TEOS-10 Equations for Determining the Lifted Condensation Level (LCL) and Climatic Feedback of Marine Clouds
Abstract
:1. Introduction
2. Application Context: Ocean Warming and Cloudiness
- (i)
- In contrast to the SW CRE, the LW CRE strongly depends on the concentration of greenhouse gases present in the cloudless sky. If the clear sky absorbs infrared radiation to a similar extent as clouds do, the greenhouse effect will not decrease significantly due to the substitution of a cloud fraction by a cloudless fraction. The increasing concentration of water vapour in the marine troposphere [36] results in a stronger absorption of longwave radiation [25,40,41,42,43]. The vertically distributed opacity of the clear-sky troposphere results in an effective radiating height of roughly 5000 m at 500 hPa, where the temperature is around 255 K [44]. According to Figure 7, the infrared opacity of the troposphere is between 70% and 85%. A rule-of-thumb estimate [25] for the tropical marine infrared absorption coefficient of 71% is consistent with that range. These values are relatively close to those of the opacity of clouds. “The clear-sky infrared absorption/emission is very important, so ideally the assumed value for the clear sky is calculated using a radiative transfer model driven by reanalysis fields. Cloud radiative effect (as shown in Figure 6) is the difference between the all-sky observed and this modeled cloudless atmosphere” (Coda Phillips, priv. comm.).
- (ii)
- The SW CRE is relevant at daytime only, while the LW CRE acts all day and night. It is unclear whether the reported reduction in global cloudiness differs between day and night [45]. In that case, it may have distinct impacts on SW and LW CRE.
- (iii)
- Cloudiness is most pronounced in the tropics and the west-wind belts (Figure 3). Moreover, the SW CRE is most relevant at low latitudes, while the LW CRE acts all over the globe. It is unclear how the reported reduction in global cloudiness is correlated with latitude and it may have different impacts on SW and LW CRE.
- (iv)
- Through the LCL, the increasing ocean SST has an effect on the altitude of cloud formations. This changes the cloud base’s temperature and, in turn, its downward thermal radiation. This feedback effect is analysed thermodynamically in Section 4 and Section 5 of this paper. In addition, low-level cumulus cloud formation is highly correlated with the diurnal cycle of solar irradiation, latitude, and land–ocean distribution.
- (v)
- Through the LCL, a so far unnoticed minor increase in ocean surface RH may have an effect on the altitude of cloud formation. This could change the cloud base temperature and, in turn, cause its downward thermal radiation to be in the opposite direction compared to the SST trend. This negative feedback effect is briefly quantified thermodynamically in Section 4.2.
3. Mathematical Method: TEOS-10 Equations of State
- (i)
- (ii)
- (iii)
- The specific Helmholtz energy of humid air, , which is a function of the dry-air mass fraction, , and the mass density of humid air, [61,62]. From these potential functions, all thermodynamic properties of seawater, ice, and humid air, as well as their mutual equilibria, can be derived mathematically in a perfectly consistent way via analytical or numerical means [39,63,64].
3.1. Ocean Heat Content
3.2. Humid Air
3.3. Relative Fugacity
4. Model Results: Isentropically Lifted Condensation Level (LCL)
4.1. Numerical Iterative Solution
4.2. Linear Analytical Approximation
4.3. Clausius–Clapeyron Expansion
5. Model Results: Marine Climatic LCL Feedback
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Jacobi Method
Appendix A.1. Example 1: Lapse Rate
Appendix A.2. Example 2: Chemical Potential
Appendix B. Adiabatic Lapse Rate of the Dew-Point Temperature
Appendix C. Crude Gibbs Function Approximations
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | ||||
0 | ||||
0 | 0 | 0 |
Appendix D. Lambert’s W Function
Appendix E. List of Symbols and Abbreviations
Symbol | Remark | Basic Unit |
Dry-air mass fraction in humid air | ||
… | Matrix of coefficients | |
… | Matrix of coefficients, crude approximation | |
Dry-air mass fraction of saturated humid air | ||
Abbreviation, | 1 | |
… | Vector of coefficients | |
Cloudiness: cloud-covered surface fraction | m−2/m−2 | |
Specific isobaric heat capacity of humid air | ||
Specific isobaric heat capacity of seawater | ||
Crude specific isobaric heat capacity of dry air, | ||
