Innovative Vehicle Design Processes Based on the Integrated Framework for Abstract Physics Modeling (IF4APM)
Abstract
:1. Introduction
How can different perspectives of abstract physics be combined in a manner that allows integration in engineering frameworks for the design of vehicles?
2. Perspectives of Abstract Physics
- a phenomenon-oriented perspective which consists of physical effects, effect chains, and effect networks and supports the understanding of physics and innovative system concepts;
- a control-oriented perspective which focuses on the elements of a control cycle (actor, process, and senor) and supports the synthesis of intelligent controlled systems [5];
- a behavior-oriented perspective which employs mathematical models such as differential equations in order to allow simulation and optimization;
- an interface-oriented perspective which focuses on interacting surfaces as part of a physical effect chains and allows a detailed analysis of these surfaces and their role in realizing the effect chain;
- a logic-oriented perspective which employs certain methods such as fault-tree analysis in order to analyze reliability and safety. These analyses frequently cover detailed phases of project-oriented design (compare Figure 3) and are therefore not included in the current state of the IF4APM.
2.1. Phenomenon-Oriented Perspective
2.2. Control-Oriented Perspective
2.3. Interface-Oriented Perspective
2.4. Behavior-Oriented Perspective
3. Description of the Framework
4. Application of the Framework
5. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CAD | Computer-Aided Design |
CSS | Channel and Support Structure |
FMI | Functional Mock-up Interface |
FMU | Functional Mock-up |
GBDL | Graph-based Design Language |
IF4APM | Integrated Framework for Abstract Physics Modeling |
IFM | Integrated Function Modeling |
MBSE | Model-based Systems Engineering |
SysML | Systems Modeling Language |
UML | Unified Modeling Language |
WS | Working Surface |
WSP | Working Surface Pair |
References
- Brunner, H.; Rossbacher, P.; Hirz, M. Sustainable product development: Provision of information in early automotive engineering phases. Teh. Glas. 2017, 11, 29–34. [Google Scholar]
- Demirel, H.O.; Goldstein, M.H.; Li, X.; Sha, Z. Human-centered generative design framework: An early design framework to support concept creation and evaluation. Int. J. Hum.-Interact. 2024, 40, 933–944. [Google Scholar] [CrossRef]
- Pahl, G.; Beitz, W. Engineering Design: A Systematic Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ponn, J.; Lindemann, U. Konzeptentwicklung und Gestaltung Technischer Produkte; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Stetter, R. Fault-Tolerant Design and Control of Automated Vehicles and Processes. In Insights for the Synthesis of Intelligent Systems; Springer: Cham, Switzerland, 2020. [Google Scholar]
- VDI/VDE. VDI 2221: Design of Technical Products and Systems. In Model of Product Design; Beuth: Berlin, Germany, 2019. [Google Scholar]
- Holder, K.; Zech, A.; Ramsaier, M.; Stetter, R.; Niedermeier, H.P.; Rudolph, S.; Till, M. Model-Based Requirements Management in Gear Systems Design Based on Graph-Based Design Languages. Appl. Sci. 2017, 7, 1112. [Google Scholar] [CrossRef]
- Malcher, P.; Viana, D.; Antonino, P.O.; dos Santos, R.P. Investigating Open Innovation Practices to Support Requirements Management in Software Ecosystems. In Proceedings of the International Conference on Software Business; Springer Nature: Cham, Switzerland, 2023; pp. 35–50. [Google Scholar]
- Serna, A. Requirements Engineering; Editorial Instituto Antioqueño de Investigación: Medellín, Antioquia, 2024. [Google Scholar]
- Kosse, S.; Vogt, O.; Wolf, M.; König, M.; Gerhard, D. Requirements management for flow production of precast concrete modules. In Proceedings of the International Conference on Computing in Civil and Building Engineering; Springer: Cham, Switzerland, 2022; pp. 687–701. [Google Scholar]
- Eisenbart, B.; Gericke, K.; Blessing, L.; McAloone, T. A DSM-based framework for integrated function modelling: Concept, application and evaluation. Res. Eng. Des. 2016, 28, 25–41. [Google Scholar] [CrossRef]
- Gericke, K.; Eisenbart, B. The integrated function modeling framework and its relation to function structures. AI EDAM 2017, 31, 436–457. [Google Scholar] [CrossRef]
