Response of Tropical Cyclone Frequency to Sea Surface Temperatures Using Aqua-Planet Simulations
Abstract
:1. Introduction
2. Materials and Methods
- absolute vorticity at 850 hPa higher than a threshold of 1 × 10−5 s−1;
- mean wind speed at 850 hPa within a 700 km box region around the detected center of the storm should be higher than at 300 hPa by at least 3 m s−1;
- 10 m wind speed should be greater than the resolution-dependent threshold of 16.5 m s−1 [59] for the 40 km resolution model used here. For a storm to be declared a TC, the minimum duration of satisfying the above thresholds is 48 h.
- identification of the grid points that satisfy the initial thresholds (Table S1 of the supporting information) and merging nearby grid points into a single clump; and
- tracking these clumps forward in time until there exists no circulation by using the storm position determined by the 700 hPa steering wind. These clump positions along the track are verified by specified core thresholds (Table S1) and are indicated by True (satisfies the thresholds) and False (does not satisfy the thresholds). A particular track is considered as a TC if it satisfies the conditions for a period of 48 h, that is five consecutive True positions (Figure S1). The fifth True position is considered as the TC genesis location (Bell et al., 2018 [61]). The time interval of the data is 12 h.
3. Results
3.1. Mean Annual Frequency
3.2. Geographical Distribution of TC Genesis Frequency
3.3. TC Lifetime and Tracks
3.4. Changes in the Large-Scale Environmental Conditions for the Constant SST Experiments
3.5. Classification of the TCs in the SST25 and SST30 Experiments
3.6. Developing Versus Non-Developing Tropical Depressions
3.7. Changes in the Large-Scale Environmental Conditions for Both Developing and Non-Developing Circulations
4. Discussion
5. Conclusions
- (i)
- (ii)
- Although the TCs within the ACCESS model have weaker intensity than in observations, we observe an increase in the frequency of the intense storms with increasing SSTs using both tracking schemes (Figure 1).
- (iii)
- We observe a reduction in the global mean detections of both developing (TCs) and non-developing tropical depressions with increasing SSTs (Table 1), suggesting that there may be a reduction in the frequency of the weaker storms in a future climate.
- (iv)
- At higher latitudes, which have higher stability compared to the lower latitudes in the SST30 experiment (Figure 7), we notice that the individual TC circulations have higher values of OW and lower values of omega (Figure 8). This result suggests that under more stable atmospheric conditions with increased values of saturation deficit, those initial vortices that have higher strength are more likely to develop into TCs compared to low-strength vortices.
- (v)
- In the OWZP scheme, the TC formation decreases a little in the 0–25º latitude band (Figure 4a), accompanied by lower values of low-level RH, higher omega (i.e., lower values of upward mass flux), higher saturation deficit, and higher atmospheric stability with increasing temperatures (Figure 7 and Figure 8). This result is consistent with earlier hypotheses relating TC formation to reduced upward mass flux and increased saturation deficit. This indicates that in the lower latitudes under increased SSTs, the increased stability of the atmosphere with increasing saturation deficit and reduced upward mass flux led to a decrease in the TC frequency.
- (vi)
- (vii)
- The low-level OW parameter and 500 hPa omega act as significant influencing variables leading to the development of an initial vortex to a TC. The non-developing cases have significantly lower values of OW and upward mass flux (increased omega) compared to the developing cases (Figure 11).