Crude specific isobaric heat capacity of humid air | ||
Crude specific isobaric heat capacity of water vapour, | ||
Crude specific isobaric heat capacity of liquid water, | ||
CRE | Cloud radiative effect | W m−2 |
Euler number, | ||
Abbreviation, | 1 | |
EEI | Earth energy imbalance | |
Specific Helmholtz energy of dry air | ||
Specific Helmholtz energy of humid air | ||
Specific Helmholtz energy of fluid water | ||
Specific Gibbs energy of humid air | ||
Crude specific Gibbs energy of humid air | ||
Gravitational acceleration, | ||
GHG | Greenhouse gas | |
Specific Gibbs energy of ambient hexagonal ice | ||
Specific Gibbs energy of seawater | ||
Specific Gibbs energy of liquid water | ||
Crude specific Gibbs energy of liquid water | ||
Adjustable constant, | ||
Adjustable constant, | ||
Specific enthalpy of humid air | ||
Specific enthalpy of seawater | ||
Specific enthalpy of the standard-ocean reference state | ||
IAPSO | International Association for the Physical Sciences of the Oceans | |
IAPWS | International Association for the Properties of Water and Steam | |
ITS-90 | 1990 International Temperature Scale | |
JCS | Joint Committee on the Properties of Seawater | |
Ocean–cloud radiative exchange flux | W m−2 | |
Upward thermal radiation flux | W m−2 | |
Downward thermal radiation flux | W m−2 | |
LCL | Lifted condensation level | m |
Specific evaporation enthalpy of liquid water | ||
Crude specific evaporation enthalpy of liquid water, | ||
LW CRE | Longwave cloud radiative effect | W m−2 |
Molar mass of dry air, | ||
Molar mass of water, | ||
OHC | Ocean heat content | J |
Pressure | Pa | |
Entropy production per surface area | ||
Sea surface air pressure | Pa | |
Lifted condensation level pressure | Pa | |
Triple-point pressure of water, | Pa | |
Specific humidity | ||
Abbreviation, | 1 | |
Mixing ratio | ||
Molar gas constant, | ||
Specific gas constant of dry air, | ||
Specific gas constant of humid air, | ||
RF | Relative fugacity | %rh |
RH | Relative humidity | %rh |
Specific gas constant of water, | ||
Seawater salinity | ||
SCOR | Scientific Committee on Oceanic Research | |
SST | Sea surface temperature | K, °C |
SW CRE | Shortwave cloud radiative effect | W m−2 |
Celsius temperature | °C | |
Absolute temperature, ITS-90 | K | |
Sea surface temperature | K | |
Dew-point temperature | K | |
Lifted condensation level temperature | K | |
Triple point temperature of water, | K | |
TEOS-10 | Thermodynamic Equation of Seawater—2010 | |
Specific volume of humid air | ||
VSMOW | Vienna Standard Mean Ocean Water | |
Specific volume of liquid water | ||
Lambert’s W function | 1 | |
water vapour mole fraction | ||
Calendar year number (Common Era) | ||
Vertical coordinate | m | |
Lifted condensation level height | m | |
Humidity sensitivity | ||
Thermal expansion coefficient of humid air | ||
LCL temperature sensitivity | 1 | |
Adiabatic lapse rate of humid air | ||
Adiabatic lapse rate of the humid-air dew point | ||
LCL pressure sensitivity | ||
LCL height coefficient | ||
Increment of dry-air mass fraction | ||
Solar irradiation increase | W m−2 | |
Ocean–cloud exchange flux increase | W m−2 | |
Pressure increase | Pa | |
LCL pressure increase | Pa | |
Temperature increase | K | |
SST increase | K | |
LCL temperature increase | K | |
Specific evaporation volume of liquid water | ||
Specific evaporation entropy of liquid water | ||
Clausius–Clapeyron expansion parameter | 1 | |
Specific entropy | ||
Specific entropy of humid air | ||
Specific entropy of seawater | ||
Specific entropy of liquid water | ||
Chemical potential of water vapour in humid air | ||
Chemical potential of ambient hexagonal ice | ||
Chemical potential of liquid water | ||
Mass density | ||
Mass density of seawater | ||
Crude mass density of liquid water, | ||
Stefan–Boltzmann constant, | ||
Relative fugacity |
References
- Brizio, A.M. Primo Libro Delle Acque. Gheroni, Torino. 1951, pp. 159–266. Available online: https://en.wikipedia.org/wiki/Codex_Arundel (accessed on 10 March 2024).
- Schneider, M. Leonardo da Vinci—Das Wasserbuch; Schirmer/Model: München, Germany; Paris, France; London, UK, 1996. [Google Scholar]
- IOC; SCOR; IAPSO. The International Thermodynamic Equation of Seawater-2010: Calculation and Use of Thermodynamic Properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), Paris. 2010. Available online: http://www.TEOS-10.org (accessed on 10 March 2024).
