 0.00 | 1.415 ± 0.00 |
Color Values | |||
L* | 53.28 ± 1.00 | 50.58 ± 2.04 | 52.70 ± 1.00 |
a* | −1.44 ± 0.66 a | −2.70 ± 1.21 ab | −3.92 ± 0.85 b |
b* | 8.61 ± 2.33 b | 30.78 ± 2.73 a | 34.87 ± 1.13 a |
∆E | 2.56 ± 1.06 b | 7.71 ± 3.81 ab | 12.28 ± 0.95 a |
Parameters | SC | CC-1 | CC-2 |
---|---|---|---|
Saturated fatty acids (SFA) | |||
C4:0 Butyric | 2.749 ± 0.049 b | 2.768 ± 0.069 b | 2.985 ± 0.052 a |
C6:0 Caproic | 1.654 ± 0.025 a | 1.383 ± 0.035 b | 1.427 ± 0.022 b |
C8:0 Caprylic | 0.953 ± 0.009 a | 0.729 ± 0.019 b | 0.736 ± 0.012 b |
C10:0 Capric | 2.254 ± 0.010 a | 1.635 ± 0.032 b | 1.567 ± 0.032 b |
C12:0 Lauric | 2.651 ± 0.041 a | 2.087 ± 0.054 b | 2.013 ± 0.050 b |
C13:0 Tridecanoic | 0.102 ± 0.007 a | 0.042 ± 0.00 b | 0.045 ± 0.006 b |
C14:0 Myristic | 7.973 ± 0.078 a | 7.761 ± 0.289 ab | 7.370 ± 0.209 b |
C15:0 Pentadecanoic | 0.854 ± 0.025 a | 0.501 ± 0.021 b | 0.533 ± 0.015 b |
C16:0 Palmitic | 23.44 ± 0.544 ab | 25.52 ± 1.247 a | 23.01 ± 0.583 b |
C17:0 Margaric | 0.501 ± 0.008 | 0.513 ± 0.027 | 0.537 ± 0.016 |
C18:0 Stearic | 7.412 ± 0.261 a | 6.508 ± 0.371 b | 6.946 ± 0.172 ab |
C20:0 Arachidic | 0.094 ± 0.006 | 0.097 ± 0.006 | 0.097 ± 0.005 |
C21:0 Heneicosanoic | 0.143 ± 0.007 a | 0.114 ± 0.010 b | 0.128 ± 0.005 ab |
C24:0 Lignoceric | 0.011 ± 0.009 | 0.021 ± 0.001 | 0.021 ± 0.001 |
Monounsaturated fatty acids (MUFA) | |||
C14:1 trans-Tetradecanoic | 0.281 ± 0.005 a | 0.179 ± 0.010 c | 0.207 ± 0.005 b |
C14:1 Myristoleic | 0.619 ± 0.021 a | 0.559 ± 0.018 b | 0.454 ± 0.010 c |
C16:1 trans-Hexadecenoic | 0.325 ± 0.048 a | 0.178 ± 0.010 b | 0.181 ± 0.006 b |
C16:1 Palmitoleic | 1.109 ± 0.013 c | 1.984 ± 0.082 a | 1.739 ± 0.042 b |
C17:1 Margaroleic | 0.184 ± 0.023 b | 0.290 ± 0.012 a | 0.304 ± 0.001 a |
C18:1 trans-Elaidic | 1.340 ± 0.028 a | 1.038 ± 0.064 c | 1.180 ± 0.038 b |
C18:1 Oleic | 14.99 ± 0.380 b | 17.19 ± 0.932 a | 17.03 ± 0.401 a |
C20:1 Gadoleic | 0.018 ± 0.003 b | 0.045 ± 0.005 a | 0.052 ± 0.001 a |
Polyunsaturated fatty acids (PUFA) | |||
C18:2 trans-Octadecadienoic | 0.506 ± 0.009 a | 0.324 ± 0.017 b | 0.352 ± 0.012 b |
C18:2 Linoleic | 1.932 ± 0.042 a | 1.634 ± 0.088 b | 1.637 ± 0.030 b |
C18:3 γ-Linolenic | 0.039 ± 0.007 ab | 0.042 ± 0.001 a | 0.031 ± 0.002 b |
C18:3 Linolenic | 0.298 ± 0.006 a | 0.181 ± 0.005 c | 0.223 ± 0.005 b |
