Biomechanical Analysis of Stress–Strain Distribution in the Lumbar Spine–Sacrum–Pelvis System with Emphasis on Sacroiliac Joint Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
- −
- Material properties: all materials were assumed to be homogeneous and isotropic, with known physical and mechanical properties;
- −
- Modeling framework: the analysis was performed under a physically and geometrically linear framework, assuming small deformations and displacements. This allowed for the application of Hooke’s law to describe material behavior;
- −
- Lumbosacral spine specificity: a unique aspect of the calculation involved the lumbosacral spine under conditions of increased lordosis. For this degree of lordosis, the joint cartilage in the facet joint contact zones was modeled to function minimally in reducing friction between the bones. As a result, a “bone-on-bone” contact problem was addressed, leading to stress concentration in this region.
3. Results
3.1. The Influence of Lumbar Lordosis
3.2. The Influence of Asymmetry of the Width of the Articular Gaps
3.3. The Influence of Pelvic Tilt (Lateral Angularity)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Tallawy, S.N.; Nalamasu, R.; Salem, G.I.; LeQuang, J.A.K.; Pergolizzi, J.V.; Christo, P.J. Management of musculoskeletal pain: An update with emphasis on chronic musculoskeletal pain. Pain Ther. 2021, 10, 181–209. [Google Scholar] [CrossRef]
- Adams, M.; Bogduk, M.; Burton, K.; Dolan, P. The Biomechanic of Back Pain, 2nd ed.; Churchill Livingstone: Edinburg, TX, USA, 2007; 336p. [Google Scholar]
- DePalma, M.J.; Ketchum, J.M.; Saullo, T. What is the source of chronic low back pain and does age play a role? Pain Med. 2011, 12, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Endo, K.; Suzuki, H.; Tanaka, H.; Kang, Y.; Yamamoto, K. Sagittal spinal alignment in patients with lumbar disc herniation. Eur. Spine J. 2010, 19, 435–438. [Google Scholar] [CrossRef]
- Painter, E.E.; Ogle, M.D.; Teyhen, D.S. Lumbopelvic dysfunction and stress urinary incontinence: A case report applying rehabilitative ultrasound imaging. J. Orthop. Sports Phys. Ther. 2007, 37, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Weksler, N.; Velan, G.J.; Semionov, M.; Gurevitch, B.; Klein, M.; Rozentsveig, V.; Rudich, T. The role of sacroiliac joint dysfunction in the genesis of low back pain: The obvious is not always right. Arch. Orthop. Trauma Surg. 2007, 127, 885–888. [Google Scholar] [CrossRef]
- Ayanniyi, O.; Raji, F.S.; Adegoke, B.O. Prevalence of asymptomatic sacroiliac joint dysfunction and its association with leg length discrepancies in male students in selected junior secondary schools in Ibadan. Afr. J. Med. Med. Sci. 2008, 37, 37–42. [Google Scholar] [PubMed]
- Urits, I.; Burshtein, A.; Sharma, M.; Testa, L.; Gold, P.A.; Orhurhu, V.; Viswanath, O.; Jones, M.R.; Sidransky, M.A.; Spektor, B.; et al. Low back pain, a comprehensive review: Pathophysiology, diagnosis, and treatment. Curr. Pain Headache Rep. 2019, 23, 23. [Google Scholar] [CrossRef]
- Cohen, S.P. Sacroiliac joint pain: A comprehensive review of anatomy, diagnosis, and treatment. Anesth. Analg. 2005, 101, 1440–1453. [Google Scholar] [CrossRef]
- Vleeming, A.; Albert, H.B.; Ostgaard, H.C.; Sturesson, B.; Stuge, B. European guidelines for the diagnosis and treatment of pelvic girdle pain. Eur. Spine J. 2008, 17, 794–819. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Agnish, V. Functional outcome from sacroiliac joint prolotherapy in patients with sacroiliac joint instability. Complement. Ther. Med. 2018, 37, 64–68. [Google Scholar] [CrossRef]
- Panjabi, M.M. A hypothesis of chronic back pain: Ligament subfailure injuries lead to muscle control dysfunction. Eur. Spine J. 2006, 15, 668–676. [Google Scholar] [CrossRef]
