A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics
Abstract
:1. Introduction and Review Methodology
2. Mechanical Characterisation
2.1. Flexural Strength
2.2. Reliability
2.3. Fracture Toughness
2.4. R-Curve Behaviour
2.5. Machinability
2.6. Edge Chipping
2.7. Hardness
2.8. Research Trends in Mechanical Characterisation of Dental Ceramics
3. Tribological Characterisation
3.1. Coefficient of Friction
3.2. Worn Volume and Specific Wear Rate
3.3. Chemical Solubility
3.4. Research Trends in Tribological Characterisation of Dental Ceramics
4. Surface Topographical Characterisation
4.1. Surface Roughness
4.2. Wettability
4.3. Research Trends in Topographical Characterisation of Dental Ceramics
5. Spectrophotometric Characterisation
5.1. Colour Stability
5.2. Translucency
- The translucency parameter (TP) represents the colour difference in a ceramic over ideal white (highly reflective) backgrounds and black (highly absorbent) backgrounds, and ranges between 0 < TP < 100, wherein high TP discloses high translucency and low opacity. TP can be determined according to the CIE L*a*b* (TPab):
- 2.
- The contrast ratio (CR) is expressed as the ratio of reflectance obtained from a ceramic against a black background to that obtained from the same ceramic against a white background. CR values range between 0 (completely transparent) and 1 (completely opaque):
- 3.
- Light transmittance (T%). Here, translucency is computed by calculating the total light transmission through a ceramic sample. The absolute or total light transmittance is a sum of collimated (linear) and diffuse (scattered) transmitted light through the sample and its calculation factor, the reflected light; hence, it dictates using a double-beam spectrophotometer equipped with an integrating sphere with reflection standards. The apparent or direct light transmission (T%) does not account for the reflected light waves and is defined as ratio of transmitted light (It) passing through a material to the incident light (I0):
5.3. Absorbance
5.4. Opacity
5.5. Fluorescence
5.6. Opalescence
5.7. Whiteness
5.8. Gloss
5.9. Transmitted Irradiance
5.10. Research Trends in Spectrophotometric Characterisation of Dental Ceramics
6. Microstructural Characterisation
6.1. Scanning Electron Microscope
6.2. X-ray Diffraction
6.3. X-ray Fluorescence
6.4. X-ray Photoelectron Spectroscopy
6.5. Fourier Transform Infrared Spectroscopy
6.6. Raman Spectroscopy
6.7. Research Trends in Microstructural Characterisation of Dental Ceramics
7. Thermal Characterisation
7.1. Differential Scanning Calorimetry and Differential Thermal Analysis
7.2. Thermogravimetric Analysis
7.3. Thermal Dilatometry
7.4. Research Trends in Thermal Characterisation of Dental Ceramics
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lohbauer, U.; Belli, R. Dental Ceramics: Fracture Mechanics and Engineering Design; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- BS EN ISO 18675:2022; Dental-Machinable Ceramic Blank. International Organization for Standardization: Geneva, Switzerland, 2022.
- BS EN ISO 6872:2023; Dentistry—Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2023.
- BS EN ISO 9693:2019; Dentistry—Compatibility Testing for Metal-Ceramic and Ceramic-Ceramic Systems. International Organization for Standardization: Geneva, Switzerland, 2019.
- Sakaguchi, R.L.; Ferracane, J.; Powers, J.M. Craig’s Restorative Dental Materials-e-Book, 14th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Xu, Y.; Han, J.; Lin, H.; An, L. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics. Regen. Biomater. 2015, 2, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, T.; Parvizi, S.; Keshvad, A. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics. J. Prosthodont. 2008, 17, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Wendler, M.; Belli, R.; Petschelt, A.; Mevec, D.; Harrer, W.; Lube, T.; Danzer, R.; Lohbauer, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent. Mater. 2017, 33, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Lube, T.; Manner, M.; Danzer, R. The Miniaturisation of the 4-Point-Bend Test. Fatigue. Fract. Eng. Mater. Struct. 1997, 20, 1605–1616. [Google Scholar] [CrossRef]
- Börger, A.; Supancic, P.; Danzer, R. The ball on three balls test for strength testing of brittle discs: Stress distribution in the disc. J. Eur. Ceram. Soc. 2002, 22, 1425–1436. [Google Scholar] [CrossRef]
- Danzer, R.; Harrer, W.; Supancic, P.; Lube, T.; Wang, Z.; Börger, A. The ball on three balls test—Strength and failure analysis of different materials. J. Eur. Ceram. Soc. 2007, 27, 1481–1485. [Google Scholar] [CrossRef]
- Börger, A.; Supancic, P.; Danzer, R. The ball on three balls test for strength testing of brittle discs: Part II: Analysis of possible errors in the strength determination. J. Eur. Ceram. Soc. 2004, 24, 2917–2928. [Google Scholar] [CrossRef]
- Wiskott, H.W.; Nicholls, J.I.; Belser, U.C. Stress fatigue: Basic principles and prosthodontic implications. Int. J. Prosthodont. 1995, 8, 105–116. [Google Scholar]
- EN 843-5; Advanced Technical Ceramics, Monolithic Ceramics, Mechanical Properties at Room Temperature, Part 5: Statistical Analysis. European Committee for Standardization: Brussels, Belgium, 2007.
