The Planck Computer Is the Quantum Gravity Computer: We Live inside a Gigantic Computer, the Hubble Sphere Computer?
Abstract
:1. Background
“A quantum gravity computer is one for which the particular effects of quantum gravity are relevant.”
Because of the intra-atomic movement of electrons, the atom must radiate not only electromagnetic but also gravitational energy, if only in minute amounts. Since, in reality, this cannot be the case in nature, then it appears that the quantum theory must modify not only Maxwell’s electrodynamics but also the new theory of gravitation.—A. Einstein
2. Quantized General Relativity Theory Linked to the Planck Scale
We have to come back to a theory that will be way less profoundly probabilistic. It will introduce probabilities, a bit like it used to be the case for the kinetic theory of gases if you want, but not to an extent that forces us to believe that there is no causality.—Louis de Broglie, 1967
3. The Planck Computer Is the One (Planck) Bit Computer
4. We Live inside a Gigantic Hubble Sphere Quantum Gravity Computer (HSQGC)
5. Thermodynamics Calculations Give the Same End Results
6. How Many Calculations in the Time of the Universe
7. Summary of the Hubble Quantum Computer
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ladd, T.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brian, J.L. Quantum computers. Nature 2010, 45, 464. [Google Scholar] [CrossRef]
- Nandhini, S.; Harpreet, S.; Akash, U.N. An extensive review on quantum computers. Adv. Eng. Softw. 2022, 174, 103337. [Google Scholar] [CrossRef]
- Baaquie, B.E.; Kwek, L.-C. Quantum Computers: Theory and Algorithms; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- La Cour, B. Advances in quantum computing. Entropy 2023, 25, 1633. [Google Scholar] [CrossRef]
- Hardy, L. Quantum gravity computers: On the theory of computation with indefinite causal structure. In Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle; The Western Ontario Series in Philosophy of Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 73. [Google Scholar] [CrossRef]
- Planck, M. Natuerliche Masseinheiten; Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899; Available online: https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up (accessed on 6 August 2020).
- Planck, M. Vorlesungen über Die Theorie der Wärmestrahlung; J.A. Barth: Leipzig, Germany, 1913; p. 163. [Google Scholar]
- Einstein, A. Näherungsweise integration der feldgleichungen der gravitation. In Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin; Publisher of the Royal Academy of Science: Berlin, Germany, 1916. [Google Scholar]
- Eddington, A.S. Report on the Relativity Theory of Gravitation; The Physical Society of London, Fleetway Press: London, UK, 1918. [Google Scholar]
- Bridgman, P.W. Dimensional Analysis; Yale University Press: New Haven, CT, USA, 1922. [Google Scholar]
- Adler, S.L. Six easy roads to the Planck scale. Am. J. Phys. 2010, 78, 925. [Google Scholar] [CrossRef]
- Hossenfelder, S. Can we measure structures to a precision better than the Planck length? Class. Quantum Gravity 2012, 29, 115011. [Google Scholar] [CrossRef]
- Hossenfelder, S. Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 2013, 16, 2. [Google Scholar] [CrossRef]
- Cahill, K. The gravitational constant. Lett. Nuovo C. 1984, 39, 181. [Google Scholar] [CrossRef]
- Cahill, K. Tetrads, broken symmetries, and the gravitational constant. Z. Für Phys. C Part. Fields 1984, 23, 353. [Google Scholar] [CrossRef]
- Cohen, E.R. Fundamental Physical Constants. In Gravitational Measurements, Fundamental Metrology and Constants; Sabbata, V., Melniko, V.N., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherland, 1987; p. 59. [Google Scholar]
- Haug, E.G. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a Newton force spring. J. Phys. Commun. 2020, 4, 075001. [Google Scholar] [CrossRef]
- Haug, E.G. Progress in the composite view of the Newton gravitational constant and its link to the Planck scale. Universe 2022, 8, 454. [Google Scholar] [CrossRef]
- D’Auria, S. Introduction to Nuclear and Particle Physics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- De Broglie, L. Recherches Sur la Théorie des Quanta. Ph.D. Thesis, University of Paris, Paris, France, 1924. Available online: https://www.semanticscholar.org/paper/Recherches-sur-la-th%C3%A9orie-des-quanta-Broglie/1425eb56d31b2dc024173422a13b9ebf5eb1bbb1 (accessed on 4 September 2024).
