Optimized Surface Ion Trap Design for Tight Confinement and Separation of Ion Chains
Abstract
:1. Introduction
2. Materials and Methods
- Radial secular frequencies characterizing the potential well:
- The trap potential depth, which should be deep enough to capture particles produced by the photoionization of the neutral atomic beam from the hot gun. The temperature of the atomic gun is about 600 K, which corresponds to a particle energy of eV.
- The Mathieu stability parameter q:The stability parameter should be small enough () to maintain the harmonicity of ion oscillations. However, the trap depth is proportional to this parameter [34].
- the distance from the ion to the trap surface h that defines the optical access required for laser cooling and quantum operations and impacts the ion heating rate induced by the surface () [35]. The optical access is determined by the numerical aperture (NA) for a beam propagating parallel to the trap plane and strongly focused on the ion. The NA is limited by the width of the isthmus of the trap (Figure 2), which is typically around 1 mm. With an ion height above the trap surface ranging from 70 to 100 m, the NA will be between 0.14 and 0.19 for a beam perpendicular to the isthmus. Such a setup will accommodate beam waists of <2 m at the ion, which is sufficient for individual addressing.
3. Basic Design
4. Asymmetric Trap
5. Ion Chain Separation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grover, L.K. Quantum Computers Can Search Arbitrarily Large Databases by a Single Query. Phys. Rev. Lett. 1997, 79, 4709–4712. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994. [Google Scholar]
- Cirac, J.I.; Zoller, P. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 1995, 74, 4091–4094. [Google Scholar] [CrossRef] [PubMed]
- Neuhauser, W.; Hohenstatt, M.; Toschek, P.E.; Dehmelt, H. Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 1980, 22, 1137–1140. [Google Scholar] [CrossRef]
- Spagnolo, M.; Morris, J.; Piacentini, S.; Antesberger, M.; Massa, F.; Crespi, A.; Ceccarelli, F.; Osellame, R.; Walther, P. Experimental photonic quantum memristor. Nat. Photonics 2022, 16, 318–323. [Google Scholar] [CrossRef]
- Stremoukhov, S.; Forsh, P.; Khabarova, K.; Kolachevsky, N. Proposal for Trapped-Ion Quantum Memristor. Entropy 2023, 25, 1134. [Google Scholar] [CrossRef] [PubMed]
- Stremoukhov, S.Y.; Forsh, P.; Khabarova, K.Y.; Kolachevsky, N. Model of Coupled Quantum Memristors Based on a Single Trapped 171Yb+ Ion. JETP Lett. 2024, 119, 352–356. [Google Scholar] [CrossRef]
- Bruzewicz, C.D.; Chiaverini, J.; McConnell, R.; Sage, J.M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 2019, 6, 021314. [Google Scholar] [CrossRef]
- Pagano, G.; Hess, P.; Kaplan, H.; Tan, W.; Richerme, P.; Becker, P.; Kyprianidis, A.; Zhang, J.; Birckelbaw, E.; Hernandez, M.; et al. Cryogenic trapped-ion system for large scale quantum simulation. Quantum Sci. Technol. 2018, 4, 014004. [Google Scholar] [CrossRef]
- Leung, P.H.; Brown, K.R. Entangling an arbitrary pair of qubits in a long ion crystal. Phys. Rev. A 2018, 98, 032318. [Google Scholar] [CrossRef]
- Kielpinski, D.; Monroe, C.; Wineland, D.J. Architecture for a large-scale ion-trap quantum computer. Nature 2002, 417, 709–711. [Google Scholar] [CrossRef]