- Elwert, M.; Ramsaier, M.; Eisenbart, B.; Stetter, R. Holistic Digital Function Modelling with Graph-Based Design Languages. In Proceedings of the 22nd International Conference on Engineering Design (ICED 19), Delft, The Netherlands, 5–8 August 2019; Volume 1. [Google Scholar]
- Drave, I.; Rumpe, B.; Wortmann, A.; Berroth, J.; Hoepfner, G.; Jacobs, G.; Spuetz, K.; Zerwas, T.; Guist, C.; Kohl, J. Modeling mechanical functional architectures in SysML. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, Virtual, 16–23 October 2020; pp. 79–89. [Google Scholar]
- Wyrwich, C.; Boelsen, K.; Jacobs, G.; Zerwas, T.; Höpfner, G.; Konrad, C.; Berroth, J. Seamless function-oriented mechanical system architectures and models. Eng 2024, 5, 301–318. [Google Scholar] [CrossRef]
- Krüger, M.F.; Zorn, S.; Gericke, K. Combining function modelling and requirements modelling with the ifm framework. Proc. Des. Soc. 2023, 3, 987–996. [Google Scholar] [CrossRef]
- Albers, A.; Wintergerst, E. The Contact and Channel Approach: Relating a system’s physical structure to its functionality. In An Anthology of Theories and Models of Design: Philosophy, Approaches and Empirical Explorations; Springer: London, UK, 2014; pp. 61–72. [Google Scholar]
- Hoepfner, G.; Nachmann, I.; Zerwas, T.; Berroth, J.K.; Kohl, J.; Guist, C.; Rumpe, B.; Jacobs, G. Towards a Holistic and Functional Model-Based Design Method for Mechatronic Cyber-Physical Systems. J. Comput. Inf. Sci. Eng. 2023, 23, 051001. [Google Scholar] [CrossRef]
- Zerwas, T.; Jacobs, G.; Spütz, K.; Höpfner, G.; Drave, I.; Berroth, J.; Guist, C.; Konrad, C.; Rumpe, B.; Kohl, J. Mechanical concept development using principle solution models. In Proceedings of the IOP conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1097, p. 012001. [Google Scholar]
- Stetter, R.; Niedermeier, M. Approaches towards lean products. In Proceedings of the Knowledge, Innovation and Sustainability. Proceedings of the 16th International Conference on Engineering Design, Paris, France, 28–30 August 2007; Design Society: Paris, France, 2007. [Google Scholar]
- Stetter, R.; Till, M. A Concept for an Integrated Framework for Abstract Physics Modelling (IF4APM). Procedia CIRP 2024, 120. [Google Scholar]
- Vitale, G.; Hollander, M. The Software-Defined Vehicle: How to Verify and Validate Software Functions. In Proceedings of the International Stuttgart Symposium; Springer: Wiesbaden, German, 2023; pp. 399–405. [Google Scholar]
- Cederblahd, J.; Cicchetti, A.; Suryadevara, J. Early Validation and Verification of System Behaviour in Model-based Systems Engineering: A Systematic. ACM Trans. Softw. Eng. Methodol. 2024, 33, 1–67. [Google Scholar] [CrossRef]
- Kraft, J. Entwicklung Eines Universellen Schwerlast-Roboter-Fahrzeugs; Project Report; Ravensburg-Weingarten University: Weingarten, Germany, 2020. [Google Scholar]
- Saiger, C. Hydraulisches Hubgerüst als Anbaugerät für Einen Kleintraktor; Project Report; Ravensburg-Weingarten University: Weingarten, Germany, 2018. [Google Scholar]
- Reinprecht, M. Entwicklung Eines Heckkrafthebers mit dem Schwerpunkt Fehlertoleranz. Bachelor’s Thesis, Ravensburg-Weingarten University, Weingarten, Germany, 2020. [Google Scholar]
- Mario, H.; Dietrich, W.; Gfrerrer, A.; Lang, J. Integrated Computer-Aided Design in Automotive Development: Development Processes, Geometric Fundamentals, Methods of CAD, Knowledge-Based Engineering Data Management; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Eigner, M.; Ernst, J.; Roubanov, D.; Dickopf, T. An initial approach for the application of product assembly information in the early phases of the product development process by using methods of Model Based Systems Engineering. In Proceedings of the DS 81: Proceedings of NordDesign 2014, Espoo, Finland, 27–29 August 2014. [Google Scholar]
- Henderson, K.; Salado, A. Value and benefits of model-based systems engineering (MBSE): Evidence from the literature. Syst. Eng. 2021, 24, 51–66. [Google Scholar] [CrossRef]
- Graessler, I.; Wiechel, D.; Oezcan, D.; Taplick, P. Tailored metrics for assessing the quality of MBSE models. Proc. Des. Soc. 2024, 4, 2545–2554. [Google Scholar] [CrossRef]
- Stetter, R. Approaches for Modelling the Physical Behavior of Technical Systems on the Example of Wind Turbines. Energies 2020, 13, 2087. [Google Scholar] [CrossRef]
- Koller, R.; Kastrup, N. Prinziplösungen zur Konstruktion Technischer Produkte; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ehrlenspiel, K.; Meerkamm, H. Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6, Vollständig überarbeitete und Erweiterte Auflage; Carl Hanser Verlag GmbH Co KG: Munich, Germany, 2017. [Google Scholar]