- Irwin, R.W.; Watson, T.; Minick, R.P.; Ambrosius, W.T. Age, body mass index, and gender differences in sacroiliac joint pathology. Am. J. Phys. Med. Rehabil. 2007, 86, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Mavi, A.; Gümüsburun, E.; Bayram, M.; Gürsoy, S.; Nishio, H. Anatomical variations with joint space measurements on CT. Kobe J. Med. Sci. 2007, 53, 209–217. [Google Scholar]
- Damen, L.; Buyruk, H.M.; Güler-Uysal, F.; Lotgering, F.K.; Snijders, C.J.; Stam, H.J. The prognostic value of asymmetric laxity of the sacroiliac joints in pregnancy-related pelvic pain. Spine 2002, 27, 2820–2824. [Google Scholar] [CrossRef]
- Irvin, R.E. Sub-optimal posture; the origin of the majority of the muskuloskeletal pain of the muskuloskeletal system. In Movement, Stability and Low Back Pain: The Essential Role of the Pelvis; Vleeming, A., Ed.; Churchill Livingstone: New York, NY, USA, 1997; pp. 133–155. [Google Scholar]
- Irvin, R.E. CHAPTER 16–Why and how to optimize posture. In Movement, Stability & Lumbopelvic Pain, 2nd ed.; Vleeming, A., Mooney, V., Stoeckart, R., Wilson, P., Livingstone, C., Eds.; Churchill Livingstone: London, UK, 2007; pp. 239–252. [Google Scholar] [CrossRef]
- Hodges, P.; Kaigle Holm, A.; Holm, S.; Ekstrom, L.; Cresswell, A.G.; Hansson, T.; Thorstensson, A. Intervertebral stiffness of the spine is increased by evoked contraction of transversus abdominis and the diaphragm: In vivo porcine studies. Spine 2003, 28, 2594–2601. [Google Scholar] [CrossRef]
- Ghezelbash, F.; Schmidt, H.; Shirazi-Adl, A.; El-Rich, M. Internal load-sharing in the human passive lumbar spine: Review of in vitro and finite element model studies. J. Biomech. 2020, 102, 109441. [Google Scholar] [CrossRef]
- Hodges, P.W.; Cholewicki, J.; Popovich, J.M., Jr.; Lee, A.S.; Aminpour, P.; Gray, S.A.; Cibulka, M.T.; Cusi, M.; Degenhardt, B.F.; Fryer, G.; et al. Building a collaborative model of sacroiliac joint dysfunction and pelvic girdle pain to understand the diverse perspectives of experts. PM R 2019, 11 (Suppl. S1), S11–S23. [Google Scholar] [CrossRef]
- Snijders, C.J.; Hermans, P.F.; Niesing, R.; Jan Kleinrensink, G.; Pool-Goudzwaard, A. Effects of slouching and muscle contraction on the strain of the iliolumbar ligament. Man. Ther. 2008, 13, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Pool-Goudzwaard, A.L.; Kleinrensink, G.J.; Snijders, C.J.; Entius, C.; Stoeckart, R. The sacroiliac part of the iliolumbar ligament. J. Anat. 2001, 199 Pt 4, 457–463. [Google Scholar] [CrossRef]
- Pel, J.J.; Spoor, C.W.; Pool-Goudzwaard, A.L.; Hoek van Dijke, G.A.; Snijders, C.J. Biomechanical analysis of reducing sacroiliac joint shear load by optimization of pelvic muscle and ligament forces. Ann. Biomed. Eng. 2008, 36, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.T.; Pankaj, P.; Howie, C.R.; Usmani, A.S.; Simpson, A.H. Finite element modelling of the pelvis: Inclusion of muscular and ligamentous boundary conditions. Med. Eng. Phys. 2007, 29, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Linetskiy, I.; Sutcliffe, M.; Kondratiev, A.; Demenko, V.; Linetska, L.; Yefremov, O. A novel method of load bearing ability analysis of short plateau implants placed in compromised bone. In Proceedings of the 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2–6 October 2023. [Google Scholar] [CrossRef]
- Watson, P.J.; Dostanpor, A.; Fagan, M.J.; Dobson, C.A. The effect of boundary constraints on finite element modelling of the human pelvis. Med. Eng. Phys. 2017, 43, 48–57. [Google Scholar] [CrossRef]
- Kiapour, A.; Abdelgawad, A.A.; Goel, V.K.; Souccar, A.; Terai, T.; Ebraheim, N.A. Relationship between limb length discrepancy and load distribution across the sacroiliac joint—A finite element study. J. Orthop. Res. 2012, 30, 1577–1580. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, G.; Xu, H.; Wang, F. Three-dimensional finite element analysis of the effects of ligaments on human sacroiliac joint and pelvis in two different positions. J. Biomech. Eng. 2020, 142, 081007. [Google Scholar] [CrossRef]