- Almeida, L.; Lima de Azevedo, J.L.; Kerr, R.; Araujo, M.; Mata, M.M. Impact of the new equation of state of seawater (TEOS-10) on the estimates of water mass mixture and meridional transport in the Atlantic Ocean. Prog. Oceanogr. 2018, 162, 13–24. [Google Scholar] [CrossRef]
- Budyko, M.I. Der Wärmehaushalt der Erdoberfläche; Fachliche Mitteilungen der Inspektion Geophysikalischer Beratungsdienst der Bundeswehr im Luftwaffenamt: Köln, Germany, 1963; Volume 100, pp. 3–282. [Google Scholar]
- Josey, S.A.; Gulev, S.; Yu, L. Exchanges through the ocean surface. In Ocean Circulation and Climate. A 21st Century Perspective; Siedler, G., Griffies, S.M., Gould, J., Church, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 115–140. [Google Scholar] [CrossRef]
- Macdonald, A.M.; Baringer, M.O. Ocean Heat Transport. In Ocean Circulation and Climate. A 21st Century Perspective; Siedler, G., Griffies, S.M., Gould, J., Church, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 115–140. [Google Scholar] [CrossRef]
- Rapp, D. Assessing Climate Change in Temperatures, Solar Radiation, and Heat Balance; Springer: Cham, Switzerland, 2014. [Google Scholar]
- You, X. Oceans break heat records five years in a row. The heat stored in the world’s oceans increased by the greatest margin ever in 2023. Nature 2024, 625, 434–435. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.; Arblaster, J.; Fasullo, J.; Hu, A.; Trenbert, K.E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Minère, A.; Gues, F.; Cuesta-Valero, F.J.; Kirchengast, G.; Adusumilli, S.; Straneo, F.; Ablain, M.; Allan, R.P.; Barker, P.; et al. Heat stored in the Earth system 1960–2020: Where does the energy go? Earth Syst. Sci. Data 2023, 15, 1675–1709. [Google Scholar] [CrossRef]
- Abraham, J.P.; Baringer, M.; Bindoff, N.L.; Boyer, S.T.; Cheng, L.J.; Church, J.A.; Conroy, J.L.; Domingues, C.M.; Fasullo, J.T.; Gilson, J.; et al. A Review of Global Ocean Temperature Observations: Implications for Ocean Heat Content Estimates and Climate Change. Rev. Geophys. 2013, 51, 450–483. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.; Trenberth, K.E.; Boyer, T.; Mann, M.E.; Zhu, J.; Wang, F.; Yu, F.; Locarnini, R.; Fasullo, J.; et al. New record ocean temperatures and related climate indicators in 2023. Adv. Atmos. Sci. 2024, 41, 1068–1082. [Google Scholar] [CrossRef]
- McDougall, T.J. Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr. 2003, 33, 945–963. [Google Scholar] [CrossRef]
- McDougall, T.J.; Barker, P.M.; Holmes, R.M.; Pawlowicz, R.; Griffies, S.M.; Durack, P.J. The interpretation of temperature and salinity variables in numerical ocean model output and the calculation of heat fluxes and heat content. Geosci. Model Dev. 2021, 14, 6445–6466. [Google Scholar] [CrossRef]
- Loeb, N.G.; Johnson, G.C.; Thorsen, T.J.; Lyman, J.M.; Rose, F.G.; Kato, S. Satellite and Ocean Data Reveal Marked Increase in Earth’s Heating Rate. Geophys. Res. Lett. 2021, 48, e2021GL093047. [Google Scholar] [CrossRef]
- Kramer, R.J.; He, H.; Soden, B.J.; Oreopoulos, L.; Myhre, G.; Forster, P.M.; Smith, C.J. Observational Evidence of Increasing Global Radiative Forcing, Geophys. Res. Lett. 2021, 48, e2020GL091585. [Google Scholar] [CrossRef]
- Liu, C.; Allan, R.P.; Mayer, M.; Hyder, P.; Desbruyères, D.; Cheng, L.; Xu, J.; Xu, F.; Zhang, Y. Variability in the global energy budget and transports 1985–2017. Clim. Dynam. 2020, 55, 3381–3396. [Google Scholar] [CrossRef]
- Yang, X.; Ge, J.; Hu, X.; Wang, M.; Han, Z. Cloud-Top Height Comparison from Multi-Satellite Sensors and Ground-Based Cloud Radar over SACOL Site. Remote Sens. 2021, 13, 2715. [Google Scholar] [CrossRef]
- Loeb, N.G.; Mayer, M.; Kato, S.; Fasullo, J.T.; Zuo, H.; Senan, R.; Lyman, J.M.; Johnson, G.C.; Balmaseda, M. Evaluating twenty-year trends in Earth’s energy flows from observations and reanalyses. J. Geophys. Res. Atmos. 2022, 127, e2022JD036686. [Google Scholar] [CrossRef]
- Qu, X.; Hall, A.; Klein, S.A.; Caldwell, P.M. On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Clim. Dyn. 2014, 42, 2603–2626. [Google Scholar] [CrossRef]
- WMO Provisional State of the Global Climate 2023; World Meteorological Organization: Geneva, Switzerland, 2024. Available online: https://library.wmo.int/records/item/68835-state-of-the-global-climate-2023 (accessed on 10 March 2024).
