Prosthetist-Specific Rectification Templates Based on Artificial Intelligence for the Digital Fabrication of Custom Transtibial Sockets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digital Process to Generate a Prosthetist-Specific “Global” Template
- (1a)
- Manual data collection of training dataset
- (1b)
- Digital 3D scanning of training dataset
2.2. Unsupervised Learning of the Rectifications by an Artificial Intelligence (AI) Algorithm
3. Proof-of-Concept Assessment
3.1. Assessment of the Rectification Rule Learned by the AI
3.2. Application of the Prosthetist-Specific “Global” Template to a “New” Participant
4. Results
4.1. Assessment of the Rectification Rule Learned by the AI
4.2. Application of the Prosthetist-Specific “Global” Template to a “New” Participant
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | three dimensional |
A | distal end of the residual limb |
ADM | average displacement matrix |
AF | distal fibula |
AEs | angle errors |
AI | artificial intelligence |
CAD | computer-aided design |
CAD-CAM | computer-aided design–computer-aided manufacturing |
Digital-RP | digital-rectified positive |
FAT | anterior distal tibia |
Hand-RP | hand-rectified positive |
HF | head of the fibula |
ICP | iterative closest point algorithm |
ID | identifier |
IQR | interquartile range |
LC | lateral condyle |
LM | landmark |
MAE | mean angle error |
MAT | medial distal tibia |
MedAE | median angle error |
MC | medial condyle |
MCT | medial condyle of the tibia |
MDC | minimal detectable change |
MPT | mid-patella tendon |
MRE | mean radial error |
MedRE | median radial error |
PAD | one-third of the P-A distance—distal |
PAP | one-third of the P-A distance—proximal |
PCA | principal component analysis |
PF | popliteal fossa |
RCMs | rectification color maps |
REs | radial errors |
RP | rectified positive |
SD | standard deviation |
SVD | singular value decomposition |
SS | below semitendinosus/semimembranosus at knee flexion of 90° |
TT | tibial tuberosity |
UP | unrectified positive |
Appendix A
- Mesh Alignment Procedure in Global Coordinate System
- Identify the anatomic z-axis () passing through A and the midpoint between the MPT and PF;
- Cut the mesh with a plane passing through the MPT, perpendicular to , since only the distal part of the UP is necessary to perform the alignment;
- Identify a temporary y-axis () by tracing the normal to the plane passing through the FAT, MPT, PF, and A;
- Define the x-axis so as to be perpendicular to both the z-axis and y-temp, as follows:
- Finally, determine the definitive y-axis so as to be perpendicular to z and x-axis, as follows:
- Reference Mesh Generation
- Morphing Procedure
- First phase: the LMs and vertices of the Reference Mesh were overlapped to the respective homologous vertices of the target mesh, leading to a first approach between these two meshes.
- Second phase: an iterative closest point (ICP) optimization process was used to fit the topology of the reference mesh onto the shape of the target using RBF.
