Development Trends in Vehicle Propulsion Sources—A Short Review
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations and Acronyms
References
- Clairotte, M.; Suarez-Bertoa, R.; Zardini, A.A.; Giechaskiel, B.; Pavlovic, J.; Valverde, V.; Ciuffo, B.; Astorga, C. Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles. Environ. Sci. Eur. 2020, 32, 125. [Google Scholar] [CrossRef]
- Marino, B.D.V.; Mincheva, M.; Doucett, A. California air resources board forest carbon protocol invalidates offsets. PeerJ 2019, 7, e7606. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Thanki, A.; Padhiyar, H.; Singh, N.K.; Pandey, S.; Yadav, M.; Yu, Z.G. Greenhouse gases emission control in WWTS via potential operational strategies: A critical review. Chemosphere 2021, 273, 129694. [Google Scholar] [CrossRef] [PubMed]
- European Commission. CO2 Emission Performance Standards for Cars and Vans; European Commission: Brussels, Belgium, 2020; Volume L8/2, 6p. [Google Scholar]
- Ovaere, M.; Proost, S. Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package. Energy Policy 2022, 168, 113085. [Google Scholar] [CrossRef]
- Czaban, J.; Szpica, D. Drive test system to be used on roller dynamometer. Mechanika 2013, 19, 600–605. [Google Scholar] [CrossRef]
- Kamguia Simeu, S.; Kim, N. Standard Driving Cycles Comparison (IEA) & Impacts on the Ownership Cost. In Proceedings of the SAE Technical Papers 2018-01-0423, Detroit, MI, USA, 10–12 April 2018. [Google Scholar]
- Varella, R.A.; Duarte, G.; Baptista, P.; Sousa, L.; Mendoza Villafuerte, P. Comparison of Data Analysis Methods for European Real Driving Emissions Regulation. In SAE Technical Papers 2017-01-0997; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Villalta, D.; Guzmán-Mendoza, M. Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-mode dual-fuel combustion. Fuel 2020, 287, 119548. [Google Scholar] [CrossRef]
- Onishi, S.; Jo, S.H.; Shoda, K.; Jo, P.D.; Kato, S. Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines; SAE International: Warrendale, PA, USA, 1979; p. 790501. [Google Scholar] [CrossRef]
- Koszalka, G.; Hunicz, J. Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion. Energy 2021, 235, 121388. [Google Scholar] [CrossRef]
- Jeuland, N.; Montagne, X.; Duret, P. New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters. Oil Gas Sci. Technol. 2004, 59, 571–579. [Google Scholar] [CrossRef]
- Mikulski, M.; Bekdemir, C. Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine—A simulation study. Appl. Energy 2017, 191, 689–708. [Google Scholar] [CrossRef]
- Mikulski, M.; Wierzbicki, S. Validation of a zero-dimensional and two-phase combustion model for dual-fuel compression ignition engine simulation. Therm. Sci. 2017, 21, 387–399. [Google Scholar] [CrossRef]
- Mikulski, M.; Balakrishnan, P.R.; Doosje, E.; Bekdemir, C. Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Yang, J.; Roth, P.; Durbin, T.D.; Johnson, K.C.; Cocker, D.R.; Asa-Awuku, A.; Brezny, R.; Geller, M.; Karavalakis, G. Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles. Environ. Sci. Technol. 2018, 52, 3275–3284. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, T.; Cox, J.; Konduru, M.; De, D.; Manning, W.; Andersen, P. Evaluation of SCR catalyst technology on diesel particulate filters. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 2009; pp. 369–374. [Google Scholar]
- Senthil Kumar, J.; Ramesh Bapu, B.R.; Sivasaravanan, S.; Prabhu, M.; Muthu Kumar, S.; Abubacker, M.A. Experimental studies on emission reduction in a DI diesel engine by using a nano catalyst coated catalytic converter. Int. J. Ambient Energy 2019, 43, 1241–1247. [Google Scholar] [CrossRef]