- Hao, Z.; Wan, C.; Gao, X.; Ji, T. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: A three-dimensional finite element model. J. Biomech. Eng. 2011, 133, 101006. [Google Scholar] [CrossRef] [PubMed]
- Eichenseer, P.H.; Sybert, D.R.; Cotton, J.R. A finite element analysis of sacroiliac joint ligaments in response to different loading conditions. Spine 2011, 36, E1446–E1452. [Google Scholar] [CrossRef] [PubMed]
- Hammer, N.; Steinke, H.; Lingslebe, U.; Bechmann, I.; Josten, C.; Slowik, V.; Böhme, J. Ligamentous influence in pelvic load distribution. Spine J. 2013, 13, 1321–1330. [Google Scholar] [CrossRef]
- Zhang, Q.; Chon, T.; Zhang, Y.; Baker, J.S.; Gu, Y. Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads. Comput. Biol. Med. 2021, 136, 104745. [Google Scholar] [CrossRef] [PubMed]
- Azadi, A.; Arjmand, N. A comprehensive approach for the validation of lumbar spine finite element models investigating post-fusion adjacent segment effects. J. Biomech. 2021, 121, 110430. [Google Scholar] [CrossRef]
- Umale, S.; Yoganandan, N.; Kurpad, S.N. Development and validation of osteoligamentous lumbar spine under complex loading conditions: A step towards patient-specific modeling. J. Mech. Behav. Biomed. Mater. 2020, 110, 103898. [Google Scholar] [CrossRef]
- Xu, M.; Yang, J.; Lieberman, I.H.; Haddas, R. Lumbar spine finite element model for healthy subjects: Development and validation. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Eremina, G.; Smolin, A.; Xie, J.; Syrkashev, V. Development of a computational model of the mechanical behavior of the L4-L5 lumbar spine: Application to disc degeneration. Materials 2022, 15, 6684. [Google Scholar] [CrossRef] [PubMed]
- Areias, B.; Caetano, S.C.; Sousa, L.C.; Parente, M.; Jorge, R.N.; Sousa, H.; Gonçalves, J.M. Numerical simulation of lateral and transforaminal lumbar interbody fusion, two minimally invasive surgical approaches. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 408–421. [Google Scholar] [CrossRef]
- Más, Y.; Gracia, L.; Ibarz, E.; Gabarre, S.; Peña, D.; Herrera, A. Finite element simulation and clinical follow-up of lumbar spine biomechanics with dynamic fixations. PLoS ONE 2017, 12, e0188328. [Google Scholar] [CrossRef] [PubMed]
- Kapandji, A.I. Rachis, ceinture pelvienne, rachis lombal, rachis dorsal, rachis cervical, tête. In Physiologie Articulaire; Maloine: Paris, France, 2017; Volume 3, p. 329. [Google Scholar]
- Staude, V.; Kondratyev, A.; Karpinsky, M. Numerical modeling and analysis of the stress-strain state in the kinematic chain «lumbar spine–sacrum–pelvis» in view of the major ligaments of the sacroiliac joint. Orthop. Traumatol. Prosthet. 2015, 1, 34–41. [Google Scholar] [CrossRef]
- Masi, A.; Benjamin, M.; Vleeming, A. Anatomical, biomechanical and clinical perspectives on sacroiliac joints: An integrative synthesis of biodynamic mechanisms related to ankylosing spondylitis. In Movement, Stability and Lumbopelvic Pain: Integration of Research and Therapy; Vleeming, A., Mooney, V., Stoeckhart, R., Eds.; Churchill Livingstone: Edinburg, TX, USA, 2007; pp. 205–227. [Google Scholar]
- Vleeming, A.; Schuenke, M.D.; Masi, A.T.; Carreiro, J.E.; Danneels, L.; Willard, F.H. The sacroiliac joint: An overview of its anatomy, function and potential clinical implications. J. Anat. 2012, 221, 537–567. [Google Scholar] [CrossRef]
- Ogurkowska, M.B.; Błaszczyk, A. Distribution of Young’s modulus at various sampling points in a human lumbar spine vertebral body. Spine J. 2020, 20, 1861–1875. [Google Scholar] [CrossRef]
- Hench, L.L. 8-The skeletal system. In Biomaterials, Biomaterials, Artificial Organs and Tissue Engineering; Hench, L.L., Jones, J.R., Eds.; Woodhead Publishing: Sawston, UK, 2005; pp. 79–89. [Google Scholar] [CrossRef]