References
- Cutti, A.G.; Morosato, F.; Gentile, C.; Gariboldi, F.; Hamoui, G.; Santi, M.G.; Teti, G.; Gruppioni, E. A workflow for studying the stump-socket interface in persons with transtibial amputation through 3D thermographic mapping. Sensors 2023, 23, 5035. [Google Scholar] [CrossRef] [PubMed]
- Paterno, L.; Ibrahimi, M.; Gruppioni, E.; Menciassi, A.; Ricotti, L. Sockets for limb prostheses: A review of existing technologies and open challenges. IEEE Trans. Biomed. Eng. 2018, 65, 1996–2010. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.F.; Zhang, M.; Boone, D.A. State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: A review. J. Rehabil. Res. Dev. 2001, 38, 161–174. [Google Scholar] [PubMed]
- Safari, M.R.; Rowe, P.; McFadyen, A.; Buis, A. Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging. Sci. World J. 2013, 2013, 486146. [Google Scholar] [CrossRef] [PubMed]
- Cullen, S.; Mackay, R.; Mohagheghi, A.; Du, X. The use of smartphone photogrammetry to digitise transtibial sockets: Optimisation of method and quantitative evaluation of suitability. Sensors 2021, 21, 8405. [Google Scholar] [CrossRef]
- Olsen, J.; Turner, S.; Chadwell, A.; Dickinson, A.; Ostler, C.; Armitage, L.; McGregor, A.; Dupan, S.; Day, S. The impact of limited prosthetic socket documentation: A researcher perspective. Front. Rehabil. Sci. 2022, 3, 853414. [Google Scholar] [CrossRef]
- Fatone, S.; Johnson, W.B.; Tran, L.; Tucker, K.; Mowrer, C.; Caldwell, R. Quantification of rectifications for the Northwestern University Flexible Sub-Ischial Vacuum Socket. Prosthet. Orthot. Int. 2017, 41, 251–257. [Google Scholar] [CrossRef]
- Boone, D.A.; Burgess, E.M. Automated Fabrication of Mobility Aids: Clinical demonstration of the UCL computer aided socket design system. J. Prosthet. Orthot. 1989, 1, 187–190. [Google Scholar] [CrossRef]
- Mayo, A.L.; Gould, S.; Cimino, S.R.; Glasford, S.; Harvey, E.; Ratto, M.; Hitzig, S.L. A qualitative study on stakeholder perceptions of digital prosthetic socket fabrication for transtibial amputations. Prosthet. Orthot. Int. 2022, 46, 607–613. [Google Scholar] [CrossRef]
- Fatone, S.; Caldwell, R. Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation: Part 2 Description and preliminary evaluation. Prosthet. Orthot. Int. 2017, 41, 246–250. [Google Scholar] [CrossRef]
- Rubin, G.; Fischer, E.; Dixon, M. Prescription of above-knee and below-knee prostheses. Prosthet. Orthot. Int. 1986, 10, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Long, I. Technical Note: Allowing normal adduction of femur in above-knee amputations. Orthot. Prosthet. 1975, 29, 53–54. [Google Scholar]
- Alley, R.; Williams, T.; Albuquerque, M.; Altobelli, D. Prosthetic sockets stabilized by alternating areas of compression and release. J. Rehabil. Res. Dev. 2011, 48, 679–696. [Google Scholar] [CrossRef] [PubMed]
- Moo, E.K.; Abu Osman, N.A.; Pingguan-Murphy, B.; Wan Abas, W.A.B.; Spence, W.D.; Solomonidis, S.E. Interface pressure profile analysis for patellar tendon-bearing socket and hydrostatic socket. Acta Bioeng. Biomech. 2009, 11, 37–43. [Google Scholar]
- Söderberg, B. A new trim line concept for trans-tibial amputation prosthetic sockets. Prosthet. Orthot. Int. 2002, 26, 159–162. [Google Scholar] [CrossRef]
- Stevens, P.M.; DePalma, R.R.; Wurdeman, S.R. Transtibial socket design, interface, and suspension: A clinical practice guideline. J. Prosthet. Orthot. 2019, 31, 172–178. [Google Scholar] [CrossRef]
- Raschke, S.U. Limb Prostheses: Industry 1.0 to 4.0: Perspectives on technological advances in prosthetic care. Front. Rehabil. Sci. 2022, 3, 854404. [Google Scholar] [CrossRef]
- Steer, J.; Stocks, O.; Parsons, J.; Worsley, P.; Dickinson, A. Ampscan: A lightweight Python package for shape analysis of prosthetics and orthotics. J. Open Source Softw. 2020, 5, 2060. [Google Scholar] [CrossRef]
- Karakoç, M.; Batmaz, İ.; Sariyildiz, M.A.; Yazmalar, L.; Aydin, A.; Em, S. Sockets manufactured by CAD/CAM method have positive effects on the quality of life of patients with transtibial amputation. Am. J. Phys. Med. Rehabil. 2017, 96, 578–581. [Google Scholar] [CrossRef]
