The Role of Ankle–Foot Orthoses in Improving Gait in Children and Adolescents with Neuromotor Disability: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
- −
- P: children and adolescents (age 0–18 years) with neurological disease such as cerebral palsy or neuromuscular disease or spina bifida (excluding orthopedic diseases, cancer, and acquired brain injuries);
- −
- I: the use of any type of functional ankle–foot orthoses (solid, hinged, carbon leaf, etc.);
- −
- C: no treatment or any other treatment;
- −
- O: a change in walking performance, measured by means of any gait parameter or outcome measure to assess gait improvement after intervention, such as velocity, stride length, or any other three-dimensional gait analysis parameter, 6 min walk test (6 MWT), or 10 m walk test (10 MWT).
2.1. Data Extraction
2.2. Risk of Bias Assessment
2.3. Meta-Analysis
3. Results
3.1. Risk of Bias of Included Studies
3.2. Evidence Synthesis
3.3. Meta-Analysis Results
3.4. Undesirable Effects
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Management of Cerebral Palsy in Children: A Guide for Allied Health Professionals. Available online: http://www.health.nsw.gov.au/kidsfamilies/ (accessed on 6 August 2021).
- Faccioli, S.; Sassi, S.; Pagliano, E.; Maghini, C.; Perazza, S.; Siani, M.F.; Sgherri, G.; Farella, G.M.; Foscan, M.; Viganò, M.; et al. Care Pathways in Rehabilitation for Children and Adolescents with Cerebral Palsy: Distinctiveness of the Adaptation to the Italian Context. Children 2024, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Aboutorabi, A.; Arazpour, M.; Bani, M.A.; Saeedi, H.; Head, J.S. Efficacy of ankle foot orthoses types on walking in children with cerebral palsy: A systematic review. Ann. Phys. Rehabil. Med. 2017, 60, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Lintanf, M.; Bourseul, J.-S.; Houx, L.; Lempereur, M.; Brochard, S.; Pons, C. Effect of ankle-foot orthoses on gait, balance and gross motor function in children with cerebral palsy: A systematic review and meta-analysis. Clin. Rehabil. 2018, 32, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, J.P.; Eleeh, P.; Stark, S.; Jain, N.B. Impact of Ankle-Foot Orthosis on Gait Efficiency in Ambulatory Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2019, 98, 759–770. [Google Scholar] [CrossRef]
- Miccinilli, S.; Santacaterina, F.; Della Rocca, R.; Sterzi, S.; Bressi, F.; Bravi, M. Efficacy of Lower Limb Orthoses in the Rehabilitation of Children Affected by Cerebral Palsy: A Systematic Review. Children 2024, 11, 212. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley &Sons: Chichester, UK, 2019. [Google Scholar]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Available online: https://sites.google.com/site/riskofbiastool/welcome/home?authuser=0 (accessed on 28 February 2024).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Available online: https://www.riskofbias.info/welcome/rob-2-0-tool/rob-2-for-crossover-trials (accessed on 28 February 2024).
- StataCorp. Stata Statistical Software, Release 18; StataCorp LLC: College Station, TX, USA, 2023.
- Abel, M.F.; Juhl, G.A.; Vaughan, C.L.; Damiano, D.L. Gait assessment of fixed ankle-foot orthoses in children with spastic diplegia. Arch. Phys. Med. Rehabil. 1998, 79, 126–133. [Google Scholar] [CrossRef]
- Altschuck, N.; Bauer, C.; Nehring, I.; Böhm, H.; Jakobeit, M.; Schröder, A.S.; Mall, V.; Jung, N.H. Efficacy of prefabricated carbon-composite ankle foot orthoses for children with unilateral spastic cerebral palsy exhibiting a drop foot pattern. J. Pediatr. Rehabil. Med. 2019, 12, 171–180. [Google Scholar] [CrossRef]