- Korzh, M.; Staude, V.; Kondratyev, A.; Karpinsky, M. Stress-strain state of the kinematic chain «lumbar spine–sacrum–pelvis» in cases of asymmetry of articular gaps of the sacroiliac joint. Orthop. Traumatol. Prosthet. 2015, 3, 5–13. [Google Scholar] [CrossRef]
- Müller, A.; Rockenfeller, R.; Damm, N.; Kosterhon, M.; Kantelhardt, S.R.; Aiyangar, A.K.; Gruber, K. Load distribution in the lumbar spine during modeled compression depends on lordosis. Front. Bioeng. Biotechnol. 2021, 9, 661258. [Google Scholar] [CrossRef]
- Kondratiev, A.; Píštěk, V.; Smovziuk, L.; Shevtsova, M.; Fomina, A.; Kučera, P. Stress–strain behaviour of reparable composite panel with step–variable thickness. Polymers 2021, 13, 3830. [Google Scholar] [CrossRef]
- Gaidachuk, V.E.; Kondratiev, A.V.; Chesnokov, A.V. Changes in the thermal and dimensional stability of the structure of a polymer composite after carbonization. Mech. Comp. Mater. 2017, 52, 799–806. [Google Scholar] [CrossRef]
- DonTigny, R.L. Function of the lumbosacroiliac complex as a self-compensating force couple with a variable, force-dependent transverse axis: A theoretical analysis. J. Man. Manip. Ther. 1994, 2, 87–93. [Google Scholar] [CrossRef]
- DonTigny, R.L. Critical analysis of the functional dynamics of the sacroiliac joints as they pertain to normal gait. J. Orthop. Med. 2005, 27, 3–10. [Google Scholar] [CrossRef]
- Gracovetsky, S.A. Range of normality versus range of motion: A functional measure for the prevention and management of low back injury. J. Bodyw. Mov. Ther. 2010, 14, 40–49. [Google Scholar] [CrossRef]
- Vleeming, A.; Schuenke, M. Form and force closure of the sacroiliac joints. PM R 2019, 11 (Suppl. S1), S24–S31. [Google Scholar] [CrossRef]
Reference | Focus | Key Findings |
---|---|---|
[27] | Pelvic model with leg length discrepancies | Von Mises stress increased significantly in the sacroiliac joint with a 1 cm discrepancy |
[28] | Impact of ligaments on sacroiliac joint stability | Ligament dysfunction increases stress and displacement, affecting pelvic stability. |
[29] | Stress in sacroiliac joint ligaments under vertical load | Highest stress values were found in the sacroiliac and iliolumbar ligaments |
[30] | Stress in interosseous sacroiliac joint ligaments | Interosseous sacroiliac ligaments experience maximum stress during vertical loading |
[31] | Role of ligaments in sacroiliac joint stability | Interosseous, posterior sacroiliac, and iliolumbar ligaments stabilize the pelvic ring under load |
[32] | Lumbar spine under six movements | Rotational movements produce the highest stress in intervertebral discs, increasing injury risk |
[33] | Finite element models validation for lumbar spine | Comprehensive validation of finite element models under various loading conditions |
[34] | Loading conditions in lumbar finite element models | Models validated under pure-moment, pure-compression, and combined-loading scenarios |
[35] | Finite element modeling of lumbar spine pathologies | Developed models for disc degeneration and scoliosis analysis |
[36] | Degeneration in LIV-LV segment | Early degeneration increases stress; advanced stages shift stress toward the dorsal side |
[37] | Lumbar surgical techniques comparison | Stability differences between lateral and transforaminal lumbar interbody fusion techniques |
[38] | Fixation approaches in LIV-LV level | Variations in biomechanical behavior between healthy and fixed lumbar spine models |
Biological Tissues | Modulus of Elasticity, MPa | Poisson’s Ratio |
---|---|---|
Cancellous bone | 690 | 0.35 |
Cortical bone | 6900 | 0.32 |
Intervertebral disc | 50 | 0.35 |
Cartilages | 50 | 0.35 |
Ligaments | 164 | 0.48 |
Iliolumbar | Sacrospinous | Sacrotuberous | Ventral Sacroiliac | Iliotransverse | Dorsal Sacroiliac | ||||
---|---|---|---|---|---|---|---|---|---|
Cranially | Medially | Caudally | Cranially | Medially | Caudally | ||||