- Tay, F.E.H.; Manna, M.A.; Liu, L.X. A CASD/CASM method for prosthetic socket fabrication using the FDM technology. Rapid Prototyp. J. 2002, 8, 258–262. [Google Scholar] [CrossRef]
- Travis, R.P.; Dewar, M.E. Computer-aided socket design for trans-femoral amputees. Prosthet. Orthot. Int. 1993, 17, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Houston, V.L.; Burgess, E.M.; Childress, D.S.; Lehneis, H.R.; Mason, C.P.; Garbarini, M.A.; LaBlanc, K.P.; Boone, D.; Chan, R.B.; Harlan, J.H.; et al. Automated fabrication of mobility aids (AFMA): Below-knee CASD/CAM testing and evaluation program results. J. Rehabil. Res. Dev. 1992, 29, 78–124. [Google Scholar] [CrossRef] [PubMed]
- Engsberg, J.R.; Clynch, G.S.; Lee, A.G.; Allan, J.S.; Harder, J.A. A CAD CAM method for custom below-knee sockets. Prosthet. Orthot. Int. 1992, 16, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Torres-Moreno, R.; Saunders, C.G.; Foort, J.; Morrison, J.B. Computer-aided design and manufacture of an above-knee amputee socket. J. Biomed. Eng. 1991, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Köhler, P.; Lindh, L.; Netz, P. Comparison of CAD-CAM and hand made sockets for PTB prostheses. Prosthet. Orthot. Int. 1989, 13, 19–24. [Google Scholar] [CrossRef]
- Krouskop, T.A.; Muilenberg, A.L.; Doughtery, D.R.; Winningham, D.J. Computer-aided design of a prosthetic socket for an above-knee amputee. J. Rehabil. Res. Dev. 1987, 24, 31–38. [Google Scholar]
- van der Stelt, M.; Grobusch, M.P.; Koroma, A.R.; Papenburg, M.; Kebbie, I.; Slump, C.H.; Maal, T.J.J.; Brouwers, L. Pioneering low-cost 3D-printed transtibial prosthetics to serve a rural population in Sierra Leone—An observational cohort study. eClinicalMedicine 2021, 35, 100874. [Google Scholar] [CrossRef]
- Tsai, T.F.; Maibach, H.I. How irritant is water? An overview. Contact Dermat. 1999, 41, 311–314. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 6, D1373–D1380. [Google Scholar] [CrossRef]
- Anderson, S.; Stuckey, R.; Oakman, J. Work-related musculoskeletal injuries in prosthetists and orthotists in Australia. Int. J. Occup. Saf. Ergon. 2021, 27, 708–713. [Google Scholar] [CrossRef]
- Sidles, J.A.; Boone, D.; Harlan, J.S.; Burgess, E.M. Rectification maps: A new method for describing residual limb and socket shapes. J. Prosthet. Orthot. 1989, 1, 149–153. [Google Scholar] [CrossRef]
- Lemaire, E.D.; Johnson, F. A quantitative method for comparing and evaluating manual prosthetic socket modifications. IEEE Trans. Rehabil. Eng. 1996, 4, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, E.D.; Bexiga, P.; Johnson, F.; Solomonidis, S.E.; Paul, J.P. Validation of a quantitative method for defining CAD/CAM socket modifications. Prosthet. Orthot. Int. 1999, 23, 30–44. [Google Scholar] [CrossRef]
- Dickinson, A.S.; Diment, L.; Morris, R.; Pearson, E.; Hannett, D.; Steer, J. Characterising residual limb morphology and prosthetic socket design based on expert clinician practice. Prosthesis 2021, 3, 280–299. [Google Scholar] [CrossRef]
- Steer, J.W.; Worsley, P.R.; Browne, M.; Dickinson, A.S. Predictive prosthetic socket design: Part 1-population-based evaluation of transtibial prosthetic sockets by FEA-driven surrogate modelling. Biomech. Model. Mechanobiol. 2020, 19, 1331–1346. [Google Scholar] [CrossRef] [PubMed]
- Steer, J.W.; Grudniewski, P.A.; Browne, M.; Worsley, P.R.; Sobey, A.J.; Dickinson, A.S. Predictive prosthetic socket design: Part 2-generating person-specific candidate designs using multi-objective genetic algorithms. Biomech. Model. Mechanobiol. 2020, 19, 1347–1360. [Google Scholar] [CrossRef]
- Fernie, G.R.; Halsall, A.P.; Ruder, K. Shape sensing as an educational aid for student prosthetists. Prosthet. Orthot. Int. 1984, 8, 87–90. [Google Scholar] [CrossRef]
- Klasson, B. Computer aided design, computer aided manufacture and other computer aids in prosthetics and orthotics. Prosthet. Orthot. Int. 1985, 9, 3–11. [Google Scholar] [CrossRef]
- Gard, S. Comparative Effectiveness of Socket Casting Methods: Improving Form and Fit. Available online: https://clinicaltrials.gov/study/NCT04141748 (accessed on 16 September 2024).
