Integrated Multi-Biomarker Responses of Juvenile Zebra Seabream (Diplodus cervinus) to Warming and Acidification Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Husbandry and Acclimation
2.2. Experimental Conditions
2.3. Sampling
2.4. Animal Fitness
2.5. Hematological Parameters
2.6. Biochemical Analyses
2.7. Statistical Analysis
3. Results
3.1. Animal Fitness
3.2. Hematological Parameters
3.3. Biochemical Analyses
3.3.1. Antioxidant Defences and Lipid Peroxidation
3.3.2. Chaperoning and Protein Degradation
3.4. Integrated Biomarker Response
4. Discussion
4.1. Animal Fitness
4.2. Hematological Parameters
4.3. Antioxidant Defences and Lipid Peroxidation
4.4. Chaperoning and Protein Degradation
4.5. Integrated Biomarker Response (IBR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barange, M.; Bahri, T.; Beveridge, M.C.; Cochrane, K.L.; Funge-Smith, S.; Poulain, F. Impacts of climate change on fisheries and aquaculture. In Synthesis of Current Knowledge, Adaptation and Mitigation Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Volume 12, pp. 628–635. ISBN 978-92-5-130607-9. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- FAO. Fisheries and Aquaculture Information and Statistics Service. Available online: https://www.fao.org/fishery/en/information (accessed on 10 October 2023).
- Stillman, J.H. Acclimation Capacity Underlies Susceptibility to Climate Change. Science 2003, 301, 65. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, W.W.; Casterlin, M.E. Behavioral Thermoregulation and the ‘Final Preferendum’ Paradigm. Am. Zool. 1979, 19, 211–224. [Google Scholar] [CrossRef]
- Beitinger, T.L.; Bennett, W.A.; McCauley, R.W. Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature. Environ. Biol. Fishes 2000, 58, 237–275. [Google Scholar] [CrossRef]
- Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.N.; Depledge, M.H.; Readman, J.W.; Paul Leonard, D.R. An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat. Res.–Fundam. Mol. Mech. Mutagen. 2004, 552, 247–268. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species. Version 2022-2. ISSN 2307-8235. Available online: https://www.iucnredlist.org (accessed on 10 October 2023).
- Pajuelo, J.G.; Lorenzo, J.M.; Domínguez, R.; Ramos, A.; Gregoire, M. On the Population Ecology of the Zebra Seabream Diplodus cervinus cervinus (Lowe 1838) from the Coasts of the Canarian archipelago, North West Africa. Environ. Biol. Fishes 2003, 67, 407–416. [Google Scholar] [CrossRef]
- Sbragaglia, V.; Nuñez, J.D.; Dominoni, D.; Coco, S.; Fanelli, E.; Azzurro, E.; Marini, S.; Nogueras, M.; Ponti, M.; Fernandez, J.D.R.; et al. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Sci. Rep. 2019, 9, 1708. [Google Scholar] [CrossRef] [PubMed]
- Reef Life Survey. Diplodus cervinus. Available online: https://www.reeflifesurvey.com/species/diplodus-cervinus/ (accessed on 10 October 2023).
- Bennett, W.A.; Judd, F.W. Comparison of Methods for Determining Low Temperature Tolerance: Experiments with Pinfish, Lagodon rhomboides. Copeia 1992, 1992, 1059–1065. [Google Scholar] [CrossRef]
- Cereja, R. Critical thermal maxima in aquatic ectotherms. Ecol. Indic. 2020, 119, 106856. [Google Scholar] [CrossRef]
- Di Franco, A. Mismatch in early life traits between settlers and recruits in a Mediterranean fish: Clue of the relevance of the settlement tail? Acta Ichthyol. Piscat. 2015, 45, 153–159. [Google Scholar] [CrossRef]
- Dias, M.; Roma, J.; Fonseca, C.; Pinto, M.; Cabral, H.N.; Silva, A.; Vinagre, C. Intertidal pools as alternative nursery habitats for coastal fishes. Mar. Biol. Res. 2016, 12, 331–344. [Google Scholar] [CrossRef]
- Madeira, D.; Narciso, L.; Cabral, H.N.; Vinagre, C. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J. Sea Res. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Sarazin, G.; Michard, G.; Prevot, F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999, 33, 290–294. [Google Scholar] [CrossRef]
- Coutinho, F.F. Dietary Protein Requirements and Intermediary Metabolism Response to Protein/Carbohydrate Ratio of Zebra Seabream (Diplodus cervinus, Lowe 1838) Juveniles. Master’s Thesis, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal, 2012; p. 48. [Google Scholar]