- Resitoglu, I.A.; Altinisik, K.; Keskin, A.; Ocakoglu, K. The effects of Fe2O3 based DOC and SCR catalyst on the exhaust emissions of diesel engines. Fuel 2020, 262, 116501. [Google Scholar] [CrossRef]
- Hunicz, J.; Kordos, P. An experimental study of fuel injection strategies in CAI gasoline engine. Exp. Therm. Fluid Sci. 2011, 35, 243–252. [Google Scholar] [CrossRef]
- MacLean, H.L.; Lave, L.B. Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 2003, 29, 1–69. [Google Scholar] [CrossRef]
- Johnson, E. LPG: A secure, cleaner transport fuel? A policy recommendation for Europe. Energy Policy 2003, 31, 1573–1577. [Google Scholar] [CrossRef]
- Masi, M. Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas). Energy 2012, 41, 252–260. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Reduction in operating costs and environmental impact consisting in the modernization of the low-power cylindrical wood chipper power unit by using alternative fuel. Energies 2020, 13, 2995. [Google Scholar] [CrossRef]
- Frick, M.; Axhausen, K.W.; Carle, G.; Wokaun, A. Optimization of the distribution of compressed natural gas (CNG) refueling stations: Swiss case studies. Transp. Res. Part D Transp. Environ. 2007, 12, 10–22. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Hendriks, F.H.J.F.; Faaij, A.P.C.; Neelis, M.L. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy 2005, 33, 579–594. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Impact of Compressed Natural Gas (CNG) fuel systems in small engine wood chippers on exhaust emissions and fuel consumption. Energies 2020, 13, 6709. [Google Scholar] [CrossRef]
- Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe. Appl. Energy 2010, 87, 2005–2013. [Google Scholar] [CrossRef]
- Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, I. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Oliva, F.; Fernández-Rodríguez, D. Autoignition study of LPG blends with diesel and HVO in a constant-volume combustion chamber. Fuel 2020, 267, 117173. [Google Scholar] [CrossRef]
- Parravicini, M.; Barro, C.; Boulouchos, K. Experimental characterization of GTL, HVO, and OME based alternative fuels for diesel engines. Fuel 2021, 292, 120177. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M. Pure vegetable oil for energy and transport. Int. J. Oil Gas Coal Technol. 2009, 2, 186. [Google Scholar] [CrossRef]
- Haryono, I.; Ma’ruf, M.; Setiapraja, H. Investigation on used oil and engine components of vehicles road test using twenty percent Fatty Acid Methyl Ester (B20). Int. J. Energy Environ. 2016, 7, 383. [Google Scholar]
- Singh, A.P.; Kumar, D.; Agarwal, A.K. Introduction to Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines. In Energy, Environment, and Sustainability; Springer: Singapore, 2021. [Google Scholar]
- Fiore, M.; Magi, V.; Viggiano, A. Internal combustion engines powered by syngas: A review. Appl. Energy 2020, 276, 115415. [Google Scholar] [CrossRef]
- Susastriawan, A.A.P.; Purwanto, Y. Purnomo Biomass gasifier–internal combustion engine system: Review of literature. Int. J. Sustain. Eng. 2021, 14, 1090–1100. [Google Scholar] [CrossRef]
- Pélerin, D.; Gaukel, K.; Härtl, M.; Jacob, E.; Wachtmeister, G. Potentials to simplify the engine system using the alternative diesel fuels oxymethylene ether OME1 and OME3−6 on a heavy-duty engine. Fuel 2020, 259, 116231. [Google Scholar] [CrossRef]
- Mikulski, M.; Ambrosewicz-Walacik, M.; Hunicz, J.; Nitkiewicz, S. Combustion engine applications of waste tyre pyrolytic oil. Prog. Energy Combust. Sci. 2021, 85, 100915. [Google Scholar] [CrossRef]