- Foster, M.J.; Phillips, C.; Heidinger, A.K.; Borbas, E.E.; Li, Y.; Menzel, P.; Walther, A.; Weisz, E. PATMOS-x Version 6.0: 40 Years of Merged AVHRR and HIRS Global Cloud Data. J. Clim. 2023, 36, 1143–1160. [Google Scholar] [CrossRef]
- Goode, P.R.; Pallé, E.; Shoumko, A.; Shoumko, S.; Montañes-Rodriguez, P.; Koonin, S.E. Earth’s albedo 1998–2017 as measured from earthshine. Geophys. Res. Lett. 2021, 48, e2021GL094888. [Google Scholar] [CrossRef]
- Feistel, R.; Hellmuth, O. Relative Humidity: A Control Valve of the Steam Engine Climate. J. Hum. Earth Future 2021, 2, 140–182. [Google Scholar] [CrossRef]
- Phillips, C.; Foster, M.J. Cloudiness. In State of the Climate in 2022; Blunden, J., Boyer, T., Bartow-Gillies, E., Eds.; Bulletin of the American Meteorological Society (BAMS): Boston, MA, USA, 2023; Volume 104, pp. S60–S61. [Google Scholar]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Weller, R.A.; Lukas, R.; Potemra, J.; Plueddemann, A.J.; Fairall, C.; Bigorre, S. Ocean Reference Stations: Long-Term, Open-Ocean Observations of Surface Meteorology and Air–Sea Fluxes Are Essential Benchmarks. Cover. Bull. Am. Meteorol. Soc. 2022, 103, E1968–E1990. [Google Scholar] [CrossRef]
- Feistel, R.; Hellmuth, O. Thermodynamics of Evaporation from the Ocean Surface. Atmosphere 2023, 14, 560. [Google Scholar] [CrossRef]
- Blunden, J.; Boyer, T.; Bartow-Gillies, E. (Eds.) State of the Climate in 2022; Bulletin of the American Meteorological Society (BAMS): Boston, MA, USA, 2023; Volume 104, pp. S1–S516. [Google Scholar]
- Randall, D.A. Atmosphere, Clouds, and Climate; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Stewart, R.H. Introduction to Physical Oceanography; Texas A & M University: College Station, TX, USA, 2008. [Google Scholar] [CrossRef]
- Feistel, R.; Hellmuth, O. Irreversible Thermodynamics of Seawater Evaporation. J. Mar. Sci. Eng. 2024, 12, 166. [Google Scholar] [CrossRef]
- Lovell-Smith, J.W.; Feistel, R.; Harvey, A.H.; Hellmuth, O.; Bell, S.A.; Heinonen, M.; Cooper, J.R. Metrological challenges for measurements of key climatological observables. Part 4: Atmospheric relative humidity. Metrologia 2016, 53, R40–R59. [Google Scholar] [CrossRef] [PubMed]
- Dunn, R.J.H.; Miller, J.B.; Willett, K.M.; Gobron, N. Global Climate. In State of the Climate in 2022; Blunden, J., Boyer, T., Bartow-Gillies, E., Eds.; Bulletin of the American Meteorological Society: Boston, MA, USA, 2023; Volume 104, pp. S20–S26. [Google Scholar]
- Willett, K.M.; Simmons, A.J.; Bosilovich, M.; Lavers, D.A. Surface Humidity. In State of the Climate in 2022; Blunden, J., Boyer, T., Bartow-Gillies, E., Eds.; Bulletin of the American Meteorological Society (BAMS): Boston, MA, USA, 2023; Volume 104, pp. S49–S52. [Google Scholar]
- Azorin-Molina, C.; Dunn, R.J.H.; Ricciardulli, L.; Mears, C.A.; Nicolas, J.P.; McVicar, T.R.; Zeng, Z.; Bosilovich, M.G. Land and Ocean Surface Winds. In State of the Climate in 2022; Blunden, J., Boyer, T., Bartow-Gillies, E., Eds.; Bulletin of the American Meteorological Society (BAMS): Boston, MA, USA, 2023; Volume 104, pp. S72–S74. [Google Scholar]
- Feistel, R. Salinity and relative humidity: Climatological relevance and metrological needs. Acta IMEKO 2015, 4, 57–61. [Google Scholar] [CrossRef]
- Feistel, R. TEOS-10 and the Climatic Relevance of Ocean-Atmosphere Interaction. EGUsphere 2024. preprint. [Google Scholar] [CrossRef]
- Goody, R.M. A statistical model for water-vapour absorption. Q. J. R. Meteorol. Soc. 1952, 78, 165–169. [Google Scholar] [CrossRef]
- Goody, R.M.; Robinson, G.D. Radiation in the troposphere and lower stratosphere. Rev. Mod. Meteorol. 1951, 77, 151–187. [Google Scholar] [CrossRef]
- Zhong, W.; Haigh, J.D. The greenhouse effect and carbon dioxide. Weather 2013, 68, 100–105. [Google Scholar] [CrossRef]
- Rothman, L.S.; Jacquemart, D.; Barbe, A.; Chris Benner, D.; Birk, M.; Brown, L.R.; Carleer, M.R.; Chackerian, C.; Chance, K.; Coudert, L.H.; et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 139–204. [Google Scholar] [CrossRef]