- Quinn, J.B.; Quinn, G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef]
- BS EN ISO 20501:2022; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics). Weibull Statistics for Strength Data; International Organization for Standardization: Geneva, Switzerland, 2022.
- Harrer, W.; Danzer, R.; Supancic, P.; Lube, T. The ball on three balls test: Strength testing of specimens of different sizes and geometries. In Proceedings of the 10th International Conference of the European Ceramic Society, Berlin, Germany, 17–21 June 2007; pp. 1271–1275. [Google Scholar]
- Quinn, G.D. Weibull strength scaling for standardized rectangular flexure specimens. J. Am. Ceram. Soc. 2003, 86, 508–510. [Google Scholar] [CrossRef]
- Alkadi, L.; Ruse, N.D. Fracture toughness of two lithium disilicate dental glass ceramics. J. Prosthet. Dent. 2016, 116, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hickel, R.; Valceanu, A.S.; Huth, K.C. Fracture toughness of dental restorative materials. Clin. Oral Investig. 2012, 16, 489–498. [Google Scholar] [CrossRef]
- Soderholm, K.J. Review of the fracture toughness approach. Dent. Mater. 2010, 26, e63–e77. [Google Scholar] [CrossRef]
- Ruse, N.D. Fracture mechanics characterization of dental biomaterials. In Dental Biomaterials; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Ruse, N.D.; Troczynski, T.; MacEntee, M.I.; Feduik, D. Novel fracture toughness test using a notchless triangular prism (NTP) specimen. J. Biomed. Mater. Res. 1996, 31, 457–463. [Google Scholar] [CrossRef]
- Žmak, I.; Ćorić, D.; Mandić, V.; Ćurković, L. Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics. Materials 2019, 13, 122. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Denry, I.L.; Wiskott, H.W. Comparison of three fracture toughness testing techniques using a dental glass and a dental ceramic. Dent. Mater. 1998, 14, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Marx, R. Fracture toughness of dental ceramics: Comparison of bending and indentation method. Dent. Mater. 2002, 18, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Lubauer, J.; Belli, R.; Peterlik, H.; Hurle, K.; Lohbauer, U. Grasping the Lithium hype: Insights into modern dental Lithium Silicate glass-ceramics. Dent. Mater. 2022, 38, 318–332. [Google Scholar] [CrossRef]
- Lube, T.; Rasche, S.; Nindhia, T.G.T. A fracture toughness test using the ball-on-three-balls test. J. Am. Ceram. Soc. 2016, 99, 249–256. [Google Scholar] [CrossRef]
- Belli, R.; Wendler, M.; Petschelt, A.; Lube, T.; Lohbauer, U. Fracture toughness testing of biomedical ceramic-based materials using beams, plates and discs. J. Eur. Ceram. Soc. 2018, 38, 5533–5544. [Google Scholar] [CrossRef]
- Strobl, S.; Rasche, S.; Krautgasser, C.; Sharova, E.; Lube, T. Fracture toughness testing of small ceramic discs and plates. J. Eur. Ceram. Soc. 2014, 34, 1637–1642. [Google Scholar] [CrossRef]
- Lubauer, J.; Ast, J.; Göken, M.; Merle, B.; Lohbauer, U.; Belli, R. Resistance-curve envelopes for dental lithium disilicate glass-ceramics. J. Eur. Ceram. Soc. 2022, 42, 2516–2522. [Google Scholar] [CrossRef]
- Lubauer, J.; Lohbauer, U.; Belli, R. Fatigue Threshold R-Curves for Dental Lithium Disilicate Glass-Ceramics. J. Dent. Res. 2023, 102, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-F.; Ma, H.-R.; He, Y.-P.; Yin, L. Soft machining-induced surface and edge chipping damage in pre-crystalized lithium silicate glass ceramics. J. Mech. Behav. Biomed. Mater. 2022, 131, 105224. [Google Scholar] [CrossRef]