- Bahramizadeh, M.; Arazpour, M.; Hutchins, S. The Effect of Modified Floor Reaction Ankle Foot Orthoses on Walking Abilities in Children with Cerebral Palsy. Iran. Rehabil. J. 2015, 13, 95–101. [Google Scholar]
- Balaban, B.; Yasar, E.; Dal, U.; Yazi˙ci˙oglu, K.; Mohur, H.; Kalyon, T.A. The effect of hinged ankle-foot orthosis on gait and energy expenditure in spastic hemiplegic cerebral palsy. Disabil. Rehabil. 2007, 29, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.C.; Russell, S.D.; Abel, M.F. The Effects of Ankle Foot Orthoses on Energy Recovery and Work During Gait in Children with Cerebral Palsy. Clin. Biomech. 2012, 27, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Böhm, H.; Matthias, H.; Braatz, F.; Döderlein, L. Effect of floor reaction ankle-foot orthosis on crouch gait in patients with cerebral palsy: What can be expected? Prosthet. Orthot. Int. 2018, 42, 245–253. [Google Scholar] [CrossRef]
- Brehm, M.; Harlaar, J.; Schwartz, M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J. Rehabil. Med. 2008, 40, 529–534. [Google Scholar] [CrossRef]
- Contini, B.G.; Bergamini, E.; Alvini, M.; Di Stanislao, E.; Di Rosa, G.; Castelli, E.; Vannozzi, G.; Camomilla, V. A wearable gait analysis protocol to support the choice of the appropriate ankle-foot orthosis: A comparative assessment in children with Cerebral Palsy. Clin. Biomech. 2019, 70, 177–185. [Google Scholar] [CrossRef]
- Crenshaw, S.; Herzog, R.; Castagno, P.; Richards, J.; Miller, F.; Michaloski, G.; Moran, E. The Efficacy of Tone-Reducing Features in Orthotics on the Gait of Children with Spastic Diplegic Cerebral Palsy. J. Pediatr. Orthop. 2000, 20, 210–216. [Google Scholar] [CrossRef]
- Danino, B.; Erel, S.; Kfir, M.; Khamis, S.; Batt, R.; Hemo, Y.; Wientroub, S.; Hayek, S. Influence of orthosis on the foot progression angle in children with spastic cerebral palsy. Gait Posture 2015, 42, 518–522. [Google Scholar] [CrossRef]
- de Souza, M.A.; Figueiredo, M.M.L.; de Baptista, C.R.d.J.A.; Aldaves, R.D.; Mattiello-Sverzut, A.C. Beneficial effects of ankle-foot orthosis daytime use on the gait of Duchenne muscular dystrophy patients. Clin. Biomech. 2016, 35, 102–110. [Google Scholar] [CrossRef]
- Dobler, F.; Cip, J.; Lengnick, H.; Alexander, N. Effects of ankle-foot orthoses on different gait patterns in children with spastic cerebral palsy: A statistical parametric mapping study. Prosthet. Orthot. Int. 2023, 47, 449–456. [Google Scholar] [CrossRef]
- Dursun, E.; Dursun, N.; Alican, D. Ankle-foot orthoses: Effect on gait in children with cerebral palsy. Disabil. Rehabil. 2002, 24, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Cimolin, V.; Rigoldi, C.; Albertini, G. Quantitative Evaluation of the Effects of Ankle Foot Orthosis on Gait in Children with Cerebral Palsy Using the Gait Profile Score and Gait Variable Scores. J. Dev. Phys. Disabil. 2016, 28, 367–379. [Google Scholar] [CrossRef]
- Hassani, S.; Roh, J.; Ferdjallah, M.; Reiners, K.; Kuo, K.; Smith, P.; Harris, G. Rehabilitative orthotics evaluation in children with diplegic cerebral palsy: Kinematics and kinetics. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 4874–4876. [Google Scholar] [CrossRef]
- Hayek, S.; Hemo, Y.; Chamis, S.; Bat, R.; Segev, E.; Wientroub, S.; Yzhar, Z. The effect of community-prescribed ankle–foot orthoses on gait parameters in children with spastic cerebral palsy. J. Child. Orthop. 2007, 1, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Jagadamma, K.C.; Coutts, F.J.; Mercer, T.H.; Herman, J.; Yirrell, J.; Forbes, L.; van der Linden, M.L. Optimising the effects of rigid ankle foot orthoses on the gait of children with cerebral palsy (CP)—An exploratory trial. Disabil. Rehabil. Assist. Technol. 2015, 10, 445–451. [Google Scholar] [CrossRef]
