From Geometry to Coherent Dissipative Dynamics in Quantum Mechanics
Abstract
:1. Motivation and Previous Works
2. Geometry and Dynamics of Conservative n-Level Quantum Systems
2.1. Kinematics: From to
2.2. Dynamics: Symplectic Hamiltonian Systems on
Example: The Conservative Qubit
3. Contact Geometry and Dynamics of Dissipative n-Level Quantum Systems
3.1. Kinematics: From to
3.2. Dynamics: Contact Hamiltonian Systems on
Example: The Dissipative Qubit
- (i)
- For such that , we have only the critical point , which is a stable node;
- (ii)
- For such that , we have two critical points and , and both are non-hyperbolic (eigenvalues );
- (iii)
- For such that , we have three different critical points with the following behavior: is always a saddle; the behavior of and depends on the term . If this is positive, then the critical points are stable foci. On the other hand, if this term is non-positive, then they are stable nodes.
4. The Contact Master Equation
5. Application: Radiative Decay
6. Conclusions and Perspectives
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Appendix A. Proof of the Contact Master Equation Form
References
- Landau, L. Das dämpfungsproblem in der wellenmechanik. Z. Phys. 1927, 45, 430–441. [Google Scholar] [CrossRef]
- Chruściński, D.; Pascazio, S. A brief history of the GKLS equation. arXiv 2017, arXiv:1710.05993. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Minev, Z.K.; Mundhada, S.O.; Shankar, S.; Reinhold, P.; Gutiérrez-Jáuregui, R.; Schoelkopf, R.J.; Mirrahimi, M.; Carmichael, H.J.; Devoret, M.H. To catch and reverse a quantum jump mid-flight. Nature 2019, 570, 200–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snizhko, K.; Kumar, P.; Romito, A. Quantum Zeno effect appears in stages. Phys. Rev. Res. 2020, 2, 033512. [Google Scholar] [CrossRef]
- Bravetti, A.; Cruz, H.; Tapias, D. Contact Hamiltonian mechanics. Ann. Phys. 2017, 376, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A.; Garcia-Chung, A. A geometric approach to the generalized Noether theorem. J. Phys. Math. Theor. 2021, 54, 095205. [Google Scholar] [CrossRef]
- Bravetti, A.; Tapias, D. Liouville’s theorem and the canonical measure for nonconservative systems from contact geometry. J. Phys. Math. Theor. 2015, 48, 245001. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A.; de León, M.; Marrero, J.C.; Padrón, E. Invariant measures for contact Hamiltonian systems: Symplectic sandwiches with contact bread. J. Phys. Math. Theor. 2020, 53, 455205. [Google Scholar] [CrossRef]
- De León, M.; Valcázar, M.L. Infinitesimal symmetries in contact Hamiltonian systems. J. Geom. Phys. 2020, 153, 103651. [Google Scholar] [CrossRef] [Green Version]
- Gaset, J.; Gràcia, X.; Muñoz-Lecanda, M.C.; Rivas, X.; Román-Roy, N. New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050090. [Google Scholar] [CrossRef]
- Lazo, M.; Paiva, J.; Frederico, G. Noether theorem for action-dependent Lagrangian functions: Conservation laws for non-conservative systems. Nonlinear Dyn. 2019, 97, 1125–1136. [Google Scholar] [CrossRef] [Green Version]
- Cannarsa, P.; Cheng, W.; Wang, K.; Yan, J. Herglotz’ generalized variational principle and contact type Hamilton-Jacobi equations. In Trends in Control Theory and Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2019; pp. 39–67. [Google Scholar]
- Georgieva, B.; Guenther, R. First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 2002, 20, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, B.; Guenther, R.; Bodurov, T. Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem. J. Math. Phys. 2003, 44, 3911–3927. [Google Scholar] [CrossRef]
- Liu, Q.; Torres, P.J.; Wang, C. Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior. Ann. Phys. 2018, 395, 26–44. [Google Scholar] [CrossRef]
- Vermeeren, M.; Bravetti, A.; Seri, M. Contact variational integrators. J. Phys. A Math. Theor. 2019, 52, 445206. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wang, L.; Yan, J. Implicit variational principle for contact Hamiltonian systems. Nonlinearity 2016, 30, 492. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Yan, J. Aubry–Mather theory for contact Hamiltonian systems. Commun. Math. Phys. 2019, 366, 981–1023. [Google Scholar] [CrossRef]
- Gaset, J.; Gràcia, X.; Muñoz-Lecanda, M.C.; Rivas, X.; Román-Roy, N. A contact geometry framework for field theories with dissipation. Ann. Phys. 2020, 414, 168092. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Schilling, T.A. Geometrical Formulation of Quantum Mechanics. In On Einstein’s Path; Springer: Berlin/Heidelberg, Germany, 1999; pp. 23–65. [Google Scholar]
- Brody, D.C.; Hughston, L.P. Geometric quantum mechanics. J. Geom. Phys. 2001, 38, 19–53. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Prado, H.; Marmo, G.; Schuch, D. Nonlinear description of quantum dynamics. N-level quantum systems. J. Phys. Conf. Ser. 2020, 1612, 012010. [Google Scholar] [CrossRef]
- Ercolessi, E.; Marmo, G.; Mor, I.G. From the equations of motion to the canonical commutation relations. arXiv 2010, arXiv:1005.1164. [Google Scholar]