- Chen, X.-P.; Xiang, Z.-X.; Song, X.-F.; Yin, L. Machinability: Zirconia-reinforced lithium silicate glass ceramic versus lithium disilicate glass ceramic. J. Mech. Behav. Biomed. Mater. 2020, 101, 103435. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.-S.; Moon, J.-M.; Lee, H.-J.; Bae, J.-M.; Choi, E.-J.; Kim, S.-T.; Park, Y.; Oh, S. Evaluation of the machinability and machining accuracy of polymer-based CAD/CAM blocks using merlon fracture test model. Dent. Mater. J. 2023, 42, 273–281. [Google Scholar] [CrossRef]
- Boccaccini, A. Machinability and brittleness of glass-ceramics. J. Mater. Process. Technol. 1997, 65, 302–304. [Google Scholar] [CrossRef]
- Lawn, B.; Marshall, D. Hardness, toughness, and brittleness: An indentation analysis. J. Am. Ceram. Soc. 1979, 62, 347–350. [Google Scholar] [CrossRef]
- Juri, A.Z.; Belli, R.; Lohbauer, U.; Ebendorff-Heidepriem, H.; Yin, L. Edge chipping damage in lithium silicate glass-ceramics induced by conventional and ultrasonic vibration-assisted diamond machining. Dent. Mater. 2023, 39, 557–567. [Google Scholar] [CrossRef]
- Quinn, J.; Quinn, G. Indentation brittleness of ceramics: A fresh approach. J. Mater. Sci. 1997, 32, 4331–4346. [Google Scholar] [CrossRef]
- Brandeburski, S.B.N.; Vidal, M.L.; Collares, K.; Zhang, Y.; Della Bona, A. Edge chipping test in dentistry: A comprehensive review. Dent. Mater. 2020, 36, e74–e84. [Google Scholar] [CrossRef]
- Pfeilschifter, M.; Preis, V.; Behr, M.; Rosentritt, M. Edge strength of CAD/CAM materials. J. Dent. 2018, 74, 95–100. [Google Scholar] [CrossRef]
- Shen, C.; Rawls, H.R.; Esquivel-Upshaw, J.F. Phillips’ Science of Dental Materials, 13th ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance-Resin composites: Part I-Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Darvell, B.W. Materials Science for Dentistry, 10th ed.; Elsevier Mosby: Philadelphia, PA, USA, 2018. [Google Scholar]
- Westrich, R.M. Use of the Scanning Electron Microscope in Microhardness Testing of High-Hardness Materials; American Society for Testing and Materials International: West Conshohocken, PA, USA, 1985. [Google Scholar]
- Shahdad, S.A.; McCabe, J.F.; Bull, S.; Rusby, S.; Wassell, R.W. Hardness measured with traditional Vickers and Martens hardness methods. Dent. Mater. 2007, 23, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Samuels, L.E. Microindentations in Metals; ASTM STP: Philadelphia, PA, USA, 1986. [Google Scholar]
- Fischer, J.; Roeske, S.; Stawarczyk, B.; Hämmerle, C.H. Investigations in the correlation between Martens hardness and flexural strength of composite resin restorative materials. Dent. Mater. J. 2010, 29, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Modern Tribology Handbook; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Hampe, R.; Lümkemann, N.; Sener, B.; Stawarczyk, B. The effect of artificial aging on Martens hardness and indentation modulus of different dental CAD/CAM restorative materials. J. Mech. Behav. Biomed. Mater. 2018, 86, 191–198. [Google Scholar] [CrossRef]
- Lohbauer, U.; Fabris, D.C.N.; Lubauer, J.; Abdelmaseh, S.; Cicconi, M.-R.; Hurle, K.; de Ligny, D.; Goetz-Neunhoeffer, F.; Belli, R. Glass science behind lithium silicate glass-ceramics. Dent. Mater. 2024, 40, 842–857. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 14569-1:2007; Dental Materials—Guidance on Testing of Wear—Part 1: Wear by Toothbrushing. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO/TS 14569-2:2001; Dental Materials—Guidance on Testing of Wear—Part 2: Wear by Two- and/or Three Body Contact. International Organization for Standardization: Geneva, Switzerland, 2001.