- Verein Deutscher Ingenieure, e.V. VDI/VDE 2634, Optical 3D Measurement Systems—Multiple View Systems Based on Area Scanning; Engl. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Dusseldorf, Germany, 2008; Available online: https://www.vdi.de/en/home/vdi-standards/details/vdivde-2634-blatt-3-optical-3d-measuring-systems-multiple-view-systems-based-on-area-scanning (accessed on 26 March 2024).
- Cutti, A.G.; Santi, M.G.; Hansen, A.H.; Fatone, S. Accuracy, repeatability, and reproducibility of a hand-held structured-light 3D scanner across multi-site settings in lower limb prosthetics. Sensors 2024, 24, 2350. [Google Scholar] [CrossRef]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An open-source Mesh processing tool. Computing 2008, 1, 129–136. [Google Scholar]
- Schroeder, W.; Martin, K.; Lorensen, B.; Kitware Inc. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics; Kitware: New York, NY, USA, 2006. [Google Scholar]
- Qt Company Ltd. Qt for Python. Available online: https://doc.qt.io/qtforpython-6/index.html#documentation (accessed on 21 June 2023).
- Bunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comp. Vis. 1994, 13, 119–152. [Google Scholar] [CrossRef]
- Biancolini, M.E. Fast Radial Basis Functions for Engineering Applications; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Sanders, J.E.; Severance, M.R.; Allyn, K.J. Computer-socket manufacturing error: How much before it is clinically apparent? J. Rehabil. Res. Dev. 2012, 49, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.S.; Donovan-Hall, M.K.; Kheng, S.; Bou, K.; Tech, A.; Steer, J.W.; Metcalf, C.D.; Worsley, P.R. Selecting appropriate 3D scanning technologies for prosthetic socket design and transtibial residual limb shape characterization. J. Prosthet. Orthot. 2022, 34, 33–43. [Google Scholar] [CrossRef]
- Seminati, E.; Talamas, D.C.; Young, M.; Twiste, M.; Dhokia, V.; Bilzon, J.L.J. Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees’ residual limb models. PLoS ONE 2017, 12, e0184498. [Google Scholar] [CrossRef] [PubMed]
- Fernie, G.R.; Holliday, P.J. Volume fluctuations in the residual limbs of lower limb amputees. Arch. Phys. Med. Rehabil. 1982, 63, 162–165. [Google Scholar] [PubMed]
- Lilja, M.; Oberg, T. Volumetric determinations with CAD/CAM in prosthetics and orthotics: Errors of measurement. J. Rehabil. Res. Dev. 1995, 32, 141–148. [Google Scholar]
- Sanders, J.E.; Fatone, S. Residual limb volume change: Systematic review of measurement and management. J. Rehabil. Res. Dev. 2011, 48, 949–986. [Google Scholar] [CrossRef]
- Sanders, J.E.; Youngblood, R.T.; Hafner, B.J.; Cagle, J.C.; McLean, J.B.; Redd, C.B.; Dietrich, C.R.; Ciol, M.A.; Allyn, K.J. Effects of socket size on metrics of socket fit in trans-tibial prosthesis users. Med. Eng. Phys. 2017, 44, 32–43. [Google Scholar] [CrossRef]
- van Stuivenberg, C.; de Laat, F.; Meijer, R.; van Kuijk, A. Inter- and intra-observer reproducibility and validity of an indirect volume measurement in transtibial amputees. Prosthet. Orthot. Int. 2010, 34, 20–30. [Google Scholar] [CrossRef]
