New Design of an Electrical Excavator and Its Path Generation for Energy Saving and Obstacle Avoidance
Abstract
:1. Introduction
2. Design and Fabrication of an Electric Excavator
3. Methodologies for Path Generation and Tracking Control
3.1. Path Generation
3.1.1. PSO-Based Path Generation
3.1.2. PFM-Based Path Generation
3.2. Path Tracking Control
3.2.1. Proportional–Integral–Derivative (PID) Controller
3.2.2. Contour Controller (CC)
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PSO | Particle Swarm Optimization; |
PFM | Potential Field Method. |
References
- Malmgren, I. Quantifying the Societal Benefits of Electric Vehicles. World Electr. Veh. J. 2016, 8, 996–1007. [Google Scholar] [CrossRef]
- Perujo, A.; Ciuffo, B. The introduction of electric vehicles in the private fleet: Potential impact on the electric supply system and on the environment. A case study for the Province of Milan, Italy. Energy Policy 2010, 38, 4549–4561. [Google Scholar] [CrossRef]
- Bedotti, A.; Campanini, F.; Pastori, M.; Riccò, L.; Casoli, P. Energy saving solutions for a hydraulic excavator. Energy Procedia 2017, 126, 1099–1106. [Google Scholar] [CrossRef]
- Yang, J.; Quan, L.; Yang, Y. Excavator energy-saving efficiency based on diesel engine cylinder deactivation technology. Chin. J. Mech. Eng. 2012, 25, 897–904. [Google Scholar] [CrossRef]
- Ge, L.; Quan, L.; Zhang, X.; Dong, Z.; Yang, J. Power Matching and Energy Efficiency Improvement of Hydraulic Excavator Driven with Speed and Displacement Variable Power Source. Chin. J. Mech. Eng. 2019, 32, 100. [Google Scholar] [CrossRef]
- Quan, Z.; Quan, L.; Zhang, J. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology. Renew. Sustain. Energy Rev. 2014, 35, 336–346. [Google Scholar] [CrossRef]
- Malafeev, S.I.; Novgorodov, A.A. Design and implementation of electric drives and control systems for mining excavators. Russ. Electr. Eng. 2016, 87, 560–565. [Google Scholar] [CrossRef]
- Kuznetsov, N.K.; Iov, I.A.; Iov, A.A. Reducing of dynamic loads of excavator actuators. J. Phys. Conf. Ser. 2019, 1210, 012075. [Google Scholar] [CrossRef]
- Volvo CE Unveils 100% Electric Compact Excavator Prototype. Available online: https://www.volvoce.com/global/en/news-and-events/news-and-stories/2017/volvo-ce-unveils-100-percent-electric-compact-excavator-prototype/ (accessed on 10 July 2022).
- Lucidarme, P.; Delanoue, N.; Mercier, F.; Aoustin, Y.; Chevallereau, C.; Wenger, P. Preliminary Survey of Backdrivable Linear Actuators for Humanoid Robots. CISM Int. Cent. Mech. Sci. Courses Lect. 2019, 584, 304–313. [Google Scholar] [CrossRef]
- Dietrich, A. Electric rod actuators vs. hydraulic cylinders A comparison of the pros and cons of each technology. Mach. Des. 2016, 1–13. [Google Scholar]
- Bae, J.; Lee, C.S.; Hong, D. Avoidance of earth obstacles for intelligent excavator. In Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, Seoul, Republic of Korea, 29 June–1 July 2011; pp. 1184–1189. [Google Scholar] [CrossRef]
- Katsuma, S.; Yajima, R.; Hamasaki, S.; Chun, P.J.; Nagatani, K.; Yamauchi, G.; Hashimoto, T.; Yamashita, A.; Asama, H. Excavation Path Generation for Autonomous Excavator Considering Bulking Factor of Soil. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction, ISARC 2020: From Demonstration to Practical Use—To New Stage of Construction Robot, Kitakyushu, Japan, 26–30 October 2020; pp. 578–583. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, J.; Long, P.; Song, X.; Zhang, L. Time Variable Minimum Torque Trajectory Optimization for Autonomous Excavator. arXiv 2020, arXiv:2006.00811. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, Y.; Liu, C.; Tian, M.; Xia, X. Spline-Based Optimal Trajectory Generation for Autonomous Excavator. Machines 2022, 10, 538. [Google Scholar] [CrossRef]
- Sandzimier, R.J.; Asada, H.H. A Data-Driven Approach to Prediction and Optimal Bucket-Filling Control for Autonomous Excavators. IEEE Robot. Autom. Lett. 2020, 5, 2682–2689. [Google Scholar] [CrossRef]
- Wind, H.; Renner, A.; Bender, F.A.; Sawodny, O. Trajectory generation for a hydraulic mini excavator using nonlinear model predictive control. In Proceedings of the IEEE International Conference on Industrial Technology, Buenos Aires, Argentina, 26–28 February 2020; pp. 107–112. [Google Scholar] [CrossRef]
- Srivastava, P.R.; Baby, K.; Raghurama, G. An approach of optimal path generation using ant colony optimization. In Proceedings of the IEEE Region 10 Annual International Conference, Proceedings/TENCON, Singapore, 23–26 January 2009. [Google Scholar] [CrossRef]
- Deepak, B.B.; Parhi, D.R. PSO based path planner of an autonomous mobile robot. Open Comput. Sci. 2012, 2, 152–168. [Google Scholar] [CrossRef]
- Wang, Y.; Chirikjian, G.S. A New potential field method for robot path planning. In Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 977–982. [Google Scholar] [CrossRef]
- Luo, L.; Wen, H.; Lu, Q.; Huang, H.; Chen, W.; Zou, X.; Wang, C. Collision-free path-planning for six-DOF serial harvesting robot based on energy optimal and artificial potential field. Complexity 2018, 2018, 3563846. [Google Scholar] [CrossRef]
- Szczepanski, R.; Tarczewski, T.; Erwinski, K. Energy Efficient Local Path Planning Algorithm Based on Predictive Artificial Potential Field. IEEE Access 2022, 10, 39729–39742. [Google Scholar] [CrossRef]
- Products & Services—North America|Cat|Caterpillar. Available online: https://www.cat.com/en-US.html (accessed on 10 August 2022).