- Lunze, J. Regelungstechnik 1; Springer: Berlin/Heidelberg, Germany, 2013; Volume 10. [Google Scholar]
- Witczak, M. Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems; Lecture Notes in Electrical Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 266, p. 229. [Google Scholar]
- Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control; Springer: New York, NY, USA, 2016. [Google Scholar]
- Tang, C.; Khajepour, A. Wheel modules with distributed controllers: A multi-agent approach to vehicular control. IEEE Trans. Veh. Technol. 2020, 69, 10879–10888. [Google Scholar] [CrossRef]
- Tang, C.; Khajepour, A. Agent-based model predictive controller (AMPC) for flexible and efficient vehicular control. IEEE Trans. Veh. Technol. 2021, 70, 9877–9885. [Google Scholar] [CrossRef]
- Liang, J.; Lu, Y.; Yin, G.; Fang, Z.; Zhuang, W.; Ren, Y.; Xu, L.; Li, Y. A distributed integrated control architecture of AFS and DYC based on MAS for distributed drive electric vehicles. IEEE Trans. Veh. Technol. 2021, 70, 5565–5577. [Google Scholar] [CrossRef]
- Liang, J.; Lu, Y.; Wang, F.; Yin, G.; Zhu, X.; Li, Y. A robust dynamic game-based control framework for integrated torque vectoring and active front-wheel steering system. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7328–7341. [Google Scholar] [CrossRef]
- Albers, A.; Matthiesen, S.; Lechner, G. Konstruktionsmethodisches grundmodell zum zusammenhang von gestalt und funktion technischer systeme. Konstruktion (1981) 2002, 7–8, 55–60. [Google Scholar]
- Albers, A.; Braun, A.; Sadowski, E.; Wyatt, D.F.; Wynn, D.C.; Clarkson, P.J. Contact and Channel Modelling Using Part and Function Libraries in a Function-Based Design Approach. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, QC, Canada, 15–18 August 2010; Volume 44137, pp. 393–404. [Google Scholar]
- Albers, A.; Zingel, C. Extending SysML for engineering designers by integration of the contact & channel–approach (C&C2-A) for function-based modeling of technical systems. Procedia Comput. Sci. 2013, 16, 353–362. [Google Scholar]
- Grauberger, P.; Bremer, F.; Sturm, C.; Hoelz, K.; Wessels, H.; Gwosch, T.; Wagner, R.; Lanza, G.; Albers, A.; Matthiesen, S. Qualitative Modelling in Embodiment Design-Investigating the Contact and Channel Approach through Analysis of Projects. In Proceedings of the Design Society: DESIGN Conference; Cambridge University Press: Cambridge, UK, 2020; Volume 1, pp. 897–906. [Google Scholar]
- Freudenmann, T. Ontologien zur Validierung von Produkten Basierend auf dem Contact & Channel-Ansatz (C&C2-Ansatz)= Ontologies for the Validation of Products Based on the Contact & Channel Approach (C&C2-Approach); IPEK: Karlsruhe, Germany, 2014. [Google Scholar]
- Gero, J.S.; Kannengiesser, U. The function-behaviour-structure ontology of design. In An Anthology of Theories and Models of Design: Philosophy, Approaches and Empirical Explorations; Springer: Berlin/Heidelberg, Germany, 2014; pp. 263–283. [Google Scholar]
- Gero, J.; Milovanovic, J. The situated function-behavior-structure co-design model. CoDesign 2021, 17, 211–236. [Google Scholar] [CrossRef]
- Russo, D.; Spreafico, C. Investigating the multilevel logic in design solutions: A Function Behaviour Structure (FBS) analysis. Int. J. Interact. Des. Manuf. 2023, 17, 1789–1805. [Google Scholar] [CrossRef]
- Sanderson, D.; Chaplin, J.C.; Ratchev, S. A Function-Behaviour-Structure design methodology for adaptive production systems. Int. J. Adv. Manuf. Technol. 2019, 105, 3731–3742. [Google Scholar] [CrossRef]
- Neema, H.; Gohl, J.; Lattmann, Z.; Sztipanovits, J.; Karsai, G.; Neema, S.; Bapty, T.; Batteh, J.; Tummescheit, H.; Sureshkumar, C. Model-based integration platform for FMI co-simulation and heterogeneous simulations of cyber-physical systems. In Proceedings of the 10th International Modelica Conference; Linköping University Electronic Press: Linköping, Sweden, 2014; Volume 96, pp. 235–245. [Google Scholar]
- Larsen, P.G.; Fitzgerald, J.; Woodcock, J.; Fritzson, P.; Brauer, J.; Kleijn, C.; Lecomte, T.; Pfeil, M.; Green, O.; Basagiannis, S.; et al. Integrated tool chain for model-based design of Cyber-Physical Systems: The INTO-CPS project. In Proceedings of the 2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), Vienna, Austria, 11 April 2016; pp. 1–6. [Google Scholar]
