Development of a Design Procedure Combining Topological Optimization and a Multibody Environment: Application to a Tram Motor Bogie Frame
Abstract
:1. Introduction
2. Methodology and Benchmark Description
2.1. Model Description: The Metro Bogie Frame
2.2. Methodology
2.3. FE Model of the Motor Bogie Frame
2.4. Topological Optimization Model and Settings
2.5. Multibody Model
3. Results and Discussions
3.1. Topological Optimizations Result and Innovative Bogie Frame Design
3.2. Bogie Frame: Innovative Design and Verification
3.3. Structural Performance Assessment
4. Conclusions and Future Developments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, Y.; Abdullah, S.; Omar, M.; Haris, S. Topological and Topographical Optimization of Automotive Spring Lower Seat. Lat. Am. J. Solids Struct. 2016, 13, 1388–1405. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, H.; Wang, S.; Zhang, L.; Ko, J. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration. Mater. Des. 2011, 32, 815–821. [Google Scholar] [CrossRef]
- Cavazzuti, M.; Baldini, A.; Bertocchi, E.; Costi, D.; Torricelli, E.; Moruzzi, P. High performance automotive chassis design: A topology optimization based approach. Struct. Multidiscip. Optim. 2011, 44, 45–56. [Google Scholar] [CrossRef]
- Bandini, A.; Cascino, A.; Meli, E.; Pinelli, L.; Marconcini, M. Improving Aeromechanical Performance of Compressor Rotor Blisk with Topology Optimization. Energies 2024, 17, 1883. [Google Scholar] [CrossRef]
- Pietropaoli, M.; Ahlfeld, R.; Montomoli, F.; Ciani, A.; D’Ercole, M. Design for Additive Manufacturing: Internal Channel Optimization. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer, Seoul, Republic of Korea, 13–17 June 2016; ASME: New York, NY, USA, 2016. V05BT11A013. [Google Scholar]
- Gardan, N.; Schneider, A. Topological optimization of internal patterns and support in additive manufacturing. J. Manuf. Syst. 2015, 37, 417–425. [Google Scholar] [CrossRef]
- Gebisa, A.W.; Lemu, H.G. A case study on topology optimized design for additive manufacturing. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Busan, Republic of Korea, 25–27 August 2017; Volume 276, p. 012026. [Google Scholar]
- Ranjan, R.; Samant, R.; Anand, S. Integration of design for manufacturing methods with topology optimization in additive manufacturing. J. Manuf. Sci. Eng. 2017, 139, 061007. [Google Scholar] [CrossRef]
- Cascino, A.; Meli, E.; Rindi, A. Dynamic size optimization approach to support railway carbody lightweight design process. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2023, 237, 871–881. [Google Scholar] [CrossRef]
- Cascino, A.; Meli, E.; Rindi, A. A strategy for lightweight designing of a railway vehicle car body including composite material and dynamic structural optimization. Railw. Eng. Sci. 2023, 31, 340–350. [Google Scholar] [CrossRef]
- Lang, D.; Radford, D.W. Design Optimization of a Composite Rail Vehicle Anchor Bracket. Urban Rail Transit 2021, 7, 84–100. [Google Scholar] [CrossRef]
- Kuczek, T.; Szachniewicz, B. Topology optimisation of railcar composite structure. Int. J. Heavy Veh. Syst. 2015, 22, 375. [Google Scholar] [CrossRef]
- Šťastniak, P.; Šalantay, P.; Harušinec, J.; Moravčík, M.; Suchánek, A. Application of topological optimization methods in the development of new generation freight railway wagons. AIP Conf. Proc. 2023, 2976, 030020. [Google Scholar] [CrossRef]
- Koenig, J. Integral consideration of the lightweight design for railway vehicles. In Young Researchers Seminar; Technical University of Denmark: Lyngby, Denmark, 2011. [Google Scholar]
- Cho, J.G.; Koo, J.S.; Jung, H.S. A lightweight design approach for an EMU carbody using a material selection method and size optimization. J. Mech. Sci. Technol. 2016, 30, 673–681. [Google Scholar] [CrossRef]
- Miao, B.; Luo, Y.; Peng, Q.; Qiu, Y.; Chen, H.; Yang, Z. Multidisciplinary design optimization of lightweight carbody for fatigue assessment. Mater. Des. 2020, 194, 108910. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Q.; Li, X.; Zhu, Y.; Liu, Z.; Liu, Y.; Sha, Z. Research on Lightweight Rail Vehicle Body Based on Sensitivity Analysis. J. Eng. Technol. Sci. 2024, 56, 353–366. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Shukla, S. Topology Optimization: Weight Reduction of Indian Railway Freight Bogie Side Frame. Int. J. Mech. Eng. 2021, 6, 4374–4383. [Google Scholar]