Participant ID | Sex (M/F) | Age (years) | Mass (kg) | Height (cm) | BMI | Race | Ethnicity | Side (R/L) | Etiology | Residual Limb Length (cm) | Residual Limb Tissue Type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Training dataset | 1 | M | 41 | 84 | 175 | 27.4 | White | Hispanic or Latino | R | Congenital | 12.5 | Firm |
2 | M | 33 | 86 | 180 | 26.5 | White | Hispanic or Latino | L | Trauma | 15.3 | Firm | |
3 | M | 23 | 60 | 180 | 18.5 | White | Hispanic or Latino | L | Trauma | 21.0 | Medium | |
4 | M | 34 | 87 | 168 | 30.8 | White | Hispanic or Latino | L | Trauma | 17.0 | Soft | |
5 | F | 64 | 76 | 178 | 24.0 | White | Hispanic or Latino | L | Trauma | 15.0 | Medium | |
6 | M | 57 | 61 | 165 | 22.4 | White | Hispanic or Latino | R | Trauma | 23.5 | Medium | |
7 | M | 37 | 55 | 174 | 18.2 | White | Hispanic or Latino | R | Trauma | 11.5 | Medium | |
8 | M | 62 | 83 | 182 | 25.1 | White | Hispanic or Latino | L | Trauma | 15.0 | Medium | |
9 | M | 63 | 88 | 175 | 28.7 | White | Hispanic or Latino | L | Trauma | 12.5 | Medium | |
10 | M | 40 | 74 | 170 | 25.6 | White | Hispanic or Latino | L | Trauma | 23.2 | Firm | |
11 | M | 48 | 97 | 185 | 28.3 | White | Hispanic or Latino | L | Congenital | 12.5 | Firm | |
12 | M | 37 | 74 | 180 | 22.8 | White | Hispanic or Latino | L | Trauma | 18.2 | Soft | |
13 | M | 58 | 76 | 165 | 27.9 | White | Hispanic or Latino | L | Trauma | 16.0 | Firm | |
14 | M | 56 | 99 | 178 | 31.2 | White | Hispanic or Latino | L | Trauma | 20.0 | Medium | |
Average (1−14) | M (93%) F (7%) | 47 | 79 | 175 | 25.5 | White (100%) | Hispanic or Latino (100%) | L (79%) R (21%) | Trauma (86%) Congenital (14%) | 16.7 | Firm (36%) Medium (50%) Soft (14%) | |
15 | M | 62 | 94 | 187 | 26.9 | White | Hispanic or Latino | L | Trauma | 14.0 | Firm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cutti, A.G.; Santi, M.G.; Hansen, A.H.; Fatone, S.; Residual Limb Shape Capture Group. Prosthetist-Specific Rectification Templates Based on Artificial Intelligence for the Digital Fabrication of Custom Transtibial Sockets. Prosthesis 2024, 6, 1149-1169. https://doi.org/10.3390/prosthesis6050083
Cutti AG, Santi MG, Hansen AH, Fatone S, Residual Limb Shape Capture Group. Prosthetist-Specific Rectification Templates Based on Artificial Intelligence for the Digital Fabrication of Custom Transtibial Sockets. Prosthesis. 2024; 6(5):1149-1169. https://doi.org/10.3390/prosthesis6050083
Chicago/Turabian StyleCutti, Andrea Giovanni, Maria Grazia Santi, Andrew H. Hansen, Stefania Fatone, and Residual Limb Shape Capture Group. 2024. "Prosthetist-Specific Rectification Templates Based on Artificial Intelligence for the Digital Fabrication of Custom Transtibial Sockets" Prosthesis 6, no. 5: 1149-1169. https://doi.org/10.3390/prosthesis6050083
APA StyleCutti, A. G., Santi, M. G., Hansen, A. H., Fatone, S., & Residual Limb Shape Capture Group. (2024). Prosthetist-Specific Rectification Templates Based on Artificial Intelligence for the Digital Fabrication of Custom Transtibial Sockets. Prosthesis, 6(5), 1149-1169. https://doi.org/10.3390/prosthesis6050083