- Khiyavi, O.A.; Seo, J.; Lin, X. Energy Saving in an Autonomous Excavator via Parallel Actuators Design and PSO-Based Excavation Path Generation. Eng. Proc. 2022, 24, 5. [Google Scholar] [CrossRef]
- Types of Linear Actuators|Kollmorgen. Available online: https://www.kollmorgen.com/en-us/blogs/types-of-linear-actuators (accessed on 15 August 2022).
- Depth Camera D455—Intel® RealSense™ Depth and Tracking Cameras. Available online: https://www.intelrealsense.com/depth-camera-d455/ (accessed on 6 June 2022).
- MATLAB-MathWorks-MATLAB and Simulink. Available online: https://www.mathworks.com/products/new-products/release-2021a (accessed on 1 June 2022).
- Saarenketo, T.; Scullion, T. Road evaluation with ground penetrating radar. J. Appl. Geophys. 2000, 43, 119–138. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Khiyavi, O.A.; Seo, J.; Lin, X. Three-Dimensional Metal Pipe Detection for Autonomous Excavators Using Inexpensive Magnetometer Sensors. IEEE Sens. J. 2023, 23, 24383–24392. [Google Scholar] [CrossRef]
- Koren, Y.; Borenstein, J. Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, California, 7–12 April 1991; Volume 2, pp. 1398–1404. [Google Scholar]
- Ang, K.H.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 2005, 13, 559–576. [Google Scholar] [CrossRef]
- D’Souza, A.; Vijayakumar, S.; Schaal, S. Learning inverse kinematics. IEEE Int. Conf. Intell. Robot. Syst. 2001, 1, 298–303. [Google Scholar] [CrossRef]
- Sheikhha, F.H.; Afzalaghaeinaeini, A.; Seo, J. Collaborative Tracking Control Strategy for Autonomous Excavation of a Hydraulic Excavator. Eng. Proc. 2021, 10, 43. [Google Scholar] [CrossRef]
- Reginald, N.; Seo, J.; Cha, M. Integrative Tracking Control Strategy for Robotic Excavation. Int. J. Control Autom. Syst. 2021, 19, 3435–3450. [Google Scholar] [CrossRef]
Link Name | Boom | Arm | Bucket |
---|---|---|---|
Link Size | 100 cm | 60 cm | 40 cm |
Scenario | A | B |
---|---|---|
Consumed Energy (KJ) | 24.1 | 22.6 |
Energy Reduction Compared To Scenario A | N/A | 6.22% |
Scenario | C | D | E |
---|---|---|---|
Consumed Energy (KJ) | 20.7 | 16.9 | 21.3 |
Energy Reduction Compared To Scenario C | N/A | 18.36% | −2.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi Khiyavi, O.; Seo, J.; Lin, X. New Design of an Electrical Excavator and Its Path Generation for Energy Saving and Obstacle Avoidance. Vehicles 2024, 6, 832-849. https://doi.org/10.3390/vehicles6020040
Ahmadi Khiyavi O, Seo J, Lin X. New Design of an Electrical Excavator and Its Path Generation for Energy Saving and Obstacle Avoidance. Vehicles. 2024; 6(2):832-849. https://doi.org/10.3390/vehicles6020040
Chicago/Turabian StyleAhmadi Khiyavi, Omid, Jaho Seo, and Xianke Lin. 2024. "New Design of an Electrical Excavator and Its Path Generation for Energy Saving and Obstacle Avoidance" Vehicles 6, no. 2: 832-849. https://doi.org/10.3390/vehicles6020040
APA StyleAhmadi Khiyavi, O., Seo, J., & Lin, X. (2024). New Design of an Electrical Excavator and Its Path Generation for Energy Saving and Obstacle Avoidance. Vehicles, 6(2), 832-849. https://doi.org/10.3390/vehicles6020040