- Kane, K.; Musselman, K.; Lanovaz, J. O 063—Individualizing the ankle angle in an ankle-foot orthosis: Effects at the knee for children with cerebral palsy and equinus. Gait Posture 2018, 65, 128–129. [Google Scholar] [CrossRef]
- Kane, K.; Musselman, K.; Lanovaz, J. Comparison of dorsiflexion motion allowed by solid and flexible ankle-foot orthoses during gait for children with cerebral palsy and equinus. Gait Posture 2020, 81, 176–177. [Google Scholar] [CrossRef]
- Kerkum, Y.L.; Brehm, M.-A.; van Hutten, K.; Noort, J.C.v.D.; Harlaar, J.; Becher, J.G.; Buizer, A.I. Acclimatization of the gait pattern to wearing an ankle-foot orthosis in children with spastic cerebral palsy. Clin. Biomech. 2015, 30, 617–622. [Google Scholar] [CrossRef]
- Lam, W.K.; Leong, J.C.Y.; Li, Y.H.; Hu, Y.; Lu, W.W. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait Posture 2005, 22, 189–197. [Google Scholar] [CrossRef]
- Limpaninlachat, S.P.; Prasertsukdee, S.; Palisano, R.J.P.; Burns, J.; Kaewkungwal, J.; Inthachom, R. Multidimensional Effects of Solid and Hinged Ankle-Foot Orthosis in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2021, 33, 227–235. [Google Scholar] [CrossRef]
- Lindskov, L.; Huse, A.-B.; Johansson, M.; Nygård, S. Muscle activity in children with spastic unilateral cerebral palsy when walking with ankle-foot orthoses: An explorative study. Gait Posture 2020, 80, 31–36. [Google Scholar] [CrossRef]
- Liu, X.-C.; Embrey, D.; Tassone, C.; Klingbeil, F.; Marquez-Barrientos, C.; Brandsma, B.; Lyon, R.; Schwab, J.; Tarima, S.; Thometz, J. Foot and ankle joint movements inside orthoses for children with spastic CP. J. Orthop. Res. 2014, 32, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-C.; Embrey, D.; Tassone, C.; Zvara, K.; Brandsma, B.; Lyon, R.; Goodfriend, K.; Tarima, S.; Thometz, J. Long-Term Effects of Orthoses Use on the Changes of Foot and Ankle Joint Motions of Children with Spastic Cerebral Palsy. PM&R 2018, 10, 269–275. [Google Scholar] [CrossRef]
- Lucareli, P.R.G.; Lima, M.d.O.; Lucarelli, J.G.d.A.; Lima, F.P.S. Changes in joint kinematics in children with cerebral palsy while walking with and without a floor reaction ankle–foot orthosis. Clinics 2007, 62, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Joanna, M.; Magdalena, S.; Katarzyna, B.-M.; Daniel, S.; Ewa, L.-D. The Utility of Gait Deviation Index (GDI) and Gait Variability Index (GVI) in Detecting Gait Changes in Spastic Hemiplegic Cerebral Palsy Children Using Ankle-Foot Orthoses (AFO). Children 2020, 7, 149. [Google Scholar] [CrossRef]
- Melanda, A.G.; Pauleto, A.C.; Iucksch, D.D.; Cunha, R.F.M.D.; Smaili, S.M. Results of Orthoses Used on Ambulatory Patients with Bilateral Cerebral Palsy. Acta Ortop. Bras. 2020, 28, 137–141. [Google Scholar] [CrossRef]
- Meyns, P.; Kerkum, Y.; Buizer, A.; Becher, J.; Brehm, M.-A.; Harlaar, J. The effect of ankle foot orthosis stiffness on trunk movement and walking energy cost in cerebral palsy. Gait Posture 2016, 49, 2. [Google Scholar] [CrossRef]
- Mossberg, K.A.; Linton, K.A.; Friske, K. Ankle-foot orthoses: Effect on energy expenditure of gait in spastic diplegic children. Arch. Phys. Med. Rehabil. 1990, 71, 490–494. [Google Scholar]