- De Broglie, L. An Introduction to the Study of Wave Mechanics; Metheum & Co.: Essex, UK, 1930. [Google Scholar]
- Haug, E.G. The Compton wavelength is the true matter wavelength, linked to the photon wavelength, while the de Broglie wavelength is simply a mathematical derivative, understanding this leads to unification of gravity and new quantum mechanics. Qeios 2023. [Google Scholar] [CrossRef]
- Haug, E.G. Different mass definitions and their pluses and minuses related to gravity. Foundations 2023, 3, 199–219. [Google Scholar] [CrossRef]
- Haug, E.G. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. Int. J. Theor. Phys. 2024, 63, 57. [Google Scholar] [CrossRef]
- Schwarzschild, K. Über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie. In Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik; Deutsche Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1916; p. 424. Available online: https://ui.adsabs.harvard.edu/abs/1916skpa.conf..424S/abstract (accessed on 4 September 2024).
- Reissner, H. Über die eigengravitation des elektrischen feldes nach der Einsteinschen theorie. Ann. Phys. 1916, 355, 106. [Google Scholar] [CrossRef]
- Nordström, G. On the energy of the gravitation field in Einstein’s theory. Koninklijke Ned. Akad. Wet. Proc. 1918, 20, 1238. [Google Scholar]
- Vopson, M.M. Estimation of the information contained in the visible matter of the universe. AIP Adv. 2021, 11, 105317. [Google Scholar] [CrossRef]
- Lloyd, S. Computational capacity of the universe. Phys. Rev. Lett. 2002, 88, 237901. [Google Scholar] [CrossRef]
- Tatum, E.T.; Haug, E.G.; Wojnow, S. High precision Hubble constant determinations based upon a new theoretical relationship between CMB temperature and H0. HAL Arch. 2023. under review. Available online: https://hal.science/hal-04268732 (accessed on 6 August 2024).
- Hotokezaka, K.; Nakar, E.; Gottlieb, O.; Nissanke, S.; Masuda, K.; Hallinan, G.; Mooley, K.P.; Deller, A.T. A Hubble constant measurement from superluminal motion of the jet in gw170817. Nat. Astron. 2019, 3, 940. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hatt, D.; Jang, I.S.; Beaton, R.L.; Burns, C.R.; Lee, M.G.; Monson, A.J.; Neeley, J.R.; Phillips, M.M.; et al. The Carnegie-Chicago Hubble program. viii. an independent determination of the Hubble constant based on the tip of the red giant branch. Astrophys. J. 2019, 882, 24. [Google Scholar] [CrossRef]
- Kelly, P.L.; Rodney, S.; Treu, T.; Oguri, M.; Chen, W.; Zitrin, A.; Birrer, S.; Bonvin, V.; Dessart, L.; Diego, J.M.; et al. Constraints on the Hubble constant from supernova Refsdal’s reappearance. Science 2023, 380, 6649. [Google Scholar] [CrossRef]
- Sneppen, A.; Watson, D.; Poznanski, D.; Just, O.; Bauswein, A.; Wojtak, R. Measuring the Hubble constant with kilonovae using the expanding photosphere method. Astron. Astrophys. 2023, 678, A14. [Google Scholar] [CrossRef]
- Haug, E.G. The extremal universe exact solution from Einstein’s field equation gives the cosmological constant directly. J. High Energy Phys. Gravit. Cosmol. 2024, 10, 386. [Google Scholar] [CrossRef]
- Hawking, S. Black hole explosions. Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191. [Google Scholar] [CrossRef]
- Dhal, S.; Singh, S.; Konar, K.; Paul, R.K. Calculation of cosmic microwave background radiation parameters using cobe/firas dataset. Exp. Astron. 2023, 56, 715–726. [Google Scholar] [CrossRef]
