Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs
Abstract
:1. Introduction
- (a)
- Pioneering a method for the identification of a near-crash scenario based on TWO specific conditions: a DA and conflict.
- (b)
- Establishing a system to exam DAs at an individual level.
- (c)
- Demonstrating the innovative use of the information within BSM by dividing it into two modules: one harnessing time-related information in the DAD component and the other making effective use of spatial attributes, particularly coordinates, within the CIM component. This approach offers a fresh perspective on handling BSM data.
- (d)
- Introducing an innovative systematic approach that integrates a cloud and the CV environment for the exchange of anomaly CV lists.
2. Materials and Methods
2.1. Data Description
2.1.1. SPMD Data
2.1.2. SHRP2 Data
2.2. Methods
2.2.1. Module 1: Data Preprocessing and Selecting KPIs
2.2.2. Module 2: Learning What Is Normal
2.2.3. Module 3: Detecting Outliers
2.2.4. Module 4: Determine Abnormal Driving Event
- (1)
- The number of KPIs identified as outliers in the same second is larger or equal to Nv.
- (2)
- Within Ns, more than one KPI is identified as an outlier in a row,
- Nv—the number of KPIs identified as outliers in the same second;
- Ns—the number of successive seconds.
- Nstd—the number of times of standard deviation away from the mean to calculate the thresholds;
- Nd—the number of days prior to the crash to calculate the threshold.
2.2.5. Module 5: System Updating
3. Model Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahangari, S.; Jeihani, M.; Dehzangi, A. A machine learning distracted driving prediction model. In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver, BC, Canada, 26–28 August 2019; pp. 1–6. [Google Scholar]
- Ahangari, S.; Jeihani, M.; Rahman, M.M.; Dehzangi, A. Prediction driving distraction patterns in different road classes using a support vector machine. Int. J. Traffic Transp. Eng. 2021, 11, 102–114. [Google Scholar]
- Ayuso, M.; Guillen, M.; Nielsen, J.P. Improving automobile insurance ratemaking using telematics: Incorporating mileage and driver behaviour data. Transportation 2019, 46, 735–752. [Google Scholar] [CrossRef]
- Banerjee, S.; Khadem, N.K.; Kabir, M.; Jeihani, M. Driver behavior post-cannabis consumption—A driving simulator study in collaboration with Montgomery County, Maryland. In Proceedings of the International Conference on Transportation and Development 2023, Austin, TX, USA, 14–17 June 2023; pp. 62–78. [Google Scholar] [CrossRef]
- Boukerche, A.; Zheng, L.; Alfandi, O. Outlier detection: Methods, models, and classification. ACM Comput. Surv. 2020, 53, 1–37. [Google Scholar] [CrossRef]
- Boyle, J.M.; Lampkin, C.; Schulman, R. Motor Vehicle Occupant Safety Survey. Volume 2, Seat Belt Report; No. DOT-HS-810-975; US Department of Transportation: Washington, DC, USA, 2007.
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey; ACM Computing Surveys (CSUR): New York, NY, USA, 2009; Volume 41, pp. 1–58. [Google Scholar]
- De Vlieger, I.; De Keukeleere, D.; Kretzschmar, J.G. Environmental effects of driving behaviour and congestion related to passenger cars. Atmos. Environ. 2000, 34, 4649–4655. [Google Scholar] [CrossRef]
- Di Cairano, S.; Bernardini, D.; Bemporad, A.; Kolmanovsky, I.V. Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management. IEEE Trans. Control Syst. Technol. 2013, 22, 1018–1031. [Google Scholar] [CrossRef]
- Dingus, T.A.; Guo, F.; Lee, S.; Antin, J.F.; Perez, M.; Buchanan-King, M.; Hankey, J. Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proc. Natl. Acad. Sci. USA 2016, 113, 2636–2641. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Xu, L.; Liu, Y.; Lee, J. Cluster-based outlier detection. Ann. Oper. Res. 2009, 168, 151–168. [Google Scholar] [CrossRef]
- Ellison, A.B.; Greaves, S. Driver characteristics and speeding behaviour. In Proceedings of the 33rd Australasian Transport Research Forum (ATRF’10), Canberra, Australia, 29 September–1 October 2010. [Google Scholar]
- Ericsson, E. Variability in urban driving patterns. Transp. Res. Part D Transp. Environ. 2000, 5, 337–354. [Google Scholar] [CrossRef]
- Fancher, P. Intelligent Cruise Control Field Operational Test; Final report. Volume II: Appendices A-F, Research report for National Highway Traffic Safety Administration; US Department of Transportation: Washington, DC, USA, 1998.
- Burnham, G.; Seo, J.; Bekey, G. Identification of human driver models in car following. IEEE Trans. Autom. Control 1974, 19, 911–915. [Google Scholar] [CrossRef]
- Goldstein, M.; Dengel, A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In KI-2012: Poster and Demo Track, Proceedings of the 35th German Conference on Artificial Intelligence, Saarbrücken, Germany, 24–27 September 2012; Springer Berlin: Heidelberg, Germany, 2012; Volume 1, pp. 59–63. [Google Scholar]
- Halim, Z.; Rehan, M. On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning. Inf. Fusion 2020, 53, 66–79. [Google Scholar] [CrossRef]
- Henclewood, D.; Abramovich, M.; Yelchuru, B. Safety pilot model deployment–one day sample data environment data handbook. In Research and Technology Innovation Administration. Research and Technology Innovation Administration; US Department of Transportation: McLean, VA, USA, 2014. [Google Scholar]
- Igarashi, K.; Miyajima, C.; Itou, K.; Takeda, K.; Itakura, F.; Abut, H. Biometric identification using driving behavioral signals. In Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763), Taipei, Taiwan, 27–30 June 2004; Volume 1, pp. 65–68. [Google Scholar] [CrossRef]
- Jafari, M. Traffic Safety Measures Using Multiple Streams Real Time Data; Federal Highway Administration: Washington, DC, USA, 2017.
- Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and state of the art. arXiv 2017, arXiv:1704.05519. [Google Scholar]
- Kim, E.; Choi, E. Estimates of Critical Values of Aggressive Acceleration from a Viewpoint of Fuel Consumption and Emissions. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Kriegel, H.P.; Schubert, M.; Zimek, A. Angle-based outlier detection in high-dimensional data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 444–452. [Google Scholar]
- Lajunen, T.; Karola, J.; Summala, H. Speed and acceleration as measures of driving style in young male drivers. Perceptual and motor skills. Percept. Mot. Ski. 1997, 85, 3–16. [Google Scholar] [CrossRef]
- Langari, R.; Won, J.-S. Intelligent energy management agent for a parallel hybrid vehicle-part I: System architecture and design of the driving situation identification process. IEEE Trans. Veh. Technol. 2005, 54, 925–934. [Google Scholar] [CrossRef]
- Larose, D.T.; Larose, C.D. k-nearest neighbor algorithm. In Discovering Knowledge in Data: An Introduction to Data Mining; Wiley: Oxford, UK, 2014; pp. 149–164. ISBN 9780470908747/0470908742. [Google Scholar]
- Lees, M.N.; Cosman, J.D.; Lee, J.D.; Fricke, N.; Rizzo, M. Translating cognitive neuroscience to the driver’s operational environment: A neuroergonomic approach. Am. J. Psychol. 2010, 123, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Lee, J.D. Combining cognitive and visual distraction: Less than the sum of its parts. Accid. Anal. Prev. 2010, 42, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Liaw, B.Y.; Bethune, K.P.; Kim, C.S. Time-series field trip data analysis using adaptive recognition approach. Analysis on driving patterns and vehicle usage for electric vehicles. In Proceedings of the 19th Electric Vehicle Symposium (EVS-19), Busan, Republic of Korea, 19–23 October 2002; pp. 19–23. [Google Scholar]
- Li, L.; You, S.; Yang, C.; Yan, B.; Song, J.; Chen, Z. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses. Appl. Energy 2016, 162, 868–879. [Google Scholar] [CrossRef]
- Liu, J.; Khattak, A.J. Delivering improved alerts, warnings, and control assistance using basic safety messages transmitted between connected vehicles. Transp. Res. Part C Emerg. Technol. 2016, 68, 83–100. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Khattak, A.J. Generating real-time driving volatility information. In Proceedings of the 2014 World Congress on Intelligent Transport Systems, Detroit, MI, USA, 11 September 2014. [Google Scholar] [CrossRef]
- Martinez, C.M.; Heucke, M.; Wang, F.-Y.; Gao, B.; Cao, D. Driving style recognition for intelligent vehicle control and advanced driver assistance: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 19, 666–676. [Google Scholar] [CrossRef]
- Miyaji, M.; Danno, M.; Oguri, K. Analysis of driver behavior based on traffic incidents for driver monitor systems. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 930–935. [Google Scholar] [CrossRef]
- Tselentis, D.I.; Papadimitriou, E. Driver profile and driving pattern recognition for road safety assessment: Main challenges and future directions. IEEE Open J. Intell. Transp. Syst. 2023, 4, 83–100. [Google Scholar] [CrossRef]
- Murphey, Y.L.; Milton, R.; Kiliaris, L. Driver’s style classification using jerk analysis. In Proceedings of the 2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, Nashville, TN, USA, 30 March–2 April 2009; pp. 23–28. [Google Scholar]
- Prokop, G. Modeling human vehicle driving by model predictive online optimization. Veh. Syst. Dyn. 2001, 35, 19–53. [Google Scholar] [CrossRef]
- Reason, J. Human Error; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Venkatraman, V.; Richard, C.M.; Magee, K.; Johnson, K. Countermeasures That Work: A Highway Safety Countermeasure Guide for State Highway Safety Offices; National Highway Traffic Safety Administration: Washington, DC, USA, 2017.
- Sekizawa, S.; Inagaki, S.; Suzuki, T.; Hayakawa, S.; Tsuchida, N.; Tsuda, T.; Fujinami, H. Modeling and recognition of driving behavior based on stochastic switched ARX model. IEEE Trans. Intell. Transp. Syst. 2007, 8, 593–606. [Google Scholar] [CrossRef]
- Sun, X.; Cao, Y.; Jin, Z.; Tian, X.; Xue, M. An adaptive ECMS based on traffic information for plug-in hybrid electric buses. IEEE Trans. Ind. Electron. 2022, 70, 9248–9259. [Google Scholar] [CrossRef]
- Sun, X.; Xue, M.; Cai, Y.; Tian, X.; Jin, Z.; Chen, L. Adaptive ECMS Based on EF Optimization by Model Predictive Control for Plug-In Hybrid Electric Buses. IEEE Trans. Transp. Electrif. 2022, 9, 2153–2163. [Google Scholar] [CrossRef]
- Victor, T.; Dozza, M.; Bärgman, J.; Boda, C.N.; Engström, J.; Flannagan, C.; Lee, J.D.; Markkula, G. Analysis of Naturalistic Driving Study Data: Safer Glances, Driver Inattention, and Crash Risk; Transportation Research Board: Washington, DC, USA, 2015. [Google Scholar]
- Wang, X.; Khattak, A.J.; Liu, J.; Masghati-Amoli, G.; Son, S. What is the level of volatility in instantaneous driving decisions? Transp. Res. Part C Emerg. Technol. 2015, 58, 413–427. [Google Scholar] [CrossRef]
- William, H.J. Advances in the Epidemiology of Injures as a Baiss for Public Policy. Public Hearlth Rep. 1980, 95, 411. [Google Scholar]
- Wilson, F.N.; Johnston, F.D.; Macleod, A.; Barker, P.S. Electrocardiograms that represent the potential variations of a single electrode. Am. Heart J. 1934, 9, 447–458. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, L.; Whalin, R.; Tu, S. Conflict Identification Using Speed Distance Profile on Basic Safety Messages. In Proceedings of the International Conference on Transportation and Development, Seattle, WA, USA, 31 May–3 June 2022. [Google Scholar]
- Xu, D.; Wang, Y.; Meng, Y.; Zhang, Z. An Improved Data Anomaly Detection Method Based on Isolation Forest. In Proceedings of the 10th international symposium on computational intelligence and design (ISCID), Hangzhou, China, 9–10 December 2017; IEEE: Piscataway, NJ, USA; Volume 2, pp. 287–291. [Google Scholar] [CrossRef]
- Yang, X.; Zou, Y.; Chen, L. Operation analysis of freeway mixed traffic flow based on catch-up coordination platoon. Accid. Anal. Prev. 2022, 175, 106780. [Google Scholar] [CrossRef]
- Zamith, M.; Leal-Toledo, R.C.P.; Clua, E.; Toledo, E.M.; de Magalhães, G.V. A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction. J. Comput. Sci. 2015, 9, 51–56. [Google Scholar] [CrossRef]
- Zhao, Y.; Nasrullah, Z.; Li, Z. Pyod: A python toolbox for scalable outlier detection. arXiv 2019, arXiv:1901.01588. [Google Scholar]
Attributes’ Names | Type | Units | Description |
---|---|---|---|
DevID | Integer | None | Test vehicle ID assigned by the CV program |
EpochT | Integer | s | Epoch time, i.e., the number of seconds since 1 January 1970 Greenwich Mean Time (GMT) |
Latitude | Float | Degrees | Current latitude of the test vehicle |
Longitude | Float | Degrees | Current longitude of the test vehicle |
Elevation | Float | m | Current elevation of the test vehicle according to GPS |