- Colman, R.; Soden, B.L. Water vapor and lapse rate feedbacks in the climate system. Rev. Mod. Phys. 2021, 93, 045002. [Google Scholar] [CrossRef]
- Turbet, M.; Bolmont, E.; Chaverot, G.; Ehrenreich, D.; Leconte, J.; Marcq, E. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 2021, 598, 276–280. [Google Scholar] [CrossRef]
- McDougall, T.J.; Barker, P.M.; Feistel, R.; Roquet, F. A thermodynamic potential of seawater in terms of Absolute Salinity, Conservative Temperature, and in situ pressure. Ocean Sci. 2023, 19, 1719–1741. [Google Scholar] [CrossRef]
- McDougall, T.J.; Feistel, R.; Pawlowicz, R. Thermodynamics of Seawater. In Ocean Circulation and Climate, A 21st Century Perspective; Siedler, G., Griffies, S.M., Gould, J., Church, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 141–158. [Google Scholar] [CrossRef]
- Graham, F.S.; McDougall, T.J. Quantifying the Nonconservative Production of Conservative Temperature, Potential Temperature, and Entropy. J. Phys. Oceanogr. 2013, 43, 838–862. [Google Scholar] [CrossRef]
- Tailleux, R.; Dubos, T. A simple and transparent method for improving the energetics and thermodynamics of seawater approximations: Static energy asymptotics (SEA). Ocean. Model. 2024, 188, 102339. [Google Scholar] [CrossRef]
- Unesco Background Papers and Supporting Data on the International Equation of State of Sea Water 1980; Unesco Technical Paper Marine Science 38. UNESCO: Paris, France, 1981. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000047363 (accessed on 10 March 2024).
- Fofonoff, N.P.; Millard, R.C. Algorithms for the Computation of Fundamental Properties of Seawater; Unesco Technical Papers in Marine Science 44; UNESCO: Paris, France, 1983. [Google Scholar] [CrossRef]
- Pawlowicz, R.; McDougall, T.J.; Feistel, R.; Tailleux, R. An historical perspective on the development of the Thermodynamic Equation of Seawater—2010. Ocean Sci. 2012, 8, 161–174. [Google Scholar] [CrossRef]
- Fink, J.K. Chapter 1: Mathematics of Thermodynamics. In Physical Chemistry in Depth; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Wright, D.G.; Feistel, R.; Reissmann, J.H.; Miyagawa, K.; Jackett, D.R.; Wagner, W.; Overhoff, U.; Guder, C.; Feistel, A.; Marion, G.M. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air—Part 2: The library routines. Ocean Sci. 2010, 6, 695–718. [Google Scholar] [CrossRef]
- Feistel, R.; Wright, D.G.; Jackett, D.R.; Miyagawa, K.; Reissmann, J.H.; Wagner, W.; Overhoff, U.; Guder, C.; Feistel, A.; Marion, G.M. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air—Part 1: Background and equations. Ocean. Sci. 2010, 6, 633–677. [Google Scholar] [CrossRef]
- Wagner, W.; Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387–535. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep-Sea Res. 2008, 55 Pt I, 50–72. [Google Scholar] [CrossRef]
- Feistel, R. A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg−1. Deep-Sea Res. 2008, 55 Pt I, 1639–1671. [Google Scholar] [CrossRef]
- Feistel, R.; Wagner, W. High-pressure thermodynamic Gibbs functions of ice and sea ice. J. Mar. Res. 2005, 63, 95–139. [Google Scholar] [CrossRef]
- Feistel, R.; Wagner, W. A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data 2006, 35, 1021–1047. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Jacobsen, R.T.; Penoncello, S.G.; Friend, D.G. Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen From 60 to 2000 K at Pressures to 2000 MPa. J. Phys. Chem. Ref. Data 2000, 29, 331–362. [Google Scholar] [CrossRef]
- Feistel, R.; Wright, D.G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R. Thermodynamic Properties of Sea Air. Ocean. Sci. 2010, 6, 91–141. [Google Scholar] [CrossRef]
- IAPWS AN6-16 Advisory Note No. 6: Relationship between Various IAPWS Documents and the International Thermodynamic Equation of Seawater—2010 (TEOS-10); The International Association for the Properties of Water and Steam: Dresden, Germany, 2016; Available online: http://www.iapws.org (accessed on 10 March 2024).
- Feistel, R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond. Ocean Sci. 2018, 14, 471–502. [Google Scholar] [CrossRef]
- Preston-Thomas, H. The International Temperature Scale of 1990 (ITS-90). Metrologia 1990, 27, 3–10. [Google Scholar] [CrossRef]
- BIPM. The International System of Units (SI). 9th Edition of the SI Brochure. 2019. Available online: https://www.bipm.org/en/publications/si-brochure/ (accessed on 15 March 2023).
- Harvey, A.H.; Hrubý, J.; Meier, K. Improved and Always Improving: Reference Formulations for Thermophysical Properties of Water. J. Phys. Chem. Ref. Data 2023, 52, 011501. [Google Scholar] [CrossRef]
- IAPWS G5-01; Guideline on the Use of Fundamental Physical Constants and Basic Constants of Water. The International Association for the Properties of Water and Steam: Dresden, Germany, 2016. Available online: http://www.iapws.org (accessed on 10 March 2024).
- IAPWS G08-10; Guideline on an Equation of State for Humid Air in Contact with Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam: Niagara Falls, ON, Canada, 2010. Available online: http://www.iapws.org (accessed on 10 March 2024).
- Feistel, R.; Wright, D.G.; Miyagawa, K.; Harvey, A.H.; Hruby, J.; Jackett, D.R.; McDougall, T.J.; Wagner, W. Mutually consistent thermodynamic potentials for fluid water, ice and seawater: A new standard for oceanography. Ocean Sci. 2008, 4, 275–291. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschitz, E.M. Statistische Physik; Akademie-Verlag: Berlin, Germany, 1966. [Google Scholar]
- Clausius, R. Die Mechanische Wärmetheorie; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1876. [Google Scholar]
- Gibbs, J.W. Graphical methods in the thermodynamics of fluids. Trans. Conn. Acad. Arts Sci. 1873, 2, 309–342. Available online: https://www3.nd.edu/~powers/ame.20231/gibbs1873a.pdf (accessed on 10 March 2024).
- Sommerfeld, A. Thermodynamik und Statistik; Verlag Harri Deutsch: Thun, Switzerland; Frankfurt, Germany, 1988. [Google Scholar]
- Feistel, R.; Wielgosz, R.; Bell, S.A.; Camões, M.F.; Cooper, J.R.; Dexter, P.; Dickson, A.G.; Fisicaro, P.; Harvey, A.H.; Heinonen, M.; et al. Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview. Metrologia 2016, 53, R1–R11. [Google Scholar] [CrossRef]
- Feistel, R.; Lovell-Smith, J.W. Defining relative humidity in terms of water activity. Part 1: Definition. Metrologia 2017, 54, 566–576. [Google Scholar] [CrossRef]
- Feistel, R.; Hellmuth, O.; Lovell-Smith, J.W. Defining relative humidity in terms of water activity: III. Relations to dew-point and frost-point temperatures. Metrologia 2022, 59, 045013. [Google Scholar] [CrossRef]
- Shaw, A.N. The Derivation of Thermodynamical Relations for a Simple System. Philos. Trans. R. Soc. Lond. A 1935, 234, 299–328. [Google Scholar] [CrossRef]
- Eastman, R.; Warren, S.G.; Hahn, C.J. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954–2008. J. Clim. 2011, 24, 5914–5934. [Google Scholar] [CrossRef]
- Sandu, I.; Stevens, B.; Pincus, R. On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys. 2010, 10, 2377–2391. [Google Scholar] [CrossRef]
- Romps, D.M. Exact Expression for the Lifting Condensation Level. J. Atmos. Sci. 2017, 74, 3891–3900. [Google Scholar] [CrossRef]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- Thomas, G.E.; Stamnes, K. Radiative Transfer in the Atmosphere and Ocean; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Liou, K.N. An Introduction to Atmospheric Radiation, 2nd ed.; International Geophysics Series; Academic Press: New York, NY, USA, 2002; Volume 84, Available online: https://www.sciencedirect.com/bookseries/international-geophysics/vol/84/suppl/C (accessed on 10 March 2024).