- Oudenhoven, L.M.; Kerkum, Y.L.; Buizer, A.I.; van der Krogt, M.M. How does a systematic tuning protocol for ankle foot orthosis–footwear combinations affect gait in children in cerebral palsy? Disabil. Rehabil. 2021, 44, 6867–6877. [Google Scholar] [CrossRef]
- Õunpuu, S.; Garibay, E.; Acsadi, G.; Brimacombe, M.; Pierz, K. The impact of orthoses on gait in children with Charcot-Marie-Tooth disease. Gait Posture 2021, 85, 198–204. [Google Scholar] [CrossRef]
- Pauk, J.; Ihnatouski, M.; Daunoraviciene, K.; Laskhousky, U.; Griskevicius, J. Research of the spatial-temporal gait parameters and pressure characteristic in spastic diplegia children. Acta Bioeng. Biomech. 2016, 18, 121–129. [Google Scholar]
- Radtka, S.A.; Skinner, S.R.; Dixon, D.M.; Johanson, M.E. A comparison of gait with solid, dynamic, and no ankle-foot orthoses in children with spastic cerebral palsy. Phys. Ther. 1997, 77, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, S.; Kay, R.; Dennis, S.; Forstein, M.; Tolo, V. The effects of fixed and articulated ankle-foot orthoses on gait patterns in subjects with cerebral palsy. J. Pediatr. Orthop. 1999, 19, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Ries, A.J.; Novacheck, T.F.; Schwartz, M.H. The Efficacy of Ankle-Foot Orthoses on Improving the Gait of Children with Diplegic Cerebral Palsy: A Multiple Outcome Analysis. PM&R 2015, 7, 922–929. [Google Scholar] [CrossRef]
- Ries, A.J.; Schwartz, M.H. Ground reaction and solid ankle–foot orthoses are equivalent for the correction of crouch gait in children with cerebral palsy. Dev. Med. Child Neurol. 2019, 61, 219–2255. [Google Scholar] [CrossRef]
- Romkes, J.; Brunner, R. Comparison of a dynamic and a hinged ankle-foot orthosis by gait analysis in patients with hemiplegic cerebral palsy. Gait Posture 2002, 15, 18–24. [Google Scholar] [CrossRef]
- Romkes, J.; Hell, A.K.; Brunner, R. Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle-foot orthoses. Gait Posture 2006, 24, 467–474. [Google Scholar] [CrossRef]
- Schwarze, M.; Block, J.; Kunz, T.; Alimusaj, M.; Heitzmann, D.W.W.; Putz, C.; Dreher, T.; Wolf, S.I. The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy. Gait Posture 2019, 68, 525–530. [Google Scholar] [CrossRef]
- Schweizer, K.; Brunner, R.; Romkes, J. Upper body movements in children with hemiplegic cerebral palsy walking with and without an ankle-foot orthosis. Clin. Biomech. 2014, 29, 387–394. [Google Scholar] [CrossRef]
- Skaaret, I.; Steen, H.; Terjesen, T.; Holm, I. Impact of ankle-foot orthoses on gait 1 year after lower limb surgery in children with bilateral cerebral palsy. Prosthet. Orthot. Int. 2019, 43, 12–20. [Google Scholar] [CrossRef]
- Swinnen, E.; Baeyens, J.-P.; Van Mulders, B.; Verspecht, J.; Degelaen, M. The influence of the use of ankle-foot orthoses on thorax, spine, and pelvis kinematics during walking in children with cerebral palsy. Prosthet. Orthot. Int. 2018, 42, 208–213. [Google Scholar] [CrossRef]
- Tavernese, E.; Petrarca, M.; Rosellini, G.; Di Stanislao, E.; Pisano, A.; Di Rosa, G.; Castelli, E. Carbon Modular Orthosis (Ca.M.O.): An innovative hybrid modular ankle-foot orthosis to tune the variable rehabilitation needs in hemiplegic cerebral palsy. NeuroRehabilitation 2017, 40, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, L.; Molenaers, G.; Huenaerts, C.; Seyler, J.; Desloovere, K. Effect of dynamic orthoses on gait: A retrospective control study in children with hemiplegia. Dev. Med. Child Neurol. 2008, 50, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Wahid, F.; Begg, R.; Sangeux, M.; Halgamuge, S.; Ackland, D.C. The effects of an ankle foot orthosis on cerebral palsy gait: A multiple regression analysis. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 5509–5512. [Google Scholar] [CrossRef]