- Ferreira, P.M.P. Manual de Cultivo e Bioencapsulação da Cadeia Alimentar para a Larvicultura de Peixes Marinhos; Instituto Nacional de Recursos Biológicos. IPIMAR: Santiago de Compostela, Spain, 2009; p. 235. ISBN 978-972-9372-37-7. [Google Scholar]
- Ricker, W.E. Computation and interpretation of biological statistics of fish populations. Fish. Res. Board Can. Bull. 1975, 191, 1–382. [Google Scholar]
- Goede, R.W. Organismic indices and an autopsy-based assessment as indicator of health and condition of fish. Am. Fish Soc. Symp. 1990, 8, 93–108. [Google Scholar]
- Kaplow, L.S.; Ladd, C. Brief Report: Simplified Myeloperoxidase Stain Using Benzidine Dihydrochloride. Blood 1965, 26, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.S.M.; Ederli, N.B.; Bôa-Morte, M.O.; Oliveira, F.C.R. Hematological, morphological and morphometric characteristics of blood cells from rhea, Rhea Americana (Struthioniformes: Rheidae): A standard for Brazilian birds. Braz. J. Biol. 2015, 75, 953–962. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Maulvault, A.L.; Barbosa, V.; Alves, R.; Custódio, A.; Anacleto, P.; Repolho, T.; Pousão-Ferreira, P.; Rosa, R.; Marques, A.; Diniz, M. Ecophysiological responses of juvenile seabass (Dicentrarchus labrax) exposed to increased temperature and dietary methylmercury. Sci. Total Environ. 2017, 586, 551–558. [Google Scholar] [CrossRef]
- Lawrence, R.A.; Burk, R.F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–958. [Google Scholar] [CrossRef]
- Kambayashi, Y.; Binh, N.T.; Asakura, H.W.; Hibino, Y.; Hitomi, Y.; Nakamura, H.; Ogino, K. Efficient assay for total antioxidant capacity in human plasma using a 96-well microplate. J. Clin. Biochem. Nutr. 2009, 44, 46–51. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Pegado, M.R.; Santos, C.P.; Pimentel, M.; Cyrne, R.; Sampaio, E.; Temporão, A.; Röckner, J.; Diniz, M.; Rosa, R. Lack of oxidative damage on temperate juvenile catsharks after a long-term ocean acidification exposure. Mar. Biol. 2020, 167, 1–10. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Beliaeff, B.; Burgeot, T. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002, 21, 1316–1322. [Google Scholar] [CrossRef]
- Anacleto, P.; Figueiredo, C.; Baptista, M.; Maulvault, A.L.; Camacho, C.; Pousão-Ferreira, P.; Valente, L.M.P.; Marques, A.; Rosa, R. Fish energy budget under ocean warming and flame retardant exposure. Environ. Res. 2018, 164, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Maulvault, A.L.; Barbosa, V.; Alves, R.; Anacleto, P.; Camacho, C.; Cunha, S.; Fernandes, J.O.; Pousão-Ferreira, P.; Rosa, R.; Marques, A.; et al. Integrated multi-biomarker responses of juvenile seabass to diclofenac, warming and acidification co-exposure. Aquat. Toxicol. 2018, 202, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Maulvault, A.L.; Camacho, C.; Barbosa, V.; Alves, R.; Anacleto, P.; Cunha, S.C.; Fernandes, J.O.; Pousão-Ferreira, P.; Paula, J.R.; Rosa, R.; et al. Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification. Environ. Pollut. 2019, 245, 427–442. [Google Scholar] [CrossRef]
- Chellappa, S.; Huntingford, F.A.; Strang, R.H.C.; Thomson, R.Y. Condition factor and hepatosomatic index as estimates of energy status in male three-spined stickleback. J. Fish Biol. 1995, 47, 775–787. [Google Scholar] [CrossRef]
- Santos, R.M.B.; Monteiro, S.M.V.; Cortes, R.M.V.; Pacheco, F.A.L.; Fernandes, L.F.S. Seasonal Differences in Water Pollution and Liver Histopathology of Iberian Barbel (Luciobarbus bocagei) and Douro Nase (Pseudochondrostoma duriense) in an Agricultural Watershed. Water 2022, 14, 444. [Google Scholar] [CrossRef]
- Tegomo, F.A.; Zhong, Z.; Njomoue, A.P.; Okon, S.U.; Ullah, S.; Gray, N.A.; Chen, K.; Sun, Y.; Xiao, J.; Wang, L.; et al. Experimental Studies on the Impact of the Projected Ocean Acidification on Fish Survival, Health, Growth, and Meat Quality; Black Sea Bream (Acanthopagrus schlegelii), Physiological and Histological Studies. Animals 2021, 11, 3119. [Google Scholar] [CrossRef] [PubMed]
- Augusto, A.; Ramaglia, A.C.; Mantoan, P.V. Effect of carbon dioxide-induced water acidification and seasonality on the physiology of the sea-bob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae). Crustaceana 2018, 91, 947–960. [Google Scholar] [CrossRef]
- Miller, G.M.; Kroon, F.J.; Metