Integrating Urban Air Mobility into a Public Transit System: A GIS-Based Approach to Identify Candidate Locations for Vertiports
Abstract
:1. Introduction
2. Literature Review
2.1. Vertiport Locating
2.2. Transit System Integration
3. Methodology
3.1. Data
3.2. Optimization Model
- I: the set of N demand node locations indexed by I (bus stop locations).
- J: the set of M candidate vertiport station locations indexed by j.
- P: the number of vertiports to deploy.
- dij: the network distance between bus stops i and candidate locations of vertiports j.
4. Results and Discussions
- d = mean network distance from facilities to the demand points in meters;
- n = number of vertiports with optimal placements;
- α = mean network distance when n = 1;
- β = a parameter that maximizes the R2 value of the model.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Willey, L.C.; Salmon, J.L. A method for urban air mobility network design using hub location and subgraph isomorphism. Transp. Res. Part C Emerg. Technol. 2021, 125, 102997. [Google Scholar] [CrossRef]
- Treeck, H. Volocopter Air Taxi Flies over Singapore’s Marina Bay—Volocopter. 22 October 2019. Available online: https://www.volocopter.com/en/newsroom/volocopter-air-taxi-flies-over-singapores-marina-bay (accessed on 15 June 2023).
- Valente, F. Frost & Sullivan Presents the Evolving Urban Air Mobility Landscape up to 2040. 12 December 2022. Available online: https://www.frost.com/news/press-releases/frost-sullivan-presents-the-evolving-urban-air-mobility-landscape-up-to-2040/ (accessed on 15 June 2023).
- Yedavalli, P.; Cohen, A. Planning Land Use Constrained Networks of Urban Air Mobility Infrastructure in the San Francisco Bay Area. Transp. Res. Rec. J. Transp. Res. Board 2022, 2676, 106–116. [Google Scholar] [CrossRef]
- Garrow, L.A.; German, B.J.; Leonard, C.E. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transp. Res. Part C Emerg. Technol. 2021, 132, 103377. [Google Scholar] [CrossRef]
- Straubinger, A.; Fu, M. Identification of strategies how urban air mobility can improve existing public transport networks. In Proceedings of the Mobil, TUM, Munich, Germany, 11–12 September 2019. [Google Scholar]
- Reiche, C.; Cohen, A.P.; Fernando, C. An Initial Assessment of the Potential Weather Barriers of Urban Air Mobility. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6018–6027. [Google Scholar] [CrossRef]
- Ploetner, K.O.; Al Haddad, C.; Antoniou, C.; Frank, F.; Fu, M.; Kabel, S.; Llorca, C.; Moeckel, R.; Moreno, A.T.; Pukhova, A.; et al. Long-term application potential of urban air mobility complementing public transport: An upper Bavaria example. CEAS Aeronaut. J. 2020, 11, 991–1007. [Google Scholar] [CrossRef]
- Bauranov, A.; Rakas, J. Designing airspace for urban air mobility: A review of concepts and approaches. Prog. Aerosp. Sci. 2021, 125, 100726. [Google Scholar] [CrossRef]
- Fadhil, D.N.; Moeckel, R.; Rothfeld, R. GIS-based Infrastructure Requirement Analysis for an Electric Vertical Take-off and Landing Vehicle-based Transportation System. Transp. Res. Procedia 2019, 41, 101–103. [Google Scholar] [CrossRef]
- Rothfeld, R.; Balac, M.; Ploetner, K.O.; Antoniou, C. Initial analysis of urban air mobility’s transport performance in Sioux falls. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- Wang, K.; Li, A.; Qu, X. Urban aerial mobility: Network structure, transportation benefits, and Sino-US comparison. Innovation 2023, 4, 100393. [Google Scholar] [CrossRef]
- Bassey, R. Engineering Brief No. 105, Vertiport Design; Federal Aviation Administration (FAA): Washington, DC, USA, 2022. [Google Scholar]
- Vitalle, R.F.; Zhang, Y.; Normann, B.; Shen, N. A Model for the Integration of UAM operations in and near Terminal Areas. In Proceedings of the Aiaa Aviation 2020 Forum, Virtual, 15–19 June 2020. [Google Scholar]
- Wu, Z.; Zhang, Y. Integrated Network Design and Demand Forecast for On-Demand Urban Air Mobility. Engineering 2021, 7, 473–487. [Google Scholar] [CrossRef]
- Tuchen, S.; LaFrance-Linden, D.; Hanley, B.; Lu, J.; McGovern, S.; Litvack-Winkler, M. Urban Air Mobility (UAM) and Total Mobility Innovation Framework and Analysis Case Study: Boston Area Digital Twin and Economic Analysis. In Proceedings of the IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), Portsmouth, VA, USA, 18–22 September 2022. [Google Scholar]
- Antcliff, K.R.; Moore, M.D.; Goodrich, K.H. Silicon Valley as an early adopter for on-demand civil VTOL operations. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 12–16 July 2016. [Google Scholar]
- Skabardonis, A.; Varaiya, P.; Petty, K.F. Measuring Recurrent and Nonrecurrent Traffic Congestion. Transp. Res. Rec. J. Transp. Res. Board 2003, 1856, 118–124. [Google Scholar] [CrossRef]
- Schweiger, K.; Preis, L. Urban Air Mobility: Systematic Review of Scientific Publications and Regulations for Vertiport Design and Operations. Drones 2022, 6, 179. [Google Scholar] [CrossRef]
- Fontaine, P. Urban Air Mobility (UAM) Concept of Operation Version 2.0; Federal Aviation Administration: Washington, DC, USA, 2023. [Google Scholar]
- Johnston, T.; Riedel, R.; Sahdev, S. McKinsey & Company-Automotive and Assembly; 31 August 2020. Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/to-take-off-flying-vehicles-first-need-places-to-land (accessed on 4 July 2023).
- Kai, W.; Jacquillat, A.; Vaze, V. Vertiport Planning for Urban Aerial Mobility: An Adaptive Discretization Approach. Manuf. Serv. Oper. Manag. 2022, 24, 3215–3235. [Google Scholar] [CrossRef]
- Johnson, W.; Silva, C. NASA concept vehicles and the engineering of advanced air mobility aircraft. Aeronaut. J. 2021, 126, 59–91. [Google Scholar] [CrossRef]
- Rostami, M.; Bardin, J.; Neufeld, D.; Chung, J. EVTOL Tilt-Wing Aircraft Design under Uncertainty Using a Multidisciplinary Possibilistic Approach. Aerospace 2023, 10, 718. [Google Scholar] [CrossRef]
- Ugwueze, O.; Statheros, T.; Horri, N.; Bromfield, M.A.; Simo, J. An Efficient and Robust Sizing Method for eVTOL Aircraft Configurations in Conceptual Design. Aerospace 2023, 10, 311. [Google Scholar] [CrossRef]
- Bridgelall, R.; White, S.; Tolliver, D. Integrating Electric Vertical Takeoff and Landing Aircraft into Public Airspace: A Scenario Study. Futur. Transp. 2023, 3, 1029–1045. [Google Scholar] [CrossRef]
- Goyal, R.; Reiche, C.; Fernando, C.; Serrao, J.; Kimmel, S.; Cohen, A.; Shaheen, S. Urban Air Mobility (UAM) Market Study; NASA: Washington, DC, USA, 2018. [Google Scholar]
- Loidl, M.; Witzmann-Müller, U.; Zagel, B. A spatial framework for Planning station-based bike sharing systems. Eur. Transp. Res. Rev. 2019, 11, 9. [Google Scholar] [CrossRef]
- Askarzadeh, T.; Bridgelall, R. Micromobility Station Placement Optimization for a Rural Setting. J. Adv. Transp. 2021, 2021, 9808922. [Google Scholar] [CrossRef]
- Holden, J.; Goel, N. Fast-Forwarding to a Future of On-Demand Urban Air Transportation. 27 October 2016. Available online: https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf (accessed on 4 July 2023).
- Bulusu, V.; Onat, E.; Sengupta, R.; Yedavalli, P.; Macfarlane, J. A traffic demand analysis method for urban air mobility. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6039–6047. [Google Scholar] [CrossRef]
- Gentile, G.; Meschini, L.; Papola, N. Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks. Transp. Res. Part B Methodol. 2007, 41, 1114–1138. [Google Scholar] [CrossRef]
- Syed, N.; Rye, M.; Ade, M.; Trani, A.; Hinze, N.; Swingle, H.; Smith, J.C.; Dollyhigh, S.; Marien, T. Preliminary considerations for ODM air traffic management based on analysis of commuter passenger demand and travel patterns for the Silicon Valley region of California. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Rajendran, S.; Srinivas, S. Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities. Transp. Res. Part E Logist. Transp. Rev. 2020, 143, 102090. [Google Scholar] [CrossRef]
- SFMTA. Travel Decisions Survey 2021; San Francisco Municipal Transportation Agency: San Francisco, CA, USA, 2021. [Google Scholar]
- Berawi, M.A.; Saroji, G.; Iskandar, F.A.; Ibrahim, B.E.; Miraj, P.; Sari, M. Optimizing Land Use Allocation of Transit-Oriented Development (TOD) to Generate Maximum Ridership. Sustainability 2020, 12, 3798. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.L.; Li, H.; Xu, G.H.; Wang, Z.R.; Kong, C.W. Transit-Oriented Land Planning Model Considering Sustainability of Mass Rail Transit. J. Urban Plan. Dev. 2010, 136, 243–248. [Google Scholar] [CrossRef]
- Dock, F.C.; Swenson, C.J. Transit-Oriented Urban Design Impacts on Suburban Land Use and Transportation Planning. Transp. Res. Rec. J. Transp. Res. Board 2003, 1831, 184–192. [Google Scholar] [CrossRef]
- United States Census Bureau. American Community Survey Data. Available online: https://www.census.gov/programs-surveys/acs/data.html (accessed on 4 July 2023).