Speed | Real | m/s | Test vehicle’s speed |
Heading | Real | Degrees | Test vehicle’s heading/direction |
Ax | Real | m/s2 | Longitudinal acceleration |
Ay | Real | m/s2 | Lateral acceleration |
Az | Real | m/s2 | Vertical acceleration |
Yaw rate | Real | Degree/s | Vehicle yaw rate |
R | Real | m | Radius |
Algorithm Name | Total Instances | Outliers | Threshold | |||||
---|---|---|---|---|---|---|---|---|
Longitudinal | Longitudinal Percentage | Lateral | Lateral Percentage | Longitudinal | Lateral | |||
1 | ABOD | 3,166,950 | 0 | 0 | nan | nan | 0 | 0 |
2 | CBLOF | 3,166,950 | 158,345 | 158,344 | −0.11175434977913001 | −0.10919071757369557 | 158,345 | 158,344 |
3 | HBOS | 3,166,950 | 153,140 | 135,949 | −1.9078634333717992 | 0.2580508062387792 | 153,140 | 135,949 |
4 | IF | 3,166,950 | 158,348 | 158,335 | −2.0801210125544493 × 10−17 | 0.0 | 158,348 | 158,335 |
5 | KNN | 3,166,950 | 142,490 | 142,490 | 0.0001503609022556196 | 0.000505561180569658 | 142,490 | 142,490 |
Speed Bin | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|
KPI | Measure | ||||
Acceleration—longitudinal_possitive | Mean | 1.192235 | 1.337538 | 1.32516 | 1.398614 |
Std | 0.806321 | 0.839056 | 0.804345 | 0.804976 | |
Acceleration—longitudinal_negative | Mean | −1.04187 | −1.14423 | −1.1853 | −1.20188 |
Std | 0.753567 | 0.74688 | 0.771699 | 0.786363 | |
Acceleration—lateral_possitive | Mean | 0.069047 | 0.085095 | 0.096859 | 0.120503 |
Std | 0.431809 | 0.085095 | 0.096859 | 0.120503 | |
Acceleration—laterall_negative | Mean | −0.02688 | −0.03648 | −0.05113 | −0.06153 |
Std | 0.040362 | 0.07236 | 0.132858 | 0.170901 | |
Jerk—longitudinal_possitive | Mean | 0.824624 | 0.802729 | 0.692773 | 0.62276 |
Std | 0.696375 | 0.680028 | 0.612652 | 0.605413 | |
Jerk—longitudinal_negative | Mean | −0.42201 | −0.46223 | −0.39244 | −0.40045 |
Std | 0.433433 | 0.487027 | 0.401976 | 0.395484 | |
Jerk—lateral_possitive | Mean | 0.035219 | 0.050722 | 0.043935 | 0.054583 |
Std | 0.286576 | 0.237766 | 0.083867 | 0.110184 | |
Jerk—lateral_negative | Mean | −0.05251 | −0.03598 | −0.04478 | −0.05237 |
Std | 0.582464 | 0.064078 | 0.084626 | 0.126077 |
Parameter | Test Value | Initial Value | Determined Value |
---|---|---|---|
1, 2, 3, 4, 5, 6, 7, 8 | 2 | 3 | |
3, 5, 10, 15, 20, 30 | 5 | 10 | |
2, 2.25, 2.5, 2.75, 3 | 2 | 2 | |
15, 30, 45, 60 | 30 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Tu, S.Z.; Whalin, R.W.; Zhang, L. Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs. Vehicles 2023, 5, 1275-1293. https://doi.org/10.3390/vehicles5040070
Wu D, Tu SZ, Whalin RW, Zhang L. Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs. Vehicles. 2023; 5(4):1275-1293. https://doi.org/10.3390/vehicles5040070
Chicago/Turabian StyleWu, Di, Shuang Z. Tu, Robert W. Whalin, and Li Zhang. 2023. "Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs" Vehicles 5, no. 4: 1275-1293. https://doi.org/10.3390/vehicles5040070
APA StyleWu, D., Tu, S. Z., Whalin, R. W., & Zhang, L. (2023). Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs. Vehicles, 5(4), 1275-1293. https://doi.org/10.3390/vehicles5040070