- (viii)
- Overall, the latitudinal variations in the large-scale environmental conditions account for the latitudinal differences in the TC frequency in the OWZP scheme.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
C4.5 Classification Algorithm
References
- Bell, R.; Strachan, J.; Vidale, P.L.; Hodges, K.; Roberts, M. Response of Tropical Cyclones to Idealized Climate Change Experiments in a Global High-Resolution Coupled General Circulation Model. J. Clim. 2013, 26, 7966–7980. [Google Scholar] [CrossRef]
- Camargo, S.J.; Wing, A.A. Tropical cyclones in climate models. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 211–237. [Google Scholar] [CrossRef]
- Raavi, P.H.; Walsh, K. Sensitivity of Tropical Cyclone Formation to Resolution-Dependent and Independent Tracking Schemes in High-Resolution Climate Model Simulations. Earth Space Sci. 2020, 7, e2019EA000906. [Google Scholar] [CrossRef] [Green Version]
- Shaevitz, D.A.; Camargo, S.J.; Sobel, A.H.; Jonas, J.A.; Kim, D.; Kumar, A.; LaRow, T.E.; Lim, Y.K.; Murakami, H.; Reed, K.A.; et al. Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst. 2014, 6, 1154–1172. [Google Scholar] [CrossRef]
- Sharmila, S.; Walsh, K.J.E.; Thatcher, M.; Wales, S.; Utembe, S. Real world and tropical cyclone world. Part I: High-resolution climate model verification. J. Clim. 2020, 33, 1455–1472. [Google Scholar] [CrossRef]
- Strachan, J.; Vidale, P.L.; Hodges, K.I.; Roberts, M.; Demory, M.-E. Investigating Global Tropical Cyclone Activity with a Hierarchy of AGCMs: The Role of Model Resolution. J. Clim. 2013, 26, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Tory, K.J.; Chand, S.S.; Dare, R.A.; McBride, J.L. An Assessment of a Model-, Grid-, and Basin-Independent Tropical Cyclone Detection Scheme in Selected CMIP3 Global Climate Models. J. Clim. 2013, 26, 5508–5522. [Google Scholar] [CrossRef]
- Tory, K.J.; Chand, S.S.; McBride, J.L.; Ye, H.; Dare, R.A. Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Clim. 2013, 26, 9946–9959. [Google Scholar] [CrossRef]
- Walsh, K.J.; Camargo, S.J.; Vecchi, G.A.; Daloz, A.S.; Elsner, J.; Emanuel, K.; Horn, M.; Lim, Y.K.; Roberts, M.; Patricola, C.; et al. Hurricanes and climate: The US CLIVAR working group on hurricanes. Bull. Am. Meteorol. Soc. 2015, 96, 997–1017. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; Sharmila, S.; Thatcher, M.; Wales, S.; Utembe, S.; Vaughan, A. Real World and Tropical Cyclone World. Part II: Sensitivity of Tropical Cyclone Formation to Uniform and Meridionally Varying Sea Surface Temperatures under Aquaplanet Conditions. J. Clim. 2020, 33, 1473–1486. [Google Scholar] [CrossRef]
- Zhao, M.; Held, I.M.; Lin, S.-J.; Vecchi, G. Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM. J. Clim. 2009, 22, 6653–6678. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Emanuel, K.A. The Maximum Intensity of Hurricanes. J. Atmos. Sci. 1988, 45, 1143–1155. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Camargo, S.J.; Tippett, M.K.; Sobel, A.H.; Vecchi, G.A.; Zhao, M. Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. J. Clim. 2014, 27, 9171–9196. [Google Scholar] [CrossRef]
- Walsh, K.J.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holland, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.C.; Sobel, A.; et al. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Chavas, D.R.; Reed, K.A. Dynamical Aquaplanet Experiments with Uniform Thermal Forcing: System Dynamics and Implications for Tropical Cyclone Genesis and Size. J. Atmos. Sci. 2019, 76, 2257–2274. [Google Scholar] [CrossRef]