- SFGov. San Francisco Open Data. Available online: https://datasf.org/opendata/ (accessed on 4 July 2023).
- Bridgelall, R. Tutorial and Practice in Linear Programming: Optimization Problems in Supply Chain and Transport Logistics. arXiv. 2023. arXiv:2211.07345v2. Available online: https://arxiv.org/abs/2211.07345 (accessed on 4 July 2023).
- Turner, S.; Sandt, L.; Toole, J.; Benz, R.; Patten, R. Federal Highway Administration University Course on Bicycle and Pedestrian Transportation; Federal Highway Administration: Washington, DC, USA, 2006. [Google Scholar]
- FHWA. Public Roads: Detecting Pedestrians; Federal Highway Administration (FHWA): Washington, DC, USA, 2009. [Google Scholar]
District | α | β | R2 |
---|---|---|---|
District 1 | 1731.65 | −0.61 | 0.99 |
District 2 | 1946.26 | −0.59 | 0.99 |
District 3 | 1062.03 | −0.56 | 0.99 |
District 4 | 1706.30 | −0.59 | 0.99 |
District 5 | 1496.67 | −0.64 | 0.99 |
District 6 | 1410.37 | −0.62 | 1.00 |
District 7 | 2242.65 | −0.56 | 0.98 |
District 8 | 1441.25 | −0.55 | 1.00 |
District 9 | 1711.73 | −0.66 | 1.00 |
District 10 | 2317.63 | −0.64 | 0.99 |
District 11 | 1480.53 | −0.65 | 1.00 |
Overall | 1688.35 | −0.61 | 1.00 |
District | Vertiports | Minutes |
---|---|---|
District 1 | 4 | 10.58 |
District 2 | 4 | 11.88 |
District 3 | 2 | 10.45 |
District 4 | 4 | 10.62 |
District 5 | 3 | 10.16 |
District 6 | 3 | 9.51 |
District 7 | 4 | 14.81 |
District 8 | 3 | 10.56 |
District 9 | 4 | 9.21 |
District 10 | 4 | 12.74 |
District 11 | 3 | 9.73 |
District | Bus Stops | PPV | EPV | PCI | N 10 Min | N Capped | µ Minutes |
---|---|---|---|---|---|---|---|
District 1 | 265 | 18,574 | 5154 | 72,537 | 4 | 4 | 10.58 |
District 2 | 292 | 15,031 | 9644 | 271,464 | 5 | 4 | 11.88 |
District 3 | 277 | 35,727 | 79,468 | 85,808 | 2 | 2 | 10.45 |
District 4 | 219 | 14,323 | 1813 | 60,376 | 5 | 4 | 10.62 |
District 5 | 250 | 26,947 | 17,913 | 96,251 | 3 | 3 | 10.16 |
District 6 | 280 | 35,168 | 66,182 | 91,350 | 3 | 3 | 9.51 |
District 7 | 403 | 10,978 | 3787 | 82,275 | 7 | 4 | 14.81 |
District 8 | 329 | 27,663 | 5710 | 125,217 | 3 | 3 | 10.56 |
District 9 | 241 | 19,552 | 7269 | 69,193 | 4 | 4 | 9.21 |
District 10 | 475 | 14,618 | 7396 | 56,946 | 6 | 4 | 12.74 |
District 11 | 214 | 25,304 | 2143 | 39,835 | 3 | 3 | 9.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, B.; Bridgelall, R.; Habib, M.F.; Motuba, D. Integrating Urban Air Mobility into a Public Transit System: A GIS-Based Approach to Identify Candidate Locations for Vertiports. Vehicles 2023, 5, 1803-1817. https://doi.org/10.3390/vehicles5040097
Rahman B, Bridgelall R, Habib MF, Motuba D. Integrating Urban Air Mobility into a Public Transit System: A GIS-Based Approach to Identify Candidate Locations for Vertiports. Vehicles. 2023; 5(4):1803-1817. https://doi.org/10.3390/vehicles5040097
Chicago/Turabian StyleRahman, Baishali, Raj Bridgelall, Muhammad Faisal Habib, and Diomo Motuba. 2023. "Integrating Urban Air Mobility into a Public Transit System: A GIS-Based Approach to Identify Candidate Locations for Vertiports" Vehicles 5, no. 4: 1803-1817. https://doi.org/10.3390/vehicles5040097
APA StyleRahman, B., Bridgelall, R., Habib, M. F., & Motuba, D. (2023). Integrating Urban Air Mobility into a Public Transit System: A GIS-Based Approach to Identify Candidate Locations for Vertiports. Vehicles, 5(4), 1803-1817. https://doi.org/10.3390/vehicles5040097