- White, H.; Barney, B.; Augsburger, S.; Miller, E.; Iwinski, H. AFOs Improve Stride Length and Gait Velocity but Not Motor Function for Most with Mild Cerebral Palsy. Sensors 2023, 23, 569. [Google Scholar] [CrossRef]
- White, H.; Jenkins, J.; Neace, W.P.; Tylkowski, C.; Walker, J. Clinically prescribed orthoses demonstrate an increase in velocity of gait in children with cerebral palsy: A retrospective study. Dev. Med. Child Neurol. 2002, 44, 227–232. [Google Scholar] [CrossRef]
- Borghi, C.; Costi, S.; Formisano, D.; Neviani, R.; Pandarese, D.; Ferrari, A. Effectiveness comparison between carbon spring and hinged ankle-foot orthoses in crouch gait treatment of children with diplegic cerebral palsy: A randomized crossover trial. Eur. J. Phys. Rehabil. Med. 2021, 57, 577–584. [Google Scholar] [CrossRef]
- Buckon, C.E.; Thomas, S.S.; Jakobson-Huston, S.; Sussman, M.; Aiona, M. Comparison of three ankle-foot orthosis configurations for children with spastic hemiplegia. Dev. Med. Child Neurol. 2001, 43, 371–378. [Google Scholar] [CrossRef]
- Buckon, C.E.; Thomas, S.S.; Jakobson-Huston, S.; Moor, M.; Sussman, M.; Aiona, M. Comparison of three ankle-foot orthosis configurations for children with spastic diplegia. Dev. Med. Child Neurol. 2004, 46, 590–598. [Google Scholar] [CrossRef]
- Carlson, W.E.; Vaughan, C.L.; Damiano, D.L.; Abel, M.F. Orthotic management of gait in spastic diplegia. Am. J. Phys. Med. Rehabil. 1997, 76, 219–225. [Google Scholar] [CrossRef]
- Kerkum, Y.L.; Buizer, A.I.; Van Den Noort, J.C.; Becher, J.G.; Harlaar, J.; Brehm, M.-A. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion. PLoS ONE 2015, 10, e0142878. [Google Scholar] [CrossRef]
- Meyns, P.; Kerkum, Y.L.; Brehm, M.A.; Becher, J.G.; Buizer, A.I.; Harlaar, J. Ankle foot orthoses in cerebral palsy: Effects of ankle stiffness on trunk kinematics, gait stability and energy cost of walking. Eur. J. Paediatr. Neurol. 2020, 26, 68–74. [Google Scholar] [CrossRef]
- Radtka, S.A.; Skinner, S.R.; Johanson, M.E. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy. Gait Posture 2005, 21, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, E.A.; Cheng, T.L.; Hogan, S.M.; Mudge, A.J.; Balassone, D.; Menezes, M.P.; Little, D.G.; Dwan, L.N.; Burns, J. Replicating and redesigning ankle-foot orthoses with 3D printing for children with Charcot-Marie-Tooth disease. Gait Posture 2022, 96, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.L.; Dryden, J.W.; Mueske, N.M.; Dennis, S.W.; Healy, B.S.; Rethlefsen, S.A. Comparison of 2 Orthotic Approaches in Children With Cerebral Palsy. Pediatr. Phys. Ther. 2015, 27, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Zelik, K.E.; Adamczyk, P.G. A unified perspective on ankle push-off in human walking. J. Exp. Biol. 2016, 219 Pt 23, 3676–3683. [Google Scholar] [CrossRef]
- Aquino, M.R.C.; Resende, R.A.; Kirkwood, R.N.; Souza, T.R.; Fonseca, S.T.; Ocarino, J.M. Spatial-temporal parameters, pelvic and lower limb movements during gait in individuals with reduced passive ankle dorsiflexion. Gait Posture 2022, 93, 32–38. [Google Scholar] [CrossRef]
- Gao, T.; Ma, Z.; Yang, N.; Zhang, S.; Shi, H.; Zhang, H.; Ren, S.; Huang, H. The relationship of peak ankle dorsiflexion angle with lower extremity biomechanics during walking. J. Foot Ankle Res. 2024, 17, e12027. [Google Scholar] [CrossRef]