normal physiological value of lumbar lordosis (SS = 60°) | |||||||||
4.25 | 0.99 | 0.76 | 5.00 | 3.75 | 3.75 | 4.17 | 5.00 | 3.30 | 1.65 |
vertical sacrum and smoothed lordosis (SS = 30°) | |||||||||
0.68 | 0.65 | 0.3 | 3.00 | 3.00 | 3.00 | 2.25 | 2.25 | 2.00 | 1.5 |
horizontal sacrum and hyperlordosis (SS = 85°) | |||||||||
7.2 | 1.3 | 1.5 | 9.16 | 5.34 | 4.5 | 6.87 | 9.16 | 6.11 | 2.29 |
ligaments of the sacroiliac joints | |||||||||||||||
symmetrical articular gaps | |||||||||||||||
ventral | dorsal | iliotransverse | interosseous | ||||||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | ||||||||
1.22 | 0.50 | 1.36 | 1.30 | 0.95 | 0.5 | 1.09 | 0.7 | ||||||||
cartilages of sacroiliac joints | iliolumbar ligament | sacrospinous | sacrotuberous | ||||||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | ||||||||
0.63 | 2.2 | 1.28 | 0.65 | 0.37 | 0.18 | 0.27 | 0.13 | ||||||||
asymmetrical articular gaps | |||||||||||||||
ventral | dorsal | iliotransverse | interosseous | ||||||||||||
left | right | left | right | left | right | left | right | ||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % |
1.32 | 0.9 | 1.09 | 1.2 | 1.82 | 0.90 | 1.46 | 1.5 | 1.3 | 0.9 | 0.73 | 1.00 | 1.14 | 06 | 1.27 | 1.1 |
cartilages of sacroiliac joints | iliolumbar ligament | sacrospinous | sacrotuberous | ||||||||||||
left | right | left | right | left | right | left | right | ||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % |
0.64 | 3.00 | 0.62 | 1.5 | 1.24 | 0.6 | 1.82 | 1.00 | 0.39 | 0.2 | 0.52 | 0.35 | 0.24 | 0.12 | 0.43 | 0.20 |
ligaments of the sacroiliac joints | |||||||||||||||
the normal state of the sacroiliac joint | |||||||||||||||
ventral | dorsal | iliotransverse | interosseous | ||||||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | ||||||||
0.95 | 0.50 | 1.22 | 1.10 | 0.41 | 0.5 | 0.55 | 0.7 | ||||||||
cartilages of sacroiliac joints | iliolumbar ligament | sacrospinous | sacrotuberous | ||||||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | ||||||||
0.63 | 2.2 | 1.28 | 0.65 | 0.37 | 0.18 | 0.27 | 0.13 | ||||||||
with with with the tilt of the pelvis (lateral angularity) | |||||||||||||||
ventral | dorsal | iliotransverse | interosseous | ||||||||||||
left | right | left | right | left | right | left | right | ||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % |
1.26 | 0.7 | 0.77 | 1.7 | 1.54 | 1.10 | 0.77 | 3.00 | 1.0 | 0.7 | 0.60 | 1.40 | 0.98 | 0.7 | 0.77 | 2.4 |
cartilages of sacroiliac joints | iliolumbar ligament | sacrospinous | sacrotuberous | ||||||||||||
left | right | left | right | left | right | left | right | ||||||||
σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % | σ, Mpa | ε, % |
0.71 | 2.00 | 0.56 | 4.1 | 3.23 | 1.0 | 2.44 | 1.00 | 0.45 | 0.18 | 0.31 | 0.16 | 0.41 | 0.14 | 0.23 | 0.097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratiev, A.; Smetankina, N.; Staude, V. Biomechanical Analysis of Stress–Strain Distribution in the Lumbar Spine–Sacrum–Pelvis System with Emphasis on Sacroiliac Joint Dysfunction. Prosthesis 2025, 7, 4. https://doi.org/10.3390/prosthesis7010004
Kondratiev A, Smetankina N, Staude V. Biomechanical Analysis of Stress–Strain Distribution in the Lumbar Spine–Sacrum–Pelvis System with Emphasis on Sacroiliac Joint Dysfunction. Prosthesis. 2025; 7(1):4. https://doi.org/10.3390/prosthesis7010004
Chicago/Turabian StyleKondratiev, Andrii, Natalia Smetankina, and Volodymyr Staude. 2025. "Biomechanical Analysis of Stress–Strain Distribution in the Lumbar Spine–Sacrum–Pelvis System with Emphasis on Sacroiliac Joint Dysfunction" Prosthesis 7, no. 1: 4. https://doi.org/10.3390/prosthesis7010004
APA StyleKondratiev, A., Smetankina, N., & Staude, V. (2025). Biomechanical Analysis of Stress–Strain Distribution in the Lumbar Spine–Sacrum–Pelvis System with Emphasis on Sacroiliac Joint Dysfunction. Prosthesis, 7(1), 4. https://doi.org/10.3390/prosthesis7010004