- Boretti, A. Novel dual fuel diesel-ammonia combustion system in advanced TDI engines. Int. J. Hydrogen Energy 2017, 42, 7071–7076. [Google Scholar] [CrossRef]
- Jemni, M.A.; Kassem, S.H.; Driss, Z.; Abid, M.S. Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine. Energy 2018, 150, 92–108. [Google Scholar] [CrossRef]
- Popa, M.E.; Segers, A.J.; Denier van der Gon, H.A.C.; Krol, M.C.; Visschedijk, A.J.H.; Schaap, M.; Röckmann, T. Impact of a future H2 transportation on atmospheric pollution in Europe. Atmos. Environ. 2015, 113, 208–222. [Google Scholar] [CrossRef]
- Caban, J.; Vrábel, J.; Šarkan, B.; Ignaciuk, P. About eco-driving, genesis, challenges and benefits, application possibilities. Transp. Res. Procedia 2019, 40, 1281–1288. [Google Scholar] [CrossRef]
- Vidhya, H.; Allirani, S. A Literature Review on Electric Vehicles: Architecture, Electrical Machines for Power Train, Converter Topologies and Control Techniques. In 2021 International Conference on Computational Performance Evaluation, ComPE 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 565–575. [Google Scholar]
- Basavaradder, A.B.; Dayananda Pai, K.; Chethan, K.N. Review on alternative propulsion in automotives-hybrid vehicles. Int. J. Eng. Technol. 2018, 7, 1311–1319. [Google Scholar] [CrossRef]
- Punov, P.; Gechev, T. Energy management of a fuel cell hybrid ultra-energy efficient vehicle. Int. J. Hydrogen Energy 2021, 46, 20291–20302. [Google Scholar] [CrossRef]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Hybrid electric vehicles and their challenges: A review. Renew. Sustain. Energy Rev. 2014, 29, 135–150. [Google Scholar] [CrossRef]
- Blat Belmonte, B.; Esser, A.; Weyand, S.; Franke, G.; Schebek, L.; Rinderknecht, S. Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life-Cycle Greenhouse Gas Emissions until 2050. Vehicles 2020, 2, 5. [Google Scholar] [CrossRef]
- Sangeetha, E.; Ramachandran, V. Different Topologies of Electrical Machines, Storage Systems, and Power Electronic Converters and Their Control for Battery Electric Vehicles—A Technical Review. Energies 2022, 15, 8959. [Google Scholar] [CrossRef]
- Peksen, M. Hydrogen technology towards the solution of environment-friendly new energy vehicles. Energies 2021, 14, 4892. [Google Scholar] [CrossRef]
- Lu, J.; Bai, C.; Gao, Y.K.; Gao, H.Z.; Wang, J.G.; Li, C.; Sun, P.; Guo, Z.Y.; Zong, X. Progress on Underwater Fuel Cell Propulsion Technology. Tuijin Jishu/J. Propuls. Technol. 2020, 41, 2450–2464. [Google Scholar]
- Koten, H. Hydrogen effects on the diesel engine performance and emissions. Int. J. Hydrogen Energy 2018, 43, 10511–10519. [Google Scholar] [CrossRef]
- Balcı, Ö.; Karagöz, Y.; Kale, S.; Damar, S.; Attar, A.; Köten, H.; Dalkılıç, A.S.; Wongwises, S. Fuel consumption and emission comparison of conventional and hydrogen feed vehicles. Int. J. Hydrogen Energy 2021, 46, 16250–16266. [Google Scholar] [CrossRef]
- Harold, C.K.D.; Prakash, S.; Hofman, T. Powertrain Control for Hybrid-Electric Vehicles Using Supervised Machine Learning. Vehicles 2020, 2, 15. [Google Scholar] [CrossRef]
- Pardhi, S.; Chakraborty, S.; Tran, D.D.; El Baghdadi, M.; Wilkins, S.; Hegazy, O. A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions. Energies 2022, 15, 9557. [Google Scholar] [CrossRef]
- Vignesh, R.; Ashok, B.; Senthil Kumar, M.; Szpica, D.; Harikrishnan, A.; Josh, H. Adaptive neuro fuzzy inference system-based energy management controller for optimal battery charge sustaining in biofuel powered non-plugin hybrid electric vehicle. Sustain. Energy Technol. Assess. 2023, 59, 103379. [Google Scholar] [CrossRef]