- Brunner, R.; Frigo, C.A. Control of Tibial Advancement by the Plantar Flexors during the Stance Phase of Gait Depends on Knee Flexion with Respect to the Ground Reaction Force. Bioengineering 2023, 11, 41. [Google Scholar] [CrossRef]
- Degelean, M.; De Borre, L.; Salvia, P.; Pelc, K.; Kerckhofs, E.; De Meirleir, L.; Cheron, G.; Dan, B. Effect of ankle-foot orthoses on trunk sway and lower limb intersegmental coordination in children with bilateral cerebral palsy. J. Pediatr. Rehabil. Med. 2012, 5, 171–179. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Eldridge, S.; Li, T. Chapter 23: Including Variants on Randomized Trials. Cochrane Handbook. Available online: https://training.cochrane.org/handbook/current/chapter-23#section-23-2 (accessed on 10 January 2025).
- Degelaen, M. Effect of ankle-foot orthoses on motor performance in cerebral palsy. Dev. Med. Child Neurol. 2019, 61, 119–120. [Google Scholar] [CrossRef]
- Morris, C. A review of the efficacy of lower-limb orthoses used for cerebral palsy. Dev. Med. Child Neurol. 2002, 44, 205–211. [Google Scholar] [CrossRef]
- Kane, K.; Manns, P.; Lanovaz, J.; Musselman, K. Clinician perspectives and experiences in the prescription of ankle-foot orthoses for children with cerebral palsy. Physiother. Theory Pract. 2019, 35, 148–156. [Google Scholar] [CrossRef]
References | Study Design | Population | Mean Age | Diagnosis | Level of Functioning | Usage Period | Comparisons | Outcomes | Results |
---|---|---|---|---|---|---|---|---|---|
Borghi C. et al. 2021 [62] | RCT crossover | 10 (5 M, 5 F) | 11.5 ± 4 | DCP | GMFCS: II | 4 wk | HAFO vs. CAFO | 3DGA: ankle pw generation, KEn in St | Energy produced (J/kg): HAFO 6.9 IQR 5, CAFO 9.5 IQR 7.8 Energy absorbed (J/kg): HAFO 17.4 IQR 7.4, CAFO 13.8 IQR 8.3 |
Buckon CE et al. 2001 [63] | RCT crossover | 30, 21 M and 9 F | 9.4 range 5–15 yrs | HCP | Unsp | 3 mo no AFO − 3 random sequences of SAFO/HAFO/PLS, for 3 mo each | BF vs. SAFO vs. HAFO vs. PLS | 3DGA: kinematics, kinetics, STP; oxygen consumption, WEC; BOTMP, GMFM, PEDI | DF at IC (°): SAFO 2 ± 4, HAFO 3 ± 4, PLS −0.2 ± 5, BF −11 ± 6 Peak DF in ST (°): HAFO 16 ± 6, SAFO 11 ± 5, PLS 13 ± 7, BF 6 ± 5 Dynamic ankle range (°): HAFO 16 ± 4, SAFO 11 ± 3, PLS 15 ± 4, BF 26 ± 7 Peak ankle pw in ST (W/kg): SAFO 0.88 ± 0.30, HAFO 1.24 ± 0.35, PLS 1.15 ± 0.29, BF 1.41 ± 0.51 sl (m): HAFO 0.57 ± 0.09, SAFO 0.57 ± 0.10, PLS 0.59 ± 0.09, BF 0.50 ± 0.10 SL (m): HAFO 1.18 ± 0.17, SAFO 1.14 ± 0.17, PLS 1.19 ± 0.15, BF 1.01 ± 0.18 Cad (steps/min): HAFO 117 ±14, SAFO 117 ± 12, PLS 119 ± 16, BF 127 ± 17 WEC self-selected ws (J/kg): SAFO 0.258 ± 0.05, HAFO 0.257 ± 0.07, PLS 0.264 ± 0.05, BF.276 ± 0.05 WEC fast walking (J/kg): SAFO 0.259 ± 0.05, HAFO 0.250 ± 0.07, PLS 0.264 ± 0.06, BF.279 ± 0.05 |
Buckon CE et al. 2004 [64] | RCT crossover | 16, 10 M and 6 F | 8.4 ± 2.4 yrs | SDCP | GMCFS: I (4 pt)–II (12 pt) | 3 mo no AFO − 3 random sequences of SAFO/HAFO/PLS, for 3 mo each | BF vs. SAFO vs. HAFO vs. PLS | 3DGA: kinematics, kinetics, STP; oxygen consumption, WEC; BOTMP, GMFM, PEDI | Minimum pelvic tilt (°): HAFO 13.5 ± 7, PLS 16 ± 6.9, SAFO 13.4 ± 6.9, BF 14.7 ± 4.3 Minimum HF (°): HAFO 0.5 ± 7.6, PLS 3.1 ± 8.6, SAFO −0.7 ± 9.7, BF 2.6 ± 9.4 DF at IC (°): HAFO 5.4 ± 3.9, PLS 4.8 ± 4.6, SAFO 5 ± 4.5, BF −7.2 ± 13 Peak DF in ST (°): HAFO 18.6 ± 8.3, PLS 14.8 ± 7.3, SAFO 12.5 ± 5.3°, BF 5.7 ± 12.9 Peak DF time (%): HAFO 46 ± 5, PLS 38 ± 13, SAFO 36 ± 13, BF 27 ± 14 Peak DF in SW (°): HAFO 8.3 ± 5.5, PLS 6.9 ± 4.6, SAFO 7.2 ± 5.6, BF –3.6 ± 13.9 Peak KE moment early stance (Nm(kg): HAFO 0.54 ± 0.28, BF 0.33 ± 0.32 Peak DF moment early ST (Nm/kg): HAFO –0.11 ± 