- Miller, M.; Pfeil, M.; Kennel, R. Trailer Electrification—A HIL Approach for MPC Powertrain Control to Ensure Driver Safety in Micromobility; Technical Report; SAE Technical Paper: Warrendale, PA, USA, 2023. [Google Scholar]
- Saft, P.; Pfeil, M.; Stetter, R.; Till, M.; Rudolph, S. Integration of geometry modelling and behavior simulation based on graph-based design languages and functional mockup units. Procedia CIRP 2024, 120. [Google Scholar]
- Beernaert, T.; Verlaan, A.; Etman, P.; Giesen, P.; Van Beekum, E.; Ribeiro, M.; Bola, I.; Moser, L.; De Bock, M.; Classen, I.; et al. From Physics to Project Management: A Multi-Domain Matrix Model for the Distributed Analysis of Nuclear Fusion Systems. In Proceedings of the DS 126: Proceedings of the 25th International DSM Conference (DSM 2023), Gothenburg, Sweden, 3–5 October 2023; pp. 29–38. [Google Scholar]
- Elwert, M.; Ramsaier, M.; Eisenbart, B.; Stetter, R.; Till, M.; Rudolph, S. Digital Function Modeling in Graph-Based Design Languages. Appl. Sci. 2022, 12, 5301. [Google Scholar] [CrossRef]
- Scalice, R.K.; Berkenbrock, G.R.; Mendoza, Y.E.A. Use case based methodology for conceptual design of industrial mechatronic products. In Proceedings of the DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, BC, Canada, 21–25 August 2017; pp. 347–356. [Google Scholar]
- Eisenbart, B.; Gericke, K.; Blessing, L. Application of the IFM framework for modelling and analysing system functionality. In Proceedings of the DS 77: Proceedings of the DESIGN 2014 13th International Design Conference, Cavtat, Croatia, 19–22 May 2014; pp. 153–162. [Google Scholar]
- The MathWorks Inc.: Natick, MA, USA. Available online: https://mathworks.com/ (accessed on 31 July 2024).
- The Modelica Association: Linköping, Sveden. Available online: https://modelica.org/ (accessed on 31 July 2024).
- INTO-CPS Association: Aarhus, Denmark. Available online: https://into-cps.org/ (accessed on 31 July 2024).
- Stetter, R.; Simundsson, A. Design for control. In Proceedings of the DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, BC, Canada, 21–25 August 2017; pp. 149–158. [Google Scholar]
Element | Explanation |
---|---|
Operand | The operand is the entity that is processed by the technical system, e.g., mechanical energy. Operands in a technical system appear in the general forms of matter, energy, and signal. The operand can also be a consequence or a prerequisite of energy, e.g., a force. |
State | The state describes the condition of the operand e.g., the force on one side of a lever. |
Process | The process describes the transformation of the operand, e.g., an enlargement of the force. |
Actor | The actor is a component or sub-system of the technical system which is responsible for the realization of a process, e.g., a lever is responsible for the enlargement of the force. |
Effect | The effect represents a physical phenomenon that contributes to the realization of the process, e.g., law of the lever. |
Behavior | The behavior quantitatively represents the change in the elements of the technical system to realize the process. Usually, the alteration of certain parameters is the focus of the behavior. |
Working Surface (WP) | The working surface is a part of an object of a system that is necessary for the realization of the process. |
Working Surface Pair (WSP) | The WSP is the interface between objects that take part in the process. |
Channel and Support Structure (CSS) | The CSS describes components or volumes of liquids, gases, or spaces that connect WSPs in order to realize the process. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stetter, R. Innovative Vehicle Design Processes Based on the Integrated Framework for Abstract Physics Modeling (IF4APM). Vehicles 2024, 6, 1345-1363. https://doi.org/10.3390/vehicles6030064
Stetter R. Innovative Vehicle Design Processes Based on the Integrated Framework for Abstract Physics Modeling (IF4APM). Vehicles. 2024; 6(3):1345-1363. https://doi.org/10.3390/vehicles6030064
Chicago/Turabian StyleStetter, Ralf. 2024. "Innovative Vehicle Design Processes Based on the Integrated Framework for Abstract Physics Modeling (IF4APM)" Vehicles 6, no. 3: 1345-1363. https://doi.org/10.3390/vehicles6030064
APA StyleStetter, R. (2024). Innovative Vehicle Design Processes Based on the Integrated Framework for Abstract Physics Modeling (IF4APM). Vehicles, 6(3), 1345-1363. https://doi.org/10.3390/vehicles6030064