- Lanza, A.; Ruggiero, A.; Sbordone, L. Tribology and Dentistry: A Commentary. Lubricants 2019, 7, 52. [Google Scholar] [CrossRef]
- Carvalho, A.; Pinto, P.; Madeira, S.; Silva, F.S.; Carvalho, O.; Gomes, J.R. Tribological characterization of dental restorative materials. Biotribology 2020, 23, 100140. [Google Scholar] [CrossRef]
- Santos, M.; Coelho, A.S.; Paula, A.B.; Marto, C.M.; Amaro, I.; Saraiva, J.; Marques Ferreira, M.; Antunes, P.; Carrilho, E. Mechanical and tribological characterization of a dental ceromer. J. Funct. Biomater. 2020, 11, 11. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Chen, C.; Han, Y.; Zhou, H. Tooth Wear and Tribological Investigations in Dentistry. Appl. Bionics Biomech. 2022, 2022, 2861197. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; D, D.J.; Bomze, D.; Gopal, V. Wear behaviour of lithography ceramic manufactured dental zirconia. BMC Oral Health 2023, 23, 276. [Google Scholar] [CrossRef]
- Borrero-Lopez, O.; Guiberteau, F.; Zhang, Y.; Lawn, B.R. Wear of ceramic-based dental materials. J. Mech. Behav. Biomed. Mater. 2019, 92, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Hawsawi, R.A.; Miller, C.A.; Moorehead, R.D.; Stokes, C.W. Evaluation of reproducibility of the chemical solubility of dental ceramics using ISO 6872:2015. J. Prosthet. Dent. 2020, 124, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Valero, S.; Román-Rodriguez, J.L.; Agustín-Panadero, R.; Bellot-Arcís, C.; Fons-Font, A.; Fernández-Estevan, L. Systematic review of chewing simulators: Reality and reproducibility of in vitro studies. J. Clin. Exp. Dent. 2020, 12, e1189–e1195. [Google Scholar] [CrossRef]
- Zheng, Y.; Bashandeh, K.; Shakil, A.; Jha, S.; Polycarpou, A.A. Review of dental tribology: Current status and challenges. Tribol. Int. 2022, 166, 107354. [Google Scholar] [CrossRef]
- Bollen, C.M.; Papaioanno, W.; Van Eldere, J.; Schepers, E.; Quirynen, M.; Van Steenberghe, D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin. Oral Implants Res. 1996, 7, 201–211. [Google Scholar] [CrossRef]
- Lawson, N.C.; Janyavula, S.; Syklawer, S.; McLaren, E.A.; Burgess, J.O. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J. Dent. 2014, 42, 1586–1591. [Google Scholar] [CrossRef]
- Jones, C.; Billington, R.; Pearson, G. The in vivo perception of roughness of restorations. Br. Dent. J. 2004, 196, 42–45. [Google Scholar] [CrossRef]
- ASM. Friction, Lubrication, and Wear Technology; ASM International: Materials Park, OH, USA, 1994. [Google Scholar]
- Whitehead, S.A.; Shearer, A.C.; Watts, D.C.; Wilson, N.H. Comparison of methods for measuring surface roughness of ceramic. J. Oral Rehabil. 1995, 22, 421–427. [Google Scholar] [CrossRef]
- Tholt de Vasconcellos, B.; Miranda-Júnior, W.G.; Prioli, R.; Thompson, J.; Oda, M. Surface roughness in ceramics with different finishing techniques using atomic force microscope and profilometer. Oper. Dent. 2006, 31, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Baysan, A.; Sleibi, A.; Ozel, B.; Anderson, P. The quantification of surface roughness on root caries using Noncontact Optical Profilometry—An in vitro study. Lasers. Dent. Sci. 2018, 2, 229–237. [Google Scholar] [CrossRef]
- Theocharopoulos, A.; Zou, L.; Hill, R.; Cattell, M. Wear quantification of human enamel and dental glass–ceramics using white light profilometry. Wear 2010, 269, 930–936. [Google Scholar] [CrossRef]
- Litwin, D.; Galas, J.; Blocki, N. Variable Wavelength Profilometry. In Proceedings of the Symposium on Photonics Technologies, Wroclaw, Poland, 12–14 October 2006; pp. 476–479. [Google Scholar]
- Moldoveanu, S.C.; David, V. Selection of the HPLC Method in Chemical Analysis; Elsevier: Boston, MA, USA, 2017. [Google Scholar]
- Law, K.Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014, 5, 686–688. [Google Scholar] [CrossRef]