- Vu, T.; Kieu, C.; Chavas, D.; Wang, Q. A Numerical Study of the Global Formation of Tropical Cyclones. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002207. [Google Scholar] [CrossRef]
- Davis, C.A. The formation of moist vortices and tropical cyclones in idealized simulations. J. Atmos. Sci. 2015, 72, 3499–3516. [Google Scholar] [CrossRef]
- Held, I.M.; Zhao, M. Horizontally Homogeneous Rotating Radiative–Convective Equilibria at GCM Resolution. J. Atmos. Sci. 2008, 65, 2003–2013. [Google Scholar] [CrossRef]
- Khairoutdinov, M.; Emanuel, K. Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst. 2013, 5, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.R.; Tuleya, R.E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 2004, 17, 3477–3495. [Google Scholar] [CrossRef] [Green Version]
- Murthy, V.S.; Boos, W.R. Role of Surface Enthalpy Fluxes in Idealized Simulations of Tropical Depression Spinup. J. Atmos. Sci. 2018, 75, 1811–1831. [Google Scholar] [CrossRef]
- Nolan, D.S.; Rappin, E.D.; Emanuel, K.A. Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Q. J. R. Meteorol. Soc. 2007, 133, 2085–2107. [Google Scholar] [CrossRef] [Green Version]
- Nolan, D.S.; Rappin, E.D. Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett. 2008, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wing, A.A.; Camargo, S.; Sobel, A. Role of Radiative–Convective Feedbacks in Spontaneous Tropical Cyclogenesis in Idealized Numerical Simulations. J. Atmos. Sci. 2016, 73, 2633–2642. [Google Scholar] [CrossRef]
- Zhou, W.; Held, I.M.; Garner, S.T. Parameter Study of Tropical Cyclones in Rotating Radiative—Convective Equilibrium with Column Physics and Resolution of a 25-km GCM. J. Atmos. Sci. 2014, 71, 1058–1069. [Google Scholar] [CrossRef]
- Chavas, D.R.; Emanuel, K. Equilibrium Tropical Cyclone Size in an Idealized State of Axisymmetric Radiative–Convective Equilibrium. J. Atmos. Sci. 2014, 71, 1663–1680. [Google Scholar] [CrossRef]
- Hayashi, Y.-Y.; Sumi, A. The 30–40 day oscillations simulated in an “aqua planet” model. J. Meteorol. Soc. Jpn. 1986, 64, 451–467. [Google Scholar] [CrossRef] [Green Version]
- Merlis, T.M.; Held, I.M. Aquaplanet Simulations of Tropical Cyclones. Curr. Clim. Chang. Rep. 2019, 5, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Merlis, T.M.; Zhao, M.; Held, I.M. The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations. Geophys. Res. Lett. 2013, 40, 4109–4114. [Google Scholar] [CrossRef] [Green Version]
- Ballinger, A.; Merlis, T.M.; Held, I.M.; Zhao, M. The Sensitivity of Tropical Cyclone Activity to Off-Equatorial Thermal Forcing in Aquaplanet Simulations. J. Atmos. Sci. 2015, 72, 2286–2302. [Google Scholar] [CrossRef]
- Merlis, T.M.; Zhou, W.; Held, I.M.; Zhao, M. Surface temperature dependence of tropical cyclone-permitting simulations in a spherical model with uniform thermal forcing. Geophys. Res. Lett. 2016, 43, 2859–2865. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Bretherton, C.S. Large-scale character of an atmosphere in rotating radiative-convective equilibrium. J. Adv. Model. Earth Syst. 2014, 6, 616–629. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.A.; Chavas, D.R. Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst. 2015, 7, 1938–1955. [Google Scholar] [CrossRef]