- Szpica, D. New Leiderman–Khlystov Coefficients for Estimating Engine Full Load Characteristics and Performance. Chin. J. Mech. Eng. 2019, 32, 95. [Google Scholar] [CrossRef]
- Szpica, D.; Piwnik, J.; Sidorowicz, M. The motion storage characteristics as the indicator of stability of internal combustion engine-receiver cooperation. Mechanika 2014, 20, 108–112. [Google Scholar] [CrossRef]
- Murugaiah, M.; Theng, D.F.; Khan, T.; Sebaey, T.A.; Singh, B. Hybrid Electric Powered Multi-Lobed Airship for Sustainable Aviation. Aerospace 2022, 9, 769. [Google Scholar] [CrossRef]
- Krznar, M.; Piljek, P.; Kotarski, D.; Pavković, D. Modeling, control system design and preliminary experimental verification of a hybrid power unit suitable for multirotor UAVs. Energies 2021, 14, 2669. [Google Scholar] [CrossRef]
- Valencia, E.; Oña, M.A.; Rodríguez, D.; Oña, A.; Hidalgo, V. Experimental performance assessment of an electric uav with an alternative distributed propulsion configuration implemented for wetland monitoring. In AIAA Propulsion and Energy Forum and Exposition, 2019; American Institute of Aeronautics and Astronautics Inc., AIAA: Indianapolis, India, 2019. [Google Scholar]
- Koumentakos, A.G. Developments in electric and green marine ships. Appl. Syst. Innov. 2019, 2, 34. [Google Scholar] [CrossRef]
- Partridge, J.S.; Wu, W.; Bucknall, R.W.G. Investigation on the Impact of Degree of Hybridisation for a Fuel Cell Supercapacitor Hybrid Bus with a Fuel Cell Variation Strategy. Vehicles 2020, 2, 1. [Google Scholar] [CrossRef]
- Wasbari, F.; Bakar, R.A.; Gan, L.M.; Tahir, M.M.; Yusof, A.A. A review of compressed-air hybrid technology in vehicle system. Renew. Sustain. Energy Rev. 2017, 67, 935–953. [Google Scholar] [CrossRef]
- Korbut, M.; Szpica, D. A Review of Compressed Air Engine in the Vehicle Propulsion System. Acta Mech. Autom. 2021, 15, 215–226. [Google Scholar] [CrossRef]
- Shan, M. Modeling and Control Strategy for Series Hydraulic Hybrid Vehicles. Doctoral Dissertation, University of Toledo, Toledo, UH, USA, 2009. [Google Scholar]
- Zboina, J.; Kielin, J.; Bugaj, G.; Zalech, J.; Bąk, D. Rescue and Firefighting Operations During Incidents Involving Vehicles with Alternative Propulsion. Electric Vehicles. Saf. FIRE Technol. 2022, 60, 8–40. [Google Scholar] [CrossRef]
- Radziszewska-Wolińska, J.M. Alternative Fuels in Rail Transport and their Impact on Fire Hazard. In Materials Research Proceedings; Association of American Publishers: Millersville, PA, USA, 2022; Volume 24, pp. 212–220. [Google Scholar]
- Ziegler, A. Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany. Transp. Res. Part A Policy Pract. 2012, 46, 1372–1385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpica, D.; Ashok, B.; Köten, H. Development Trends in Vehicle Propulsion Sources—A Short Review. Vehicles 2023, 5, 1133-1137. https://doi.org/10.3390/vehicles5030062
Szpica D, Ashok B, Köten H. Development Trends in Vehicle Propulsion Sources—A Short Review. Vehicles. 2023; 5(3):1133-1137. https://doi.org/10.3390/vehicles5030062
Chicago/Turabian StyleSzpica, Dariusz, Bragadeshwaran Ashok, and Hasan Köten. 2023. "Development Trends in Vehicle Propulsion Sources—A Short Review" Vehicles 5, no. 3: 1133-1137. https://doi.org/10.3390/vehicles5030062
APA StyleSzpica, D., Ashok, B., & Köten, H. (2023). Development Trends in Vehicle Propulsion Sources—A Short Review. Vehicles, 5(3), 1133-1137. https://doi.org/10.3390/vehicles5030062