Quantum Tunneling of Ions through the Closed Voltage-Gated Channels of the Biological Membrane: A Mathematical Model and Implications
Abstract
:1. Introduction
2. The Mathematical Model of Quantum Tunneling of Ions through the Closed Voltage-Gated Channels
2.1. The Probability of Quantum Tunneling of Ions Through the Closed Channels
2.2. The Probability of Ions Tunneling Through the Closed Sodium and Potassium Voltage-Gated Channels
2.2.1. The Tunneling Probability of Sodium Ions
2.2.2. The Tunneling Probability of Potassium Ions
3. Quantum Conductance Due to Quantum Tunneling Current through the Closed Gate of the Channels
3.1. Quantum Conductance of Single Channel
3.2. Quantum Membrane Conductance of Ions
3.3. The Effect of Quantum Conductance of Ions on the Resting Membrane Potential
4. Discussion
Funding
Conflicts of Interest
References
- Hall, J.E. Guyton and Hall Textbook of Medical Physiology E-Book; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Aryal, P.; Sansom, M.S.; Tucker, S.J. Hydrophobic gating in ion channels. J. Mol. Biol. 2015, 427, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Qaswal, A.B. A Theoretical Study to Explain the Referred Pain Phenomenon and Its Characteristics via Quantum Tunneling of Potassium Ions Through the Channels of Neuronal Membrane. NeuroQuantology 2019, 17, 43–52. [Google Scholar]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef] [PubMed]
- Serway, R.A.; Moses, C.J.; Moyer, C.A. Modern Physics; Thomson Learning: Boston, MA, USA, 2005. [Google Scholar]
- Arendt-Nielsen, L.; Svensson, P. Referred muscle pain: Basic and clinical findings. Clin. J. Pain 2001, 17, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Qaswal, A.B. Lithium stabilizes the mood of bipolar patients by depolarizing the neuronal membrane via quantum tunneling through the sodium channels. Clin. Psychopharmacol. Neurosci. (in press).
- Shida, N.; Barbara, P.F.; Almlöf, J. A reaction surface Hamiltonian treatment of the double proton transfer of formic acid dimer. J. Chem. Phys. 1991, 94, 3633–3643. [Google Scholar] [CrossRef]
- Sakun, V.P.; Vener, M.V.; Sokolov, N.D. Proton tunneling assisted by the intermolecular vibration excitation. Temperature dependence of the proton spin-lattice relaxation time in benzoic acid powder. J. Chem. Phys. 1996, 105, 379–387. [Google Scholar] [CrossRef]
- Labro, A.J.; Snyders, D.J. Being flexible: The voltage-controllable activation gate of Kv channels. Front. Pharmacol. 2012, 3, 168. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 1995, 64, 493–531. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Structure and function of voltage-gated sodium channels at atomic resolution. Exp. Physiol. 2014, 99, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Oelstrom, K.; Goldschen-Ohm, M.P.; Holmgren, M.; Chanda, B. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels. Nat. Commun. 2014, 5, 3420. [Google Scholar] [CrossRef] [PubMed]
- Lampert, A.; O’Reilly, A.O.; Dib-Hajj, S.D.; Tyrrell, L.; Wallace, B.A.; Waxman, S.G. A pore-blocking hydrophobic motif at the cytoplasmic aperture of the closed-state Nav1. 7 channel is disrupted by the erythromelalgia-associated F1449V mutation. J. Biol. Chem. 2008, 283, 24118–24127. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.A.; Horton, R.A.; Scrimgeour, K.G.; Perry, M.D. Principles of Biochemistry; Pearson: London, UK, 2014. [Google Scholar]
- Lodish, H.; Berk, A.; Kaiser, C.A.; Krieger, M.; Scott, M.P.; Bretscher, A.; Ploegh, H.; Matsudaira, P. Molecular Cell Biology; Macmillan: London, UK, 2008. [Google Scholar]
- Fowler, P.W.; Sansom, M.S. The pore of voltage-gated potassium ion channels is strained when closed. Nat. Commun. 2013, 4, 1872. [Google Scholar] [CrossRef] [PubMed]
- Bowie, J.U. Helix packing in membrane proteins. J. Mol. Biol. 1997, 272, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Chanda, B. Estimating the voltage-dependent free energy change of ion channels using the median voltage for activation. J. Gen. Physiol. 2012, 139, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Islas, L.D. Functional diversity of potassium channel voltage-sensing domains. Channels 2016, 10, 202–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Hihath, J.; Huang, Z.; Li, X.; Tao, N.J. Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 2007, 58, 535–564. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.H. Action Potential Initiation and Conduction in Axons; Elsevier: Amsterdam, The Netherlands, 2009; pp. 23–29. [Google Scholar]
- Soler-Llavina, G.J.; Holmgren, M.; Swartz, K.J. Defining the conductance of the closed state in a voltage-gated K+ channel. Neuron 2003, 38, 61–67. [Google Scholar] [CrossRef]
Sodium Ion | Concentration (mEq/L) | KE (Joule) | Tunneling Probability |
---|---|---|---|
Intracellular | 14 | ||
Extracellular | 142 |
Potassium Ion | Concentration (mEq/L) | KE (Joule) | Tunneling Probability |
---|---|---|---|
Intracellular | 140 | ||
Extracellular | 4 |
Ion | Intracellular | Extracellular |
---|---|---|
Sodium | * | * |
potassium | * | * |
Ion | Intracellular | Extracellular |
---|---|---|
Sodium | * | * |
Potassium | * | * |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barjas Qaswal, A. Quantum Tunneling of Ions through the Closed Voltage-Gated Channels of the Biological Membrane: A Mathematical Model and Implications. Quantum Rep. 2019, 1, 219-225. https://doi.org/10.3390/quantum1020019
Barjas Qaswal A. Quantum Tunneling of Ions through the Closed Voltage-Gated Channels of the Biological Membrane: A Mathematical Model and Implications. Quantum Reports. 2019; 1(2):219-225. https://doi.org/10.3390/quantum1020019
Chicago/Turabian StyleBarjas Qaswal, Abdallah. 2019. "Quantum Tunneling of Ions through the Closed Voltage-Gated Channels of the Biological Membrane: A Mathematical Model and Implications" Quantum Reports 1, no. 2: 219-225. https://doi.org/10.3390/quantum1020019
APA StyleBarjas Qaswal, A. (2019). Quantum Tunneling of Ions through the Closed Voltage-Gated Channels of the Biological Membrane: A Mathematical Model and Implications. Quantum Reports, 1(2), 219-225. https://doi.org/10.3390/quantum1020019