C20:3 γ-Eicosatrienoic | 0.113 ± 0.007 b | 0.170 ± 0.015 a | 0.163 ± 0.006 a |
C20:4 Arachiodonic | 0.151 ± 0.009 b | 0.319 ± 0.021 a | 0.323 ± 0.010 a |
C22:2 Docasadienoic | 0.000 ± 0.000 b | 0.013 ± 0.006 a | 0.021 ± 0.001 a |
Parameters | BO | CBO-1 | CBO-2 |
---|---|---|---|
Saturated fatty acids (SFA) | |||
C4:0 Butyric | 3.721 ± 0.145 b | 3.855 ± 0.030 b | 4.171 ± 0.046 a |
C6:0 Caproic | 2.262 ± 0.076 a | 1.922 ± 0.006 b | 2.022 ± 0.023 b |
C8:0 Caprylic | 1.276 ± 0.043 a | 0.975 ± 0.006 b | 1.037 ± 0.016 b |
C10:0 Capric | 2.959 ± 0.109 a | 2.136 ± 0.010 b | 2.136 ± 0.021 b |
C12:0 Lauric | 3.434 ± 0.138 a | 2.686 ± 0.006 b | 2.690 ± 0.018 b |
C13:0 Tridecanoic | 0.123 ± 0.005 a | 0.053 ± 0.001 c | 0.064 ± 0.001 b |
C14:0 Myristic | 10.21 ± 0.192 a | 9.992 ± 0.036 ab | 9.841 ± 0.040 b |
C15:0 Pentadecanoic | 1.098 ± 0.052 a | 0.627 ± 0.005 b | 0.684 ± 0.001 b |
C16:0 Palmitic | 29.76 ± 0.711 b | 32.47 ± 0.073 a | 30.38 ± 0.103 b |
C17:0 Margaric | 0.635 ± 0.006 b | 0.642 ± 0.005 b | 0.691 ± 0.00 a |
C18:0 Stearic | 9.398 ± 0.328 a | 8.123 ± 0.015 b | 9.025 ± 0.100 a |
C20:0 Arachidic | 0.117 ± 0.006 ab | 0.114 ± 0.00 b | 0.125 ± 0.000 a |
C21:0 Heneicosanoic | 0.149 ± 0.012 a | 0.097 ± 0.012 b | 0.107 ± 0.005 b |
C24:0 Lignoceric | 0.157 ± 0.002 a | 0.136 ± 0.002 b | 0.142 ± 0.005 b |
Monounsaturated fatty acids (MUFA) | |||
C14:1 trans-Tetradecanoic | 0.356 ± 0.012 a | 0.211 ± 0.002 c | 0.253 ± 0.001 b |
C14:1 Myristoleic | 0.806 ± 0.047 a | 0.729 ± 0.001 b | 0.598 ± 0.006 c |
C16:1 trans-Hexadecenoic | 0.339 ± 0.176 b | 0.531 ± 0.005 ab | 0.612 ± 0.012 a |
C16:1 Palmitoleic | 1.522 ± 0.200 c | 2.229 ± 0.005 a | 1.903 ± 0.015 b |
C17:1 Margaroleic | 0.199 ± 0.002 | 0.359 ± 0.006 | 0.268 ± 0.187 |
C18:1 trans-Elaidic | 2.560 ± 0.058 a | 1.672 ± 0.00 c | 1.964 ± 0.027 b |
C18:1 Oleic | 18.23 ± 0.429 b | 21.63 ± 0.063 a | 21.73 ± 0.342 a |
C20:1 Gadoleic | 0.031 ± 0.002 | 0.062 ± 0.002 | 0.062 ± 0.003 |
Polyunsaturated fatty acids (PUFA) | |||
C18:2 trans-Octadecadienoic | 0.638 ± 0.021 a | 0.400 ± 0.015 c | 0.460 ± 0.027 b |
C18:2 Linoleic | 2.480 ± 0.033 a | 2.066 ± 0.033 b | 2.111 ± 0.037 b |
C18:3 γ-Linolenic | 0.048 ± 0.005 | 0.055 ± 0.006 | 0.052 ± 0.002 |
C18:3 Linolenic | 0.397 ± 0.010 a | 0.223 ± 0.005 c | 0.278 ± 0.005 b |