- Liber-Kneć, A.; Łagan, S. Surface testing of dental biomaterials—Determination of contact angle and surface free energy. Materials 2021, 14, 2716. [Google Scholar] [CrossRef]
- Alghunaim, A.; Kirdponpattara, S.; Newby, B.-m.Z. Techniques for determining contact angle and wettability of powders. Powder Technol. 2016, 287, 201–215. [Google Scholar] [CrossRef]
- Eibach, T.F.; Fell, D.; Nguyen, H.; Butt, H.-J.; Auernhammer, G.K. Measuring contact angle and meniscus shape with a reflected laser beam. Rev. Sci. Instrum. 2014, 85, 013703. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Tu, Y.; Ren, H.; He, Y.; Ying, J.; Chen, Y. Interaction between microorganisms and dental material surfaces: General concepts and research progress. J. Oral Microbiol. 2023, 15, 2196897. [Google Scholar] [CrossRef]
- Ho, G.W.; Matinlinna, J.P. Insights on ceramics as dental materials. Part II: Chemical surface treatments. Silicon 2011, 3, 117–123. [Google Scholar] [CrossRef]
- Kreve, S.; Dos Reis, A.C. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J. Esthet. Restor. Dent. 2022, 34, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Paravina, R.D.; Powers, J.M. Esthetic Color Training in Dentistry; Mosby: Maryland Heights, MI, USA; Elsevier Mosby: St. Louis, MO, USA, 2004. [Google Scholar]
- Bona, D. Color and Appearance in Dentistry; Springer International Publishing: London, UK, 2020. [Google Scholar]
- Chang, J.-Y.; Chen, W.-C.; Huang, T.-K.; Wang, J.-C.; Fu, P.-S.; Chen, J.-H.; Hung, C.-C. Evaluating the accuracy of tooth color measurement by combining the Munsell color system and dental colorimeter. Kaohsiung J. Med. Sci. 2012, 28, 490–494. [Google Scholar] [CrossRef] [PubMed]
- del Mar Pérez, M.; Ghinea, R.; Rivas, M.J.; Yebra, A.; Ionescu, A.M.; Paravina, R.D.; Herrera, L.J. Development of a customized whiteness index for dentistry based on CIELAB color space. Dent. Mater. 2016, 32, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Pecho, O.E.; Ghinea, R.; Cardona, J.C.; Pérez, M.M. Colour parameters and shade correspondence of CAD–CAM ceramic systems. J. Dent. 2015, 43, 726–734. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef]
- Chu, S.J.; Trushkowsky, R.D.; Paravina, R.D. Dental color matching instruments and systems. Review of clinical and research aspects. J. Dent. 2010, 38 (Suppl. 2), e2–e16. [Google Scholar] [CrossRef]
- Li, Q.; Yu, H.; Wang, Y.N. Spectrophotometric evaluation of the optical influence of core build-up composites on all-ceramic materials. Dent. Mater. 2009, 25, 158–165. [Google Scholar] [CrossRef]
- Chen, Y.M.; Smales, R.J.; Yip, K.H.; Sung, W.J. Translucency and biaxial flexural strength of four ceramic core materials. Dent. Mater. 2008, 24, 1506–1511. [Google Scholar] [CrossRef]
- Bayindir, F.; Kuo, S.; Johnston, W.M.; Wee, A.G. Coverage error of three conceptually different shade guide systems to vital unrestored dentition. J. Prosthet. Dent. 2007, 98, 175–185. [Google Scholar] [CrossRef]
- Lim, H.N.; Yu, B.; Lee, Y.K. Spectroradiometric and spectrophotometric translucency of ceramic materials. J. Prosthet. Dent. 2010, 104, 239–246. [Google Scholar] [CrossRef]
- Hosoya, Y.; Shiraishi, T.; Odatsu, T.; Ogata, T.; Miyazaki, M.; Powers, J.M. Effects of specular component and polishing on color of resin composites. J. Oral Sci. 2010, 52, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Kim-Pusateri, S.; Brewer, J.D.; Davis, E.L.; Wee, A.G. Reliability and accuracy of four dental shade-matching devices. J. Prosthet. Dent. 2009, 101, 193–199. [Google Scholar] [CrossRef]
- Karaagaclioglu, L.; Terzioglu, H.; Yilmaz, B.; Yurdukoru, B. In vivo and in vitro assessment of an intraoral dental colorimeter. J. Prosthodont. 2010, 19, 279–285. [Google Scholar] [CrossRef]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Schabbach, L.M.; dos Santos, B.C.; De Bortoli, L.S.; Fredel, M.C.; Henriques, B. Application of Kubelka-Munk model on the optical characterization of translucent dental zirconia. Mater. Chem. Phys. 2021, 258, 123994. [Google Scholar] [CrossRef]