0.09, PLS –0.13 ± 0.12, SAFO –0.11 ± 0.09, BF 0.01 ± 0.03 Peak ankle pw in ST (W/kg): HAFO 1.18 ± 0.31, PLS 1.23 ± 0.45, SAFO 0.83 ± 0.17, BF 1.59 ± 0.51 sl (m): HAFO 0.50 ± 0.10, PLS 0.54 ± 0.08, SAFO 0.51 ± 0.10, BF 0.45 ± 0.08 SL (m): HAFO 0.99 ± 0.18, PLS 1.05 ± 0.15, SAFO 1.02 ± 0.18, BF 0.91 ± 0.15 Cad (steps/min): HAFO 118 ± 14, PLS 127 ± 22, SAFO 124 ± 15, BF 142 ± 23 WEC self-selected ws (mLO2/Kg/m): HAFO 0.363 ± 0.09, PLS 0.368 ± 0.08, SAFO 0.353 ± 0.09, BF 0.417 ± 0.11 WEC fast ws (mLO2/Kg/m): HAFO 0.360 ± 0.08, PLS 0.352 ± 0.08, SAFO 0.338 ± 0.07, BF 0.398 ± 0.10 BOTMP UL coordination: HAFO 13.5 ± 5.4, PLS 13.9 ± 5.7, SAFO 14.9 ± 4.4, BF 11.9 ± 5.6 BOTMP UL speed&dexterity: HAFO 28 ± 10.1, PLS 28.1 ± 10.7, SAFO 28.0 ± 8.8, BF 26.2 ±9.1 GMFM walking/running/jumping: HAFO 61 ± 10.9, PLS 60.8 ± 10.3, SAFO 60.6 ± 10.5, BF 57.1 ± 12 |
Carlson WE et al. 1997 [65] | RCT crossover | 11, 6 M and 5 F | 6.9 ± 2.19 yrs | SDCP | Unsp | 1 mo no AFO − 1 mo AFO or SMO − 1 mo no AFO − 1 mo AFO or SMO | AFO vs. SMO vs. BF | 3DGA: kinematics, kinetics, STP | Sagittal ankle ROM (°): 1st baseline 26.1 ± 6.6, AFO 11.9 ±3.4, 2nd baseline 24.6 ±4.4, SMO 25.4 ±6.4 Peak DF at IC (°): 1st baseline 3.8 ± 6.6, AFO 10 ±6, 2nd baseline 1.8 ±6.7, SMO 3.3 ±7 Peak ankle PF moment (Nm/kg): 1st baseline 0.85 ± 0.13, AFO 1.02 ± 0.19, 2nd baseline 0.87 ± 0.12, SMO 0.94 ± 0.11 Peak ankle pw in pSW (W/kg): 1st baseline 1.35 ± 0.35, AFO 1.05 ± 0.37, 2nd baseline 1.50 ± 0.54, SMO 1.64 ± 0.61 |
Kerkum YL et al. 2015b [66] | RCT crossover AFO-CP trial | 15, 11 M, 4 F | 10 ± 2 yrs, range 6–14 yrs | SCP | GMFCS: 2 level I, 11 level II, 2 level III | acclimatization period of 4 wk for each level of stiffness | Three level of stiffness (flexible, stiff, rigid) vAFO vs. shoes | 3DGA: kinematics, kinetics, STP, WEC | Speed (m/s): rigid 1.07, stiff 1.00, flexible 1.05, shoes 1.09 Peak KE in MSt (°): rigid 16.7 ± 10.0, stiff 18.1 ± 8.6, flexible 18.4 ± 9.3, shoes 22.7 ± 8.7 Peak KE moment in MSt (Nm/kg): rigid −0.15 ± 0.17, stiff −0.12 ± 0.15, flexible −0.07 ± 0.16, shoes 0.08 ± 0.15 Ankle RoM in stride (°): rigid 7.0 ± 2.4, stiff 15.4 ± 4.3, flexible 19.5 ± 3.9, shoes 35.4 ± 8.1 DF at IC (°): rigid 3.7 ± 2.2, stiff 2.3 ± 5.9, flexible 1.0 ± 6.1, shoes −2.6 ± 7.6 DF in MSt (°): rigid 7.9 ± 2.6, stiff 9.1 ± 5.1, flexible 9.4 ± 6.1, shoes 11.4 ± 8.4 Peak PF ankle moment in ST (Nm/kg): rigid 1.21 ± 0.18, stiff 1.21 ± 0.18, flexible 1.19 ± 0.19, shoes 0.95 ± 0.21 CoP excursion in step (mm): rigid 189 ± 38, stiff 174 ± 43, flexible 181 ± 27, shoes 126 ± 35 Ankle pw generation (W/kg): rigid 0.73, stiff 1.21 ± 0.43, flexible 1.43 ± 0.53, shoes 1.49 ± 0.71 WEC (J/Kg/m): rigid 5.5 ± 1.1, stiff 5.4 ± 1.2, flexible 5.6 ± 1.5, shoes 6.1 ± 1.7 |
Meyns P et al. 2020 [67] | RCT crossover AFO-CP trial | 15, 11 M, 4 F | 10 ± 2 yrs, range 6–14 yrs | SCP | GMFCS: 2 level I, 11 level II, 2 level III | acclimatization period of 4–6 wk for each level of stiffness | Three level of stiffness (flexible, stiff, rigid) vAFO vs. shoes | 3DGA: trunk kinematics, STP, gait stability (MoS) | Trunk Rot ROM (°): rigid 18.4 ± 4.9, stiff 15 ± 6.2, flexible 13.4 ± 5.9, shoes 11.9 ± 4.4 Trunk Lat ROM (°): rigid 20.5 ± 7.9, stiff 21.9 ± 8.5, flexible 22.6 ± 7.8, shoes 16.7 ± 6 ML_MoS (m): rigid 0.011 ± 0.019 m vs. 0.016 ± 0.021 sdML_MoS (m): rigid 0.026 ± 0.014 m vs. shoes 0.018 ± 0.011 Pearson’s correlation between netEC and Trunk ROM: tilt ROM flexible vAFO 0.68, stiff vAFO 0.69; lateroflexion ROM flexible vAFO 0.78, stiff AFO 0.81, rigid AFO 0.78; sdML_MoS flexible vAFO 0.57, rigid vAFO 0.76 |