- Dai, A. Recent Climatology, Variability, and Trends in Global Surface Humidity. J. Clim. 2006, 19, 3589–3606. [Google Scholar] [CrossRef]
- Pelkowski, J. Of entropy production by radiative processes in a conceptual climate model. Meteorol. Z. 2012, 21, 439–457. [Google Scholar] [CrossRef]
- Pelkowski, J. On the Clausius-Duhem Inequality and Maximum Entropy Production in a Simple Radiating System. Entropy 2014, 16, 2291–2308. [Google Scholar] [CrossRef]
- Planck, M. Vorlesungen über die Theorie der Wärmestrahlung; Johann Ambrosius Barth: Leipzig, Germany, 1906. [Google Scholar]
- Kabelac, S. Thermodynamik der Strahlung; Vieweg, Braunschweig & Wiesbaden: Wiesbaden, Germany, 1994. [Google Scholar]
- Feistel, R. Entropy Flux and Entropy Production of Stationary Black-Body Radiation. J. Non-Equilib. Thermodyn. 2011, 36, 131–139. [Google Scholar] [CrossRef]
- Hume, D. Eine Untersuchung über den Menschlichen Verstand; Reclam: Ditzingen, Germany, 1967. [Google Scholar]
- Russell, B. Chapter IX: On the Notion of Cause. In Mysticism and Logic and Other Essays; Longmans, Green and Co.: London, UK, 1919; pp. 180–208. Available online: https://en.wikisource.org/wiki/Mysticism_and_Logic_and_Other_Essays (accessed on 10 March 2024).
- Feistel, R. On the Evolution of Symbols and Prediction Models. Biosemiotics 2023, 16, 311–371. [Google Scholar] [CrossRef]
- Feistel, R. Self-Organisation of Prediction Models. Entropy 2023, 25, 1596. [Google Scholar] [CrossRef] [PubMed]
- Hertz, H. Die Prinzipien der Mechanik; Johann Ambrosius Barth, Leipzig. Photocopy Reprint (1963); Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 1894. [Google Scholar]
- Stips, A.; Macias, D.; Coughlan, C.; Garcia-Gorriz, E.; Liang, X.S. On the causal structure between CO2 and global temperature. Sci. Rep. 2016, 6, 21691. [Google Scholar] [CrossRef] [PubMed]
- Bronstein, I.N.; Semendjajew, K.A. Taschenbuch der Mathematik; Nauka: Moscow, Russia; Teubner: Leipzig, Germany, 1979. [Google Scholar]
- Kaplan, W. Advanced Calculus; Addison-Wesley: Reading, MA, USA, 1984. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Margenau, H.; Murphy, G.M. The Mathematics of Physics and Chemistry; D. van Nostrand Company, Inc.: New York, NY, USA, 1943. [Google Scholar]
- Feistel, R. Distinguishing between Clausius, Boltzmann and Pauling Entropies of Frozen Non-Equilibrium States. Entropy 2019, 21, 799. [Google Scholar] [CrossRef] [PubMed]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W Function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Kalugin, G.A.; Jeffrey, D.J.; Corless, R.M.; Borwein, P.B. Stieltjes and other integral representations for functions of Lambert W. Integral Transform. Spec. Funct. 2012, 23, 581–593. [Google Scholar] [CrossRef]
- Loczi, L. Guaranteed- and high-precision evaluation of the Lambert W function. Appl. Math. Comput. 2022, 433, 127406. [Google Scholar] [CrossRef]
K | K | % | α % K−1 | hPa | γ hPa K−1 | K | K K−1 | ||
---|---|---|---|---|---|---|---|---|---|
286 | 282.633 | 99.2655 | −0.0483 | 963.093 | −0.2757 | −0.2742 | 281.883 | 0.9632 | 0.9634 |
288 | 284.580 | 99.1631 | −0.0542 | 962.542 | −0.2773 | 283.810 | 0.9629 | ||
290 | 286.526 | 99.0482 | −0.0608 | 961.984 | −0.2823 | −0.2806 | 285.735 | 0.9621 | 0.9624 |