- Ciaglia, F.M.; Cruz, H.; Marmo, G. Contact manifolds and dissipation, classical and quantum. Ann. Phys. 2018, 398, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Cariñena, J.F.; Ibort, A.; Marmo, G.; Morandi, G. Geometry from Dynamics, Classical and Quantum; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Cariñena, J.; Clemente-Gallardo, J.; Jover-Galtier, J.; Marmo, G. Tensorial dynamics on the space of quantum states. J. Phys. Math. Theor. 2017, 50, 365301. [Google Scholar] [CrossRef] [Green Version]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Laudato, M.; Marmo, G. Dynamical vector fields on the manifold of quantum states. Open Syst. Inf. Dyn. 2017, 24, 1740003. [Google Scholar] [CrossRef] [Green Version]
- McDuff, D.; Salamon, D. Introduction to Symplectic Topology; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Wootters, W.K. Statistical distance and Hilbert space. Phys. Rev. D 1980, 23, 357. [Google Scholar] [CrossRef]
- Marmo, G.; Saletan, E.J.; Simoni, A.; Vitale, B. Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction; John Wiley & Sons: Chichester, UK, 1985. [Google Scholar]
- Chaturvedi, S.; Ercolessi, E.; Marmo, G.; Mukunda, N.; Simon, R. Ray space ’riccati’ evolution and geometric phases for N-level quantum systems. Pramana 2007, 69, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, R.; Mania, A.; Pizzocchero, L. Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part I. J. Math. Phys. 1990, 31, 2891–2897. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Guha, P. Nonstandard Hamiltonian structures of the liénard equation and contact geometry. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1940001. [Google Scholar] [CrossRef]
- De León, M.; Lainz, M. A review on contact Hamiltonian and Lagrangian systems. arXiv 2020, arXiv:2011.05579. [Google Scholar]
- Guha, P.; Block, J.; Ghose-Choudhury, A. Generalized conformal Hamiltonian dynamics and the pattern formation equations. J. Geom. Phys. 2018, 134, 195–208. [Google Scholar] [CrossRef]
- Sloan, D. Dynamical similarity. Phys. Rev. D 2018, 97, 123541. [Google Scholar] [CrossRef] [Green Version]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Geiges, H. An Introduction to Contact Topology; Volume 109 of Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-521-86585-2. [Google Scholar]
- Boyer, C.; Galicki, K. Sasakian Geometry; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Chruściński, D.; Ciaglia, F.M.; Ibort, A.; Marmo, G.; Ventriglia, F. Stratified manifold of quantum states, actions of the complex special linear group. Ann. Phys. 2019, 400, 221–245. [Google Scholar] [CrossRef] [Green Version]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620. [Google Scholar] [CrossRef]
- Guha, P. Metriplectic structure, leibniz dynamics and dissipative systems. J. Math. Anal. Appl. 2007, 326, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Morrison, P. Thoughts on brackets and dissipation: Old and new. J. Phys. Conf. Ser. 2009, 169, 012006. [Google Scholar] [CrossRef] [Green Version]
- Morrison, P.J. Bracket formulation for irreversible classical fields. Phys. Lett. A 1984, 100, 423–427. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics: Introduction to GENERIC; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018. [Google Scholar]
- Öttinger, H.C. Nonlinear thermodynamic quantum master equation: Properties and examples. Phys. Rev. A 2010, 82, 052119. [Google Scholar] [CrossRef] [Green Version]
- Öttinger, H.C. The geometry and thermodynamics of dissipative quantum systems. EPL Europhys. Lett. 2011, 94, 10006. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, H. An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles, October 28 to November 4, 1991; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lamb, W.E., Jr. Theory of an optical maser. Phys. Rev. 1964, 134, A1429. [Google Scholar] [CrossRef]
- Eberard, D.; Maschke, B.; Van Der Schaft, A. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Rep. Math. Phys. 2007, 60, 175–198. [Google Scholar] [CrossRef] [Green Version]
- Simoes, A.A.; De León, M.; Valcázar, M.L.; DeDiego, D.M. Contact geometry for simple thermodynamical systems with friction. Proc. R. Soc. A 2020, 476, 20200244. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Prado, H.; Bravetti, A.; Garcia-Chung, A. From Geometry to Coherent Dissipative Dynamics in Quantum Mechanics. Quantum Rep. 2021, 3, 664-683. https://doi.org/10.3390/quantum3040042
Cruz-Prado H, Bravetti A, Garcia-Chung A. From Geometry to Coherent Dissipative Dynamics in Quantum Mechanics. Quantum Reports. 2021; 3(4):664-683. https://doi.org/10.3390/quantum3040042
Chicago/Turabian StyleCruz-Prado, Hans, Alessandro Bravetti, and Angel Garcia-Chung. 2021. "From Geometry to Coherent Dissipative Dynamics in Quantum Mechanics" Quantum Reports 3, no. 4: 664-683. https://doi.org/10.3390/quantum3040042
APA StyleCruz-Prado, H., Bravetti, A., & Garcia-Chung, A. (2021). From Geometry to Coherent Dissipative Dynamics in Quantum Mechanics. Quantum Reports, 3(4), 664-683. https://doi.org/10.3390/quantum3040042