- Britton, J.; Leibfried, D.; Beall, J.; Blakestad, R.; Wesenberg, J.; Wineland, D. Scalable arrays of rf Paul traps in degenerate Si. Appl. Phys. Lett. 2009, 95, 173102. [Google Scholar] [CrossRef]
- Seidelin, S.; Chiaverini, J.; Reichle, R.; Bollinger, J.J.; Leibfried, D.; Britton, J.; Wesenberg, J.; Blakestad, R.; Epstein, R.; Hume, D.; et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 2006, 96, 253003. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.D.; Lekitsch, B.; Broersma, J.A.; Hensinger, W.K. Microfabricated ion traps. Contemp. Phys. 2011, 52, 505–529. [Google Scholar] [CrossRef]
- Romaszko, Z.D.; Hong, S.; Siegele, M.; Puddy, R.K.; Lebrun-Gallagher, F.R.; Weidt, S.; Hensinger, W.K. Engineering of microfabricated ion traps and integration of advanced on-chip features. Nat. Rev. Phys. 2020, 2, 285–299. [Google Scholar] [CrossRef]
- Sterling, R.; Hughes, M.; Mellor, C.; Hensinger, W. Increased surface flashover voltage in microfabricated devices. Appl. Phys. Lett. 2013, 103, 143504. [Google Scholar] [CrossRef]
- Wilson, J.M.; Tilles, J.N.; Haltli, R.A.; Ou, E.; Blain, M.G.; Clark, S.M.; Revelle, M.C. In situ detection of RF breakdown on microfabricated surface ion traps. J. Appl. Phys. 2022, 131, 134401. [Google Scholar] [CrossRef]
- Chen, J.S.; Nielsen, E.; Ebert, M.; Inlek, V.; Wright, K.; Chaplin, V.; Maksymov, A.; Páez, E.; Poudel, A.; Maunz, P.; et al. Benchmarking a trapped-ion quantum computer with 29 algorithmic qubits. arXiv 2023, arXiv:2308.05071. [Google Scholar]
- Moses, S.A.; Baldwin, C.H.; Allman, M.S.; Ancona, R.; Ascarrunz, L.; Barnes, C.; Bartolotta, J.; Bjork, B.; Blanchard, P.; Bohn, M.; et al. A race-track trapped-ion quantum processor. Phys. Rev. X 2023, 13, 041052. [Google Scholar] [CrossRef]
- Berkeland, D.; Miller, J.; Bergquist, J.C.; Itano, W.M.; Wineland, D.J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 1998, 83, 5025–5033. [Google Scholar] [CrossRef]
- Nizamani, A.H.; Hensinger, W.K. Optimum electrode configurations for fast ion separation in microfabricated surface ion traps. Appl. Phys. B 2012, 106, 327–338. [Google Scholar] [CrossRef]
- House, M. Analytic model for electrostatic fields in surface-electrode ion traps. Phys. Rev. A 2008, 78, 033402. [Google Scholar] [CrossRef]
- Hong, S.; Lee, M.; Cheon, H.; Kim, T.; Cho, D.-I. Guidelines for designing surface ion traps using the boundary element method. Sensors 2016, 16, 616. [Google Scholar] [CrossRef]
- Abbasov, T.; Zibrov, S.; Sherstov, I. Surface-electrode ion trap development. JETP Lett. 2023, 118, 215–219. [Google Scholar] [CrossRef]
- Ryan-Anderson, C.; Brown, N.; Allman, M.; Arkin, B.; Asa-Attuah, G.; Baldwin, C.; Berg, J.; Bohnet, J.; Braxton, S.; Burdick, N.; et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code. arXiv 2022, arXiv:2208.01863. [Google Scholar]
- Wang, P.; Luan, C.Y.; Qiao, M.; Um, M.; Zhang, J.; Wang, Y.; Yuan, X.; Gu, M.; Zhang, J.; Kim, K. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 2021, 12, 233. [Google Scholar] [CrossRef]
- Aksenov, M.; Zalivako, I.; Semerikov, I.; Borisenko, A.; Semenin, N.; Sidorov, P.; Fedorov, A.; Khabarova, K.Y.; Kolachevsky, N. Realizing quantum gates with optically addressable 171Yb+ ion qudits. Phys. Rev. A 2023, 107, 052612. [Google Scholar] [CrossRef]