292 | 288.471 | 98.9196 | −0.0680 | 961.419 | −0.2841 | 287.659 | 0.9619 | ||
294 | 290.416 | 98.7758 | −0.0759 | 960.847 | −0.2897 | −0.2878 | 289.583 | 0.9611 | 0.9614 |
296 | 292.361 | 98.6154 | −0.0846 | 960.268 | −0.2917 | 291.505 | 0.9608 | ||
298 | 294.305 | 98.4368 | −0.0942 | 959.680 | −0.2981 | −0.2959 | 293.426 | 0.9600 | 0.9603 |
300 | 296.248 | 98.2381 | −0.1047 | 959.084 | −0.3004 | 295.346 | 0.9597 |
K | %rh | K | % | m | m K−1 |
---|---|---|---|---|---|
286 | 80 | 282.633 | 99.2655 | 423.468 | 125.778 |
288 | 80 | 284.580 | 99.1631 | 431.481 | 126.157 |
290 | 80 | 286.526 | 99.0482 | 439.660 | 126.553 |
292 | 80 | 288.471 | 98.9196 | 448.017 | 126.967 |
294 | 80 | 290.416 | 98.7758 | 456.561 | 127.403 |
296 | 80 | 292.361 | 98.6154 | 465.305 | 127.862 |
298 | 80 | 294.305 | 98.4368 | 474.263 | 128.345 |
300 | 80 | 296.248 | 98.2381 | 483.449 | 128.857 |
K | %rh | K | % | m | m K−1 | K | W m−2 |
---|---|---|---|---|---|---|---|
292 | 74 | 287.262 | 99.0012 | 600.040 | 126.632 | 286.182 | 380.348 |
292 | 76 | 287.674 | 98.9740 | 548.289 | 126.745 | 286.685 | 383.030 |
292 | 78 | 288.077 | 98.9468 | 497.632 | 126.857 | 287.177 | 385.668 |
292 | 80 | 288.471 | 98.9196 | 448.017 | 126.967 | 287.659 | 388.263 |
292 | 82 | 288.857 | 98.8923 | 399.396 | 127.076 | 288.131 | 390.818 |
292 | 84 | 289.235 | 98.8650 | 351.724 | 127.184 | 288.594 | 393.334 |
292 | 86 | 289.604 | 98.8378 | 304.959 | 127.291 | 289.048 | 395.812 |
292 | 88 | 289.966 | 98.8105 | 259.061 | 127.396 | 289.493 | 398.255 |
K | K | K | hPa | hPa |
---|---|---|---|---|
286 | 281.883 | 281.883 | 963.093 | 963.066 |
288 | 283.810 | 283.810 | 962.542 | 962.525 |
290 | 285.735 | 285.735 | 961.984 | 961.972 |
292 | 287.659 | 287.658 | 961.419 | 961.395 |
294 | 289.583 | 289.584 | 960.847 | 960.858 |
296 | 291.505 | 291.506 | 960.268 | 960.276 |
298 | 293.426 | 293.428 | 959.680 | 959.712 |
300 | 295.346 | 295.348 | 959.084 | 959.118 |
K | W m−2 | K | W m−2 | W m−2 | |
---|---|---|---|---|---|
286 | 379.381 | 281.883 | 358.006 | 21.375 | 0.419 |
288 | 390.105 | 283.810 | 367.893 | 22.213 | |
290 | 401.055 | 285.735 | 377.977 | 23.078 | 0.447 |
292 | 412.233 | 287.659 | 388.263 | 23.971 | |
294 | 423.644 | 289.583 | 398.751 | 24.893 | 0.476 |
296 | 435.290 | 291.505 | 409.444 | 25.846 | |
298 | 447.174 | 293.426 | 420.345 | 26.829 | 0.508 |
300 | 459.300 | 295.346 | 431.455 | 27.845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feistel, R.; Hellmuth, O. TEOS-10 Equations for Determining the Lifted Condensation Level (LCL) and Climatic Feedback of Marine Clouds. Oceans 2024, 5, 312-351. https://doi.org/10.3390/oceans5020020
Feistel R, Hellmuth O. TEOS-10 Equations for Determining the Lifted Condensation Level (LCL) and Climatic Feedback of Marine Clouds. Oceans. 2024; 5(2):312-351. https://doi.org/10.3390/oceans5020020
Chicago/Turabian StyleFeistel, Rainer, and Olaf Hellmuth. 2024. "TEOS-10 Equations for Determining the Lifted Condensation Level (LCL) and Climatic Feedback of Marine Clouds" Oceans 5, no. 2: 312-351. https://doi.org/10.3390/oceans5020020
APA StyleFeistel, R., & Hellmuth, O. (2024). TEOS-10 Equations for Determining the Lifted Condensation Level (LCL) and Climatic Feedback of Marine Clouds. Oceans, 5(2), 312-351. https://doi.org/10.3390/oceans5020020