C20:3 γ-Eicosatrienoic | 0.131 ± 0.005 b | 0.167 ± 0.00 a | 0.173 ± 0.005 a |
C20:4 Arachiodonic | 0.198 ± 0.010 b | 0.417 ± 0.00 a | 0.420 ± 0.005 a |
C22:2 Docasadienoic | 0.017 ± 0.006 b | 0.021 ± 0.00 b | 0.031 ± 0.00 a |
Parameters | SC | CC-1 | CC-2 | BO | CBO-1 | CBO-2 |
---|---|---|---|---|---|---|
UFA/SFA | 0.709 ± 0.007 c | 0.753 ± 0.002 a | 0.722 ± 0.003 b | 0.447 ± 0.011 b | 0.496 ± 0.00 a | 0.505 ± 0.003 a |
n3/n6 | 0.154 ± 0.016 a | 0.111 ± 0.003 c | 0.136 ± 0.001 b | 0.160 ± 0.006 a | 0.108 ± 0.002 b | 0.132 ± 0.00 c |
DFA | 41.48 ± 0.449 | 41.88 ± 1.954 | 39.34 ± 0.988 | 36.92 ± 0.574 c | 37.99 ± 0.102 b | 39.12 ± 0.459 a |
HFA | 34.07 ± 0.658 ab | 35.37 ± 1.583 a | 32.39 ± 0.838 b | 43.41 ± 1.039 b | 45.15 ± 0.105 a | 42.92 ± 0.161 b |
AI | 1.713 ± 0.065 a | 1.525 ± 0.019 b | 1.435 ± 0.024 b | 1.768 ± 0.064 a | 1.554 ± 0.003 b | 1.501 ± 0.014 b |
TI | 2.214 ± 0.070 a | 2.024 ± 0.010 b | 1.917 ± 0.020 b | 2.202 ± 0.05 a | 2.053 ± 0.00 b | 1.999 ± 0.01 b |
SI | 0.773 ± 0.003 a | 0.729 ± 0.001 b | 0.730 ± 0.002 b | 1.042 ± 0.022 a | 0.940 ± 0.00 b | 0.919 ± 0.006 b |
h/H | 0.516 ± 0.022 c | 0.556 ± 0.005 b | 0.606 ± 0.008 a | 0.497 ± 0.022 c | 0.548 ± 0.00 b | 0.583 ± 0.007 a |
HPI | 0.365 ± 0.013 c | 0.399 ± 0.004 b | 0.427 ± 0.006 a | 0.372 ± 0.011 c | 0.397 ± 0.00 b | 0.415 ± 0.003 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modi, Z.; Dubey, K.; Salunke, P. Characterization of Fatty Acids and Nutritional Health Indicators of Ghee (Butteroil) Manufactured from Bovine Colostrum and Sweet Cream. Dairy 2025, 6, 2. https://doi.org/10.3390/dairy6010002
Modi Z, Dubey K, Salunke P. Characterization of Fatty Acids and Nutritional Health Indicators of Ghee (Butteroil) Manufactured from Bovine Colostrum and Sweet Cream. Dairy. 2025; 6(1):2. https://doi.org/10.3390/dairy6010002
Chicago/Turabian StyleModi, Zeel, Khushi Dubey, and Prafulla Salunke. 2025. "Characterization of Fatty Acids and Nutritional Health Indicators of Ghee (Butteroil) Manufactured from Bovine Colostrum and Sweet Cream" Dairy 6, no. 1: 2. https://doi.org/10.3390/dairy6010002
APA StyleModi, Z., Dubey, K., & Salunke, P. (2025). Characterization of Fatty Acids and Nutritional Health Indicators of Ghee (Butteroil) Manufactured from Bovine Colostrum and Sweet Cream. Dairy, 6(1), 2. https://doi.org/10.3390/dairy6010002