- Zalivako, I.V.; Borisenko, A.S.; Semerikov, I.A.; Korolkov, A.E.; Sidorov, P.L.; Galstyan, K.P.; Semenin, N.V.; Smirnov, V.N.; Aksenov, M.D.; Fedorov, A.K.; et al. Continuous dynamical decoupling of optical 171Yb+ qudits with radiofrequency fields. Front. Quantum Sci. Technol. 2023, 2, 1228208. [Google Scholar] [CrossRef]
- Zalivako, I.V.; Nikolaeva, A.S.; Borisenko, A.S.; Korolkov, A.E.; Sidorov, P.L.; Galstyan, K.P.; Semenin, N.V.; Smirnov, V.N.; Aksenov, M.A.; Makushin, K.M.; et al. Towards multiqudit quantum processor based on a 171Yb+ ion string: Realizing basic quantum algorithms. arXiv 2024, arXiv:2402.03121. [Google Scholar]
- Kazmina, A.S.; Zalivako, I.V.; Borisenko, A.S.; Nemkov, N.A.; Nikolaeva, A.S.; Simakov, I.A.; Kuznetsova, A.V.; Egorova, E.Y.; Galstyan, K.P.; Semenin, N.V.; et al. Demonstration of a parity-time-symmetry-breaking phase transition using superconducting and trapped-ion qutrits. Phys. Rev. A 2024, 109, 032619. [Google Scholar] [CrossRef]
- Niedermayr, M. Cryogenic Surface Ion Traps. Ph.D. Thesis, Universität Innsbruck, Innsbruck, Austria, 2015; p. 83. [Google Scholar]
- McLoughlin, J.J.; Nizamani, A.H.; Siverns, J.D.; Sterling, R.C.; Hughes, M.D.; Lekitsch, B.; Stein, B.; Weidt, S.; Hensinger, W.K. Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements. Phys. Rev. A 2011, 83, 013406. [Google Scholar] [CrossRef]
- Kiesenhofer, D.; Hainzer, H.; Zhdanov, A.; Holz, P.C.; Bock, M.; Ollikainen, T.; Roos, C.F. Controlling two-dimensional Coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 2023, 4, 020317. [Google Scholar] [CrossRef]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281. [Google Scholar] [CrossRef]
- Brownnutt, M.; Kumph, M.; Rabl, P.; Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 2015, 87, 1419. [Google Scholar] [CrossRef]
- Electrode Python Package. Available online: https://github.com/nist-ionstorage/electrode/ (accessed on 1 March 2024).
40 m | 160 m | 400 m | 100 V | 22 MHz |
depth | ||||
0.3 | 80 m | −11 m | 110 meV |
l | |||
---|---|---|---|
150 m | 300 m | 700 m | 350 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasin, I.; Zhadnov, N.; Kudeyarov, K.; Khabarova, K.; Kolachevsky, N.; Semerikov, I. Optimized Surface Ion Trap Design for Tight Confinement and Separation of Ion Chains. Quantum Rep. 2024, 6, 442-451. https://doi.org/10.3390/quantum6030029
Gerasin I, Zhadnov N, Kudeyarov K, Khabarova K, Kolachevsky N, Semerikov I. Optimized Surface Ion Trap Design for Tight Confinement and Separation of Ion Chains. Quantum Reports. 2024; 6(3):442-451. https://doi.org/10.3390/quantum6030029
Chicago/Turabian StyleGerasin, Ilya, Nikita Zhadnov, Konstantin Kudeyarov, Ksienia Khabarova, Nikolay Kolachevsky, and Ilya Semerikov. 2024. "Optimized Surface Ion Trap Design for Tight Confinement and Separation of Ion Chains" Quantum Reports 6, no. 3: 442-451. https://doi.org/10.3390/quantum6030029
APA StyleGerasin, I., Zhadnov, N., Kudeyarov, K., Khabarova, K., Kolachevsky, N., & Semerikov, I. (2024). Optimized Surface Ion Trap Design for Tight Confinement and Separation of Ion Chains. Quantum Reports, 6(3), 442-451. https://doi.org/10.3390/quantum6030029