Radtka SA et al. 2005 [68] | RCT crossover | 12, 6 M and 6 F | 7.5 ± 3.83 yrs, range 4–16 yrs | DCP | GMCFS I/II (10 pt)–III (2 pt) | SAFO (9 pt), HAFO (3 pt) (worn for ≥1 yr) − 2 wk no AFO −1 mo SAFO − 2 wk no AFO − 1 mo HAFO | SAFO and HAFO vs. BF | 3DGA: kinematics, kinetics, STP; sEMG (muscle timing in ST) | SL (cm): SAFO 86.78 ± 19.11, HAFO 89.92 ± 19.01, shoes 79.03 ± 18.46 cm) DF at IC (°): SAFO 7.09 ± 5.06, HAFO 5.37 ± 7, shoes −8.14 ± 5.46 DF in MSt (°): SAFO 10.59 ± 4.93, HAFO 11.67 ± 7, shoes 0.69 ± 4.3 DF in TSt (°): SAFO 11.50 ± 4.28, HAFO 16.13 ± 6.17, shoes −1.30 ± 6.59 Peak ankle moment at TSt (Nm/kg): SAFO 0.96 ± 0.2, HAFO 0.94 ± 0.25, shoes 0.69 ± 0.14 Peak ankle pw at TSt (W/kg): SAFO −0.60± 0.24, HAFO −0.87 ± 0.42, shoes −0.26 ± 0.33 Peak ankle pw at pSW (W/kg): SAFO 1.16 ± 0.39, HAFO 1.07 ± 0.46, shoes 1.16 ± 0.39 |
Wojciechowski EA et al. 2022 [69] | RCT crossover | 12 (6 M, 6 F) | 11.2 ± 3.6 range 5–16 yrs | CMT | Unsp | Unsp | AFO, 3D printed AFO, BF | 3DGA: kinematics, kinetics, STP, AFO’s features | Peak PF at pSW (°): AFO −4.3 ± 2.5, 3DprintedAFO −5.1 ± 3.3, shoes −15.6 ± 10.9 DF at IC (°): AFO 0 ± 3.5, 3DprintedAFO −0.6 ± 3.7, shoes −5.9 ± 7.6 Peak DF moment in LR (Nm/kg): AFO −0.3 ± 0.1, 3DprintedAFO −0.3 ± 0.1, shoes −0.1 ± 0.1 Peak PF moment in ST (Nm/kg): AFO 1.1 ± 0.3, 3DprintedAFO 1.1 ± 0.3, shoes 0.9 ± 0.3 ↓ weight (−35.2%), ↓ material (−24.4%) vs. traditional AFO |
Wren T et al. 2015 [70] | RCT crossover | 10 (6 M, 4 F) | 4–12 | 5 HCP, 5 DCP | GMFCS: I-III | 4 wk | DAFO, ADRAFO, BF | 3DGA: kinematics, kinetics, STP; OPUS, PODCI, WA | SL (m): BF 0.69 ± 0.21, DAFO 0.79 ± 0.23, ADRAFO 0.85 ± 0.2 HE ST (°): BF 7.6 ± 10.4, DAFO 5 ±9.9, ADRAFO 3.8 ±11 DF ST (°): BF −4.3 ± 11.4, DAFO 8.9 ±4.4, ADRAFO −0.4 ±8.5 DF Sw (°): BF −11.4 ± 11.5, DAFO 5.5 ±4.9, ADRAFO −4.2 ±7.2 KE ST (°): BF 10.9 ± 9.7, DAFO 12.5 ±12.1, ADRAFO 7.1 ±13.7 Peak ankle pw at pSW (W/kg): BF −1.36 ± 0.74, DAFO 0.74 ±.36, ADRAFO 1.06 ± 0.5 WA (steps/day): DAFO 5952, ADRAFO 5224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faccioli, S.; Tonini, G.; Vinante, E.; Ehsani, A.; Pellarin, E.; Cassanelli, G.; Malvicini, F.; Perazza, S.; Venturelli, F.; Guida, A.; et al. The Role of Ankle–Foot Orthoses in Improving Gait in Children and Adolescents with Neuromotor Disability: A Systematic Review and Meta-Analysis. Prosthesis 2025, 7, 13. https://doi.org/10.3390/prosthesis7010013
Faccioli S, Tonini G, Vinante E, Ehsani A, Pellarin E, Cassanelli G, Malvicini F, Perazza S, Venturelli F, Guida A, et al. The Role of Ankle–Foot Orthoses in Improving Gait in Children and Adolescents with Neuromotor Disability: A Systematic Review and Meta-Analysis. Prosthesis. 2025; 7(1):13. https://doi.org/10.3390/prosthesis7010013
Chicago/Turabian StyleFaccioli, Silvia, Giulia Tonini, Elena Vinante, Alessandro Ehsani, Eleonora Pellarin, Giuliano Cassanelli, Francesca Malvicini, Silvia Perazza, Francesco Venturelli, Andrea Guida, and et al. 2025. "The Role of Ankle–Foot Orthoses in Improving Gait in Children and Adolescents with Neuromotor Disability: A Systematic Review and Meta-Analysis" Prosthesis 7, no. 1: 13. https://doi.org/10.3390/prosthesis7010013
APA StyleFaccioli, S., Tonini, G., Vinante, E., Ehsani, A., Pellarin, E., Cassanelli, G., Malvicini, F., Perazza, S., Venturelli, F., Guida, A., & Sassi, S. (2025). The Role of Ankle–Foot Orthoses in Improving Gait in Children and Adolescents with Neuromotor Disability: A Systematic Review and Meta-Analysis. Prosthesis, 7(1), 13. https://doi.org/10.3390/prosthesis7010013