- Della Bona, A.; Nogueira, A.D.; Pecho, O.E. Optical properties of CAD–CAM ceramic systems. J. Dent. 2014, 42, 1202–1209. [Google Scholar] [CrossRef]
- Barizon, K.T.; Bergeron, C.; Vargas, M.A.; Qian, F.; Cobb, D.S.; Gratton, D.G.; Geraldeli, S. Ceramic materials for porcelain veneers. Part I: Correlation between translucency parameters and contrast ratio. J. Prosthet. Dent. 2013, 110, 397–401. [Google Scholar] [CrossRef]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar]
- Lee, Y.K. Translucency of Dental Ceramic, Post and Bracket. Materials 2015, 8, 7241–7249. [Google Scholar] [CrossRef]
- Salas, M.; Lucena, C.; Herrera, L.J.; Yebra, A.; Della Bona, A.; Pérez, M.M. Translucency thresholds for dental materials. Dent. Mater. 2018, 34, 1168–1174. [Google Scholar] [CrossRef]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef]
- Brodbelt, R.; O‘brien, W.; Fan, P. Translucency of dental porcelains. J. Dent. Res. 1980, 59, 70–75. [Google Scholar] [CrossRef]
- Kim, H.-K. Optical and mechanical properties of highly translucent dental zirconia. Materials 2020, 13, 3395. [Google Scholar] [CrossRef] [PubMed]
- Pérez Gómez, M.d.M.; Ghinea, R.I.; Ionescu, A.M.A.; Pecho Yataco, O.E.; Della Bona, A. Color Science and Its Application in Dentistry; Springer International Publishing: São Paulo, Brazil, 2020. [Google Scholar]
- Ilie, N.; Furtos, G. A Comparative Study of Light Transmission by Various Dental Restorative Materials and the Tooth Structure. Oper. Dent. 2020, 45, 442–452. [Google Scholar] [CrossRef]
- Öztürk, E.; Chiang, Y.-C.; Coşgun, E.; Bolay, Ş.; Hickel, R.; Ilie, N. Effect of resin shades on opacity of ceramic veneers and polymerization efficiency through ceramics. J. Dent. 2013, 41, e8–e14. [Google Scholar] [CrossRef] [PubMed]
- Volpato, C.A.M.; Pereira, M.R.C.; Silva, F.S. Fluorescence of natural teeth and restorative materials, methods for analysis and quantification: A literature review. J. Esthet. Restor. Dent. 2018, 30, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Egen, M.; Braun, L.; Zentel, R.; Tännert, K.; Frese, P.; Reis, O.; Wulf, M. Artificial opals as effect pigments in clear-coatings. Macromol. Mater. Eng. 2004, 289, 158–163. [Google Scholar] [CrossRef]
- Cho, M.-S.; Yu, B.; Lee, Y.-K. Opalescence of all-ceramic core and veneer materials. Dent. Mater. 2009, 25, 695–702. [Google Scholar] [CrossRef]
- Lee, Y.-K. Opalescence of human teeth and dental esthetic restorative materials. Dent. Mater. J. 2016, 35, 845–854. [Google Scholar] [CrossRef]
- Pérez, M.M.; Herrera, L.J.; Carrillo, F.; Pecho, O.E.; Dudea, D.; Gasparik, C.; Ghinea, R.; Della Bona, A. Whiteness difference thresholds in dentistry. Dent. Mater. 2019, 35, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Vichi, A.; Louca, C.; Corciolani, G.; Ferrari, M. Color related to ceramic and zirconia restorations: A review. Dent. Mater. 2011, 27, 97–108. [Google Scholar] [CrossRef] [PubMed]
- The Academy of Prosthodontics; The Academy of Prosthodontics Foundation. The Glossary of Prosthodontic Terms, 9th ed.; Elsevier: St. Louis, MO, USA, 2017. [Google Scholar]
- Carrabba, M.; Vichi, A.; Vultaggio, G.; Pallari, S.; Paravina, R.; Ferrari, M. Effect of finishing and polishing on the surface roughness and gloss of feldspathic ceramic for chairside CAD/CAM systems. Oper. Dent. 2017, 42, 175–184. [Google Scholar] [CrossRef]
- Fernández-Oliveras, A.; Costa, M.F.; Yebra, A.; Rubiño, M.; Pérez, M.M. Gloss measurements and rugometric inspection in dental biomaterials. Proc. SPIE. Int. Soc. Opt. Eng. 2013, 8785, 1474–1483. [Google Scholar]
- EN ISO 2813:2014; Paints and Varnishes-Determination of Gloss Value at 20 Degrees, 60 Degrees and 85 Degrees. International Organization for Standardization: Geneva, Switzerland, 2014.