- Dunkerton, T.J.; Montgomery, M.T.; Wang, Z. Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. 2009, 9, 5587–5646. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Montgomery, M.T.; Fritz, C. A First Look at the Structure of the Wave Pouch during the 2009 PREDICT–GRIP Dry Runs over the Atlantic. Mon. Weather. Rev. 2012, 140, 1144–1163. [Google Scholar] [CrossRef] [Green Version]
- Tory, K.J.; Dare, R.A.; Davidson, N.E.; McBride, J.L.; Chand, S.S. The importance of low-deformation vorticity in tropical cyclone formation. Atmos. Chem. Phys. 2013, 13, 2115–2132. [Google Scholar] [CrossRef] [Green Version]
- Tory, K.J.; Ye, H.; Dare, R.A. Understanding the geographic distribution of tropical cyclone formation for applications in climate models. Clim. Dyn. 2018, 50, 2489–2512. [Google Scholar] [CrossRef]
- Kirtman, B.P.; Schneider, E.K. A spontaneously generated tropical atmospheric general circulation. J. Atmos. Sci. 2000, 57, 2080–2093. [Google Scholar] [CrossRef]
- Ullrich, P.A.; Zarzycki, C.M. TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev. 2017, 10, 1069–1090. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Delworth, T.L.; Murakami, H.; Underwood, S.D.; Wittenberg, A.T.; Zeng, F.; Zhang, W.; Baldwin, J.W.; Bhatia, K.T.; Cooke, W.; et al. Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn. 2019, 53, 5999–6033. [Google Scholar] [CrossRef] [Green Version]
- Sugi, M.; Yamada, Y.; Yoshida, K.; Mizuta, R.; Nakano, M.; Kodama, C.; Satoh, M. Future Changes in the Global Frequency of Tropical Cyclone Seeds. SOLA 2020, 16, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Kodama, C.; Satoh, M.; Sugi, M.; Roberts, M.J.; Mizuta, R.; Noda, A.T.; Nasuno, T.; Nakano, M.; Vidale, P.L. Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations. Prog. Earth Planet. Sci. 2021, 8, 11. [Google Scholar] [CrossRef]
- Hsieh, T.-L.; Vecchi, G.A.; Yang, W.; Held, I.M.; Garner, S.T. Large-scale control on the frequency of tropical cyclones and seeds: A consistent relationship across a hierarchy of global atmospheric models. Clim. Dyn. 2020, 55, 3177–3196. [Google Scholar] [CrossRef]
- Tang, B.; Emanuel, K. A Ventilation Index for Tropical Cyclones. Bull. Am. Meteorol. Soc. 2012, 93, 1901–1912. [Google Scholar] [CrossRef]
- Horn, M.; Walsh, K.; Zhao, M.; Camargo, S.J.; Scoccimarro, E.; Murakami, H.; Wang, H.; Ballinger, A.; Kumar, A.; Shaevitz, D.A.; et al. Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Clim. 2014, 27, 9197–9213. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.; O’Farrell, S.; Rashid, H.; Uotila, P.; Hirst, A.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 2013, 63, 41–64. [Google Scholar] [CrossRef]
- Best, M.J.; Pryor, M.; Clark, D.B.; Rooney, G.G.; Essery, R.; Ménard, C.B.; Edwards, J.M.; Hendry, M.A.; Porson, A.; Gedney, N.; et al. The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev. 2011, 4, 677–699. [Google Scholar] [CrossRef] [Green Version]
- Walters, D.; Brooks, M.; Boutle, I.; Melvin, T.; Stratton, R.; Vosper, S.; Wells, H.; Williams, K.; Wood, N.; Allen, T.; et al. The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.R.; Bushell, A.C.; Kerr-Munslow, A.M.; Price, J.D.; Morcrette, C.J. PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Q. J. R. Meteorol. Soc. 2008, 134, 2093–2107. [Google Scholar] [CrossRef]
- Edwards, J.M.; Slingo, A. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 1996, 122, 689–719. [Google Scholar] [CrossRef]