- Fixsen, D.J.; Kogut, A.; Levin, S.; Limon, M.; Lubin, P.; Mirel, P.; Seiffert, M.; Wollack, E. The temperature of the cosmic microwave background at 10 GHz. Astrophys. J. 2004, 612, 86. [Google Scholar] [CrossRef]
- Fixsen, D.J. The temperature of the cosmic microwave background. Astrophys. J. 2009, 707, 916. [Google Scholar] [CrossRef]
- Noterdaeme, P.; Petitjean, P.; Srianand, R.; Ledoux, C.; López, S. The evolution of the cosmic microwave background temperature. Astron. Astrophys. 2011, 526, L7. [Google Scholar] [CrossRef]
- Haug, E.G. God Time = Planck Time: Finally Detected! And Its Relation to Hubble Time. Open J. Microphys. 2024, 14, 40. [Google Scholar] [CrossRef]
- Pathria, R.K. The universe as a black hole. Nature 1972, 240, 298. [Google Scholar] [CrossRef]
- Stuckey, W.M. The observable universe inside a black hole. Am. J. Phys. 1994, 62, 788. [Google Scholar] [CrossRef]
- Easson, D.A.; Brandenberger, R.H. Universe generation from black hole interiors. J. High Energy Phys. 2001, 2001, JHEP06(2001). [Google Scholar] [CrossRef]
- Christillin, P. The Machian origin of linear inertial forces from our gravitationally radiating black hole universe. Eur. Phys. J. Plus 2014, 129, 175. [Google Scholar] [CrossRef]
- Popławski, N. The universe in a black hole in Einstein–Cartan gravity. Astrophys. J. 2016, 832, 96. [Google Scholar] [CrossRef]
- Gaztanaga, E. The black hole universe, part II. Symmetry 2022, 14, 1984. [Google Scholar] [CrossRef]
- Melia, F. A comparison of the Rh=ct and Λ-CDM cosmologies using the cosmic distance duality relation. Mon. Not. R. Astron. Soc. 2018, 481, 4855. [Google Scholar] [CrossRef]
- Bekenstein, J. Black holes and the second law. Lett. Nuovo Cimento 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Hawking, S. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Haug, E.G. Cosmological scale versus Planck scale: As above, so below! Phys. Essays 2022, 35, 356–363. [Google Scholar] [CrossRef]
Property at Present | Critical Friedmann Universe | Extremal Universe |
---|---|---|
Bits per second (bps) | ||
Bits per Planck time (bpp) | ||
Bits per Planck time (bpp) | ||
Bits per Planck time (bpp) | ||
Operations since beginning | ||
of universe: | ||
Operations since beginning | ||
of universe: | ||
Operations since beginning | ||
of universe: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haug, E.G. The Planck Computer Is the Quantum Gravity Computer: We Live inside a Gigantic Computer, the Hubble Sphere Computer? Quantum Rep. 2024, 6, 482-492. https://doi.org/10.3390/quantum6030032
Haug EG. The Planck Computer Is the Quantum Gravity Computer: We Live inside a Gigantic Computer, the Hubble Sphere Computer? Quantum Reports. 2024; 6(3):482-492. https://doi.org/10.3390/quantum6030032
Chicago/Turabian StyleHaug, Espen Gaarder. 2024. "The Planck Computer Is the Quantum Gravity Computer: We Live inside a Gigantic Computer, the Hubble Sphere Computer?" Quantum Reports 6, no. 3: 482-492. https://doi.org/10.3390/quantum6030032
APA StyleHaug, E. G. (2024). The Planck Computer Is the Quantum Gravity Computer: We Live inside a Gigantic Computer, the Hubble Sphere Computer? Quantum Reports, 6(3), 482-492. https://doi.org/10.3390/quantum6030032