- da Costa, J.B.; Ferracane, J.L.; Amaya-Pajares, S.; Pfefferkorn, F. Visually acceptable gloss threshold for resin composite and polishing systems. J. Am. Dent. Assoc. 2021, 152, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; Fagundes, T.; Caneppele, T.; Bresciani, E. Perceptibility and Acceptability of Surface Gloss Variations in Dentistry. Oper. Dent. 2020, 45, 134–142. [Google Scholar] [CrossRef]
- Leonard, D.L.; Charlton, D.G.; Roberts, H.W.; Cohen, M.E. Polymerization efficiency of LED curing lights. J. Esthet. Restor. Dent. 2002, 14, 286–295. [Google Scholar] [CrossRef]
- Price, R.B.; Ferracane, J.L.; Hickel, R.; Sullivan, B. The light-curing unit: An essential piece of dental equipment. Int. Dent. J. 2020, 70, 407–417. [Google Scholar] [CrossRef]
- BS EN ISO 10650:2018; Dentistry-Powered Polymerization Activators. International Organization for Standardization: Geneva, Switzerland, 2018.
- Pacheco, R.R.; Carvalho, A.O.; André, C.B.; Ayres, A.P.A.; de Sá, R.B.C.; Dias, T.M.; Rueggeberg, F.A.; Giannini, M. Effect of indirect restorative material and thickness on light transmission at different wavelengths. J. Prosthodont. Res. 2019, 63, 232–238. [Google Scholar] [CrossRef]
- Price, R.B.; Felix, C.A.; Andreou, P. Effects of resin composite composition and irradiation distance on the performance of curing lights. Biomaterials 2004, 25, 4465–4477. [Google Scholar] [CrossRef]
- Vinagre, A.; Ramos, J.C.; Rebelo, C.; Basto, J.F.; Messias, A.; Alberto, N.; Nogueira, R. Pulp Temperature Rise Induced by Light-Emitting Diode Light-Curing Units Using an Ex Vivo Model. Materials. 2019, 12, 411. [Google Scholar] [CrossRef]
- Price, R.B.; Ferracane, J.L.; Shortall, A.C. Light-Curing Units: A Review of What We Need to Know. J. Dent. Res. 2015, 94, 1179–1186. [Google Scholar] [CrossRef]
- Beolchi, R.S.; Moura-Netto, C.; Palo, R.M.; Rocha Gomes Torres, C.; Pelissier, B. Changes in irradiance and energy density in relation to different curing distances. Braz. Oral Res. 2015, 29. [Google Scholar] [CrossRef] [PubMed]
- Algamaiah, H.; Silikas, N.; Watts, D.C. Polymerization shrinkage and shrinkage stress development in ultra-rapid photo-polymerized bulk fill resin composites. Dent. Mater. 2021, 37, 559–567. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Lim, B.-S.; Kim, C.-W. Influence of illuminating and viewing aperture size on the color of dental resin composites. Dent. Mater. 2004, 20, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F.; Janowski, G.M.; Ning, H.; Eberhardt, A.W. Qualitative SEM analysis of fracture surfaces for dental ceramics and polymers broken by flexural strength testing and crown compression. J. Prosthodont. 2023, 32, 100–110. [Google Scholar] [CrossRef]
- Inkson, B.J. Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Bunaciu, A.A.; UdriŞTioiu, E.G.; Aboul-Enein, H.Y. X-ray diffraction: Instrumentation and applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Jansen, D.; Goetz-Neunhoeffer, F.; Lothenbach, B.; Neubauer, J. The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD. Cem. Conc. Res. 2012, 42, 134–138. [Google Scholar] [CrossRef]
- Prince, E. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Uo, M.; Wada, T.; Sugiyama, T. Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Jpn Dent. Sci. Rev. 2015, 51, 2–9. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Leniart, A.; Lapinska, B.; Skrzypek, S.; Lukomska-Szymanska, M. Selected Spectroscopic Techniques for Surface Analysis of Dental Materials: A Narrative Review. Materials 2021, 14, 2624. [Google Scholar] [CrossRef] [PubMed]