- Lock, A.P.; Brown, A.R.; Bush, M.R.; Martin, G.M.; Smith, R.N.B. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Weather Rev. 2000, 128, 3187–3199. [Google Scholar] [CrossRef]
- Lock, A.P. The Numerical Representation of Entrainment in Parameterizations of Boundary Layer Turbulent Mixing. Mon. Weather Rev. 2001, 129, 1148–1163. [Google Scholar] [CrossRef]
- Brown, A.R.; Beare, R.J.; Edwards, J.M.; Lock, A.P.; Keogh, S.J.; Milton, S.F.; Walters, D. Upgrades to the Boundary-Layer Scheme in the Met Office Numerical Weather Prediction Model. Bound.-Layer Meteorol. 2008, 128, 117–132. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; Fiorino, M.; Landsea, C.W.; McInnes, K.L. Objectively Determined Resolution-Dependent Threshold Criteria for the Detection of Tropical Cyclones in Climate Models and Reanalyses. J. Clim. 2007, 20, 2307–2314. [Google Scholar] [CrossRef]
- Tory, K.J.; Chand, S.S.; Dare, R.A.; McBride, J.L. The Development and Assessment of a Model-, Grid-, and Basin-Independent Tropical Cyclone Detection Scheme. J. Clim. 2013, 26, 5493–5507. [Google Scholar] [CrossRef]
- Bell, S.S.; Chand, S.S.; Tory, K.J.; Turville, C. Statistical Assessment of the OWZ Tropical Cyclone Tracking Scheme in ERA-Interim. J. Clim. 2018, 31, 2217–2232. [Google Scholar] [CrossRef]
- Raavi, P.H.; Walsh, K.J.E. Basinwise statistical analysis of factors limiting tropical storm formation from an initial tropical circulation. J. Geophys. Res. Atmos. 2020, 125, e2019JD032006. [Google Scholar] [CrossRef]
- Quinlan, J. Decision trees as probabilistic classifiers. In Proceedings of the Fourth International Workshop on Machine Learning, Irvine, CA, USA, 22–25 June 1987; pp. 31–37. [Google Scholar]
- Sharmila, S.; Walsh, K.J.E. Recent poleward shift of tropical cyclone formation and its link to tropical expansion. Nat. Clim. Chang. 2018, 8, 730–736. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: College Park, MD, USA, 1992; 520p. [Google Scholar]
- Holland, G.J. Tropical Cyclone Motion: Environmental Interaction Plus a Beta Effect. J. Atmos. Sci. 1983, 40, 328–342. [Google Scholar] [CrossRef]
- Smith, R.K. An analytic theory of tropical-cyclone motion in a barotropic shear flow. Q. J. R. Meteorol. Soc. 1991, 117, 685–714. [Google Scholar] [CrossRef]
- Wang, Y.; Holland, G.J. The Beta Drift of Baroclinic Vortices. Part I: Adiabatic Vortices. J. Atmos. Sci. 1996, 53, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Sugi, M.; Noda, A.; Sato, N. Influence of the Global Warming on Tropical Cyclone Climatology: An Experiment with the JMA Global Model. J. Meteorol. Soc. Jpn. 2002, 80, 249–272. [Google Scholar] [CrossRef] [Green Version]
- Sugi, M.; Murakami, H.; Yoshimura, J. On the Mechanism of Tropical Cyclone Frequency Changes Due to Global Warming. J. Meteorol. Soc. Jpn. 2012, 90A, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.A.; Villarini, G.; Chavas, D. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef] [Green Version]
- Held, I.M.; Zhao, M. The Response of Tropical Cyclone Statistics to an Increase in CO2 with Fixed Sea Surface Temperatures. J. Clim. 2011, 24, 5353–5364. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B. Global Warming and the Weakening of the Tropical Circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef] [Green Version]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Emanuel, K.; Sundararajan, R.; Williams, J. Hurricanes and Global Warming: Results from Downscaling IPCC AR4 Simulations. Bull. Am. Meteorol. Soc. 2008, 89, 347–368. [Google Scholar] [CrossRef]