- Harzheim, L.; Graf, G. A review of optimization of cast parts using topology optimization: I—Topology optimization without manufacturing constraints. Struct. Multidiscip. Optim. 2005, 30, 491–497. [Google Scholar] [CrossRef]
- Yamamoto, M. Non-parametric optimization of railway wheel web shape based on fatigue design criteria. Int. J. Fatigue 2020, 134, 105463. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, R.C.; Sharma, N. Combined multi-body-system and finite element analysis of a rail locomotive crashworthiness. Int. J. Veh. Struct. Syst. 2020, 12, 428–435. [Google Scholar] [CrossRef]
- Guo, F.; Wu, S.C.; Liu, J.X.; Zhang, W.; Qin, Q.B.; Yao, Y. Fatigue life assessment of bogie frames in high-speed railway ve-hicles considering gear meshing. Int. J. Fatigue 2020, 132, 105353. [Google Scholar] [CrossRef]
- Lucanin, V.J.; Simic, G.; Milkovic, D.D.; Cupric, N.U.; Golubovic, S.D. Calculated and experimental analysis of cause of the appearance of cracks in the running bogie frame of diesel multiple units of Serbian railways. Eng. Fail. Anal. 2010, 17, 236–248. [Google Scholar] [CrossRef]
- Hou, K.; Kalousek, J.; Dong, R. A dynamic model for an asymmetrical vehicle/track system. J. Sound Vib. 2003, 267, 591–604. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Z.; Gao, S. Current Collection Quality of High-Speed Rail Pantograph-Catenary Considering Geometry Deviation at 400 km/h and Above. IEEE Trans. Veh. Technol. 2024, 73, 14415–14424. [Google Scholar] [CrossRef]
- EN 12663-1:2010+A2:2023; Railway Applications—Structural Requirements of Railway Vehicle Bodies—Part 1: Locomotives and Passenger Rolling Stock (and Alternative Method for Freight Wagons). Available online: https://www.en-standard.eu/bs-en-12663-1-2010-a2-2023-railway-applications-structural-requirements-of-railway-vehicle-bodies-locomotives-and-passenger-rolling-stock-and-alternative-method-for-freight-wagons/?srsltid=AfmBOoqIIoj8nfUYWdVX3a3zh6pMAK3CUpoKIhb7tzcrTfkeBwwVkx76 (accessed on 24 October 2024).
- Cascino, A.; Meli, E.; Rindi, A. A New Strategy for Railway Bogie Frame Designing Combining Structural–Topological Optimization and Sensitivity Analysis. Vehicles 2024, 6, 651–665. [Google Scholar] [CrossRef]
- EN 13749:2021+A1:2023; Railway Applications—Wheelsets and Bogies—Method of Specifying the Structural Requirements of Bogie Frames. Available online: https://www.en-standard.eu/bs-en-13749-2021-a1-2023-railway-applications-wheelsets-and-bogies-method-of-specifying-the-structural-requirements-of-bogie-frames/ (accessed on 24 October 2024).
- Jameson, A. Gradient based optimization methods. In MAE Technical Report No. 2057; Princeton University: Princeton, NJ, USA, 1995. [Google Scholar]
∆σ (Principal Stress) [-] | ∆σ (Permissible Stress Range) [MPa] | Utilization Factor (U) [-] | ||
---|---|---|---|---|
Original | Innovated | - | Original | Innovated |
1 | 0.84 | 130–150 | 1.43 | 1.20 |
0.81 | 0.68 | 130–150 | 1.16 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascino, A.; Meli, E.; Rindi, A. Development of a Design Procedure Combining Topological Optimization and a Multibody Environment: Application to a Tram Motor Bogie Frame. Vehicles 2024, 6, 1843-1856. https://doi.org/10.3390/vehicles6040089
Cascino A, Meli E, Rindi A. Development of a Design Procedure Combining Topological Optimization and a Multibody Environment: Application to a Tram Motor Bogie Frame. Vehicles. 2024; 6(4):1843-1856. https://doi.org/10.3390/vehicles6040089
Chicago/Turabian StyleCascino, Alessio, Enrico Meli, and Andrea Rindi. 2024. "Development of a Design Procedure Combining Topological Optimization and a Multibody Environment: Application to a Tram Motor Bogie Frame" Vehicles 6, no. 4: 1843-1856. https://doi.org/10.3390/vehicles6040089
APA StyleCascino, A., Meli, E., & Rindi, A. (2024). Development of a Design Procedure Combining Topological Optimization and a Multibody Environment: Application to a Tram Motor Bogie Frame. Vehicles, 6(4), 1843-1856. https://doi.org/10.3390/vehicles6040089