- Sacher, E.; França, R. Surface Analysis Techniques for Dental Materials. Dent. Biomater. 2018, 2, 1–31. [Google Scholar]
- Fuss, T.; Moguš-Milanković, A.; Ray, C.S.; Lesher, C.E.; Youngman, R.; Day, D.E. Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure. J. Non-Cryst. Solids 2006, 352, 4101–4111. [Google Scholar] [CrossRef]
- Tzanakakis, E.; Kontonasaki, E.; Voyiatzis, G.; Andrikopoulos, K.; Tzoutzas, I. Surface characterization of monolithic zirconia submitted to different surface treatments applying optical interferometry and raman spectrometry. Dent. Mater. J. 2020, 39, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.S.; Barcellos, A.S.d.P.; Campos, T.M.B.; Cesar, P.F.; Amaral, M.; Kimpara, E.T. Effect of repeated firings and staining on the mechanical behavior and composition of lithium disilicate. Dent. Mater. 2020, 36, e149–e157. [Google Scholar] [CrossRef]
- Isgrò, G.; Kleverlaan, C.J.; Wang, H.; Feilzer, A.J. Thermal dimensional behavior of dental ceramics. Biomaterials 2004, 25, 2447–2453. [Google Scholar] [CrossRef] [PubMed]
- Montazerian, M.; Baino, F.; Fiume, E.; Migneco, C.; Alaghmandfard, A.; Sedighi, O.; DeCeanne, A.V.; Wilkinson, C.J.; Mauro, J.C. Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. Prog. Mater. Sci. 2023, 132, 101023. [Google Scholar] [CrossRef]
- Theodorou, G.S.; Patsiaoura, D.; Kontonasaki, E.; Chrissafis, K. Thermal Analysis of Glass-Ceramics and Composites in Biomedical and Dental Sciences. In Thermodynamics and Biophysics of Biomedical Nanosystems; Springer: Singapore, 2019. [Google Scholar]
Database | Search Terms |
---|---|
PubMed/Medline | “Dental ceramics” OR “dental materials” OR “dentistry” OR “CAD/CAM” OR “Machinable dental ceramics” OR “Pressable dental ceramics” OR “Heat pressed dental ceramics” OR “Glass-ceramics” OR “Polycrystalline ceramics” OR “Hybrid ceramics” OR “Mechanical properties” OR “Flexural strength” OR “Fracture toughness” OR “Reliability” OR “Machinability index” OR “Brittleness index” OR “R-curve behaviour” OR “Edge chipping” OR “Hardness” OR “Friction” OR “Tribology” OR “Wear resistance” OR “Abrasion resistance” OR “Chemical solubility” OR “Topography” OR “Roughness” OR “Wettability” OR “Optical properties” OR “Spectrophotometry” OR “Colour” OR “Stainability” OR “Translucency” OR “Fluorescence” OR “Opacity” OR “Opalescence” OR “Whiteness” OR “Gloss” OR “ Irradiance” OR “Spectroscopy” OR “Microscopy” OR “Crystallography” or “Fractography” OR “X-ray diffraction” OR “Differential scanning calorimetry” OR “Thermogravimetric analysis” OR “Thermal dilatometry” |
Scopus | |
Google Scholar |
Flexural Strength (σ) MPa | Fracture Toughness (KIc) MPa.m1/2 | Clinical Indication |
---|---|---|
50 | 0.7 |
|
100 | 1.0 |
|
300 | 2.0 |
|
500 | 3.5 |
|
800 | 5.0 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Johani, H.; Haider, J.; Satterthwaite, J.; Borba, M.; Silikas, N. A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics. Prosthesis 2024, 6, 1055-1090. https://doi.org/10.3390/prosthesis6050077
Al-Johani H, Haider J, Satterthwaite J, Borba M, Silikas N. A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics. Prosthesis. 2024; 6(5):1055-1090. https://doi.org/10.3390/prosthesis6050077
Chicago/Turabian StyleAl-Johani, Hanan, Julfikar Haider, Julian Satterthwaite, Marcia Borba, and Nick Silikas. 2024. "A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics" Prosthesis 6, no. 5: 1055-1090. https://doi.org/10.3390/prosthesis6050077
APA StyleAl-Johani, H., Haider, J., Satterthwaite, J., Borba, M., & Silikas, N. (2024). A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics. Prosthesis, 6(5), 1055-1090. https://doi.org/10.3390/prosthesis6050077