- Emanuel, K. Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis, 1908–1958. J. Adv. Model. Earth Syst. 2010, 2, 1–12. [Google Scholar] [CrossRef]
- Rappin, E.D.; Nolan, D.S.; Emanuel, K.A. Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Q. J. R. Meteorol. Soc. 2010, 136, 1954–1971. [Google Scholar] [CrossRef]
- Sugi, M.; Yoshida, K.; Murakami, H. More tropical cyclones in a cooler climate? Geophys. Res. Lett. 2015, 42, 6780–6784. [Google Scholar] [CrossRef] [Green Version]
- Held, I.M.; Hou, A.Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 1980, 37, 515–533. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Vecchi, G.; Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Staten, P.; Lu, J.; Grise, K.M.; Davis, S.M.; Birner, T. Re-examining tropical expansion. Nat. Clim. Chang. 2018, 8, 768–775. [Google Scholar] [CrossRef]
- Rutherford, B.; Dunkerton, T.J.; Montgomery, M.T. Lagrangian vortices in developing tropical cyclones. Q. J. R. Meteorol. Soc. 2015, 141, 3344–3354. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, B.; Boothe, M.A.; Dunkerton, T.J.; Montgomery, M.T. Dynamical properties of developing tropical cyclones using Lagrangian flow topology. Q. J. R. Meteorol. Soc. 2018, 144, 218–230. [Google Scholar] [CrossRef]
- Quinlan, J. C4.5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1993. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2001; p. 552. [Google Scholar]
Experiment | OWZP Scheme (TC) | CSIRO Scheme (TC) | OWZP (Greater than 10 m/s) | OWZP Scheme (TDs) | Non-Developing Cases (ND) |
---|---|---|---|---|---|
SST25 | 3218 | 2277 | 2583 | 5007 | 1789 |
SST27.5 | 2929 | 1808 | 2286 | 4449 | 1520 |
SST30 | 2923 | 1586 | 2197 | 4463 | 1540 |
SST25 and SST30 (0–25) |
1. if RH > 65.43 then TC forms in SST25 2. if RH ≤ 65.43 and VWS ≤ 5.7 then TC forms in SST30 |
SST25 and SST30 (25–40) |
1. if RH > 67 then TC forms in SST25 2. RH ≤ 67 and 10 < OW ≤ 70 then TC forms in SST30 3. if RH ≤ 67, OW > 70, and RH > 63 then TC forms in SST25 4. RH ≤ 67, OW > 70, RH < 63, and VWS < 6 then TC forms in SST30 |
SST25 and SST30 (40–60) |
1. if OW > 568 then TC forms in SST30 2. if OW < 568, VWS < 4.3 then TC forms in SST25 3. if OW < 568, VWS >4.3, and RH > 66 then TC forms in SST25 4. if OW < 568, VWS >4.3, RH < 66, and OW > 353 then TC forms in SST30 |
SST25 and SST30 (60–90) |
1. if WIND > 18 then TC forms in SST30 2. if WIND ≤ 18 then VWS ≤ 2.1 then TC forms in SST25 3. if WIND ≤ 18, VWS > 2.1, and VWS ≤ 6.5 then TC forms in SST25 4. if WIND ≤ 18, 6.5 < VWS ≤ 12 then TC forms in SST30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raavi, P.H.; Walsh, K.J.E. Response of Tropical Cyclone Frequency to Sea Surface Temperatures Using Aqua-Planet Simulations. Oceans 2021, 2, 785-810. https://doi.org/10.3390/oceans2040045
Raavi PH, Walsh KJE. Response of Tropical Cyclone Frequency to Sea Surface Temperatures Using Aqua-Planet Simulations. Oceans. 2021; 2(4):785-810. https://doi.org/10.3390/oceans2040045
Chicago/Turabian StyleRaavi, Pavan Harika, and Kevin J. E. Walsh. 2021. "Response of Tropical Cyclone Frequency to Sea Surface Temperatures Using Aqua-Planet Simulations" Oceans 2, no. 4: 785-810. https://doi.org/10.3390/oceans2040045
APA StyleRaavi, P. H., & Walsh, K. J. E. (2021). Response of Tropical Cyclone Frequency to Sea Surface Temperatures Using Aqua-Planet Simulations. Oceans, 2(4), 785-810. https://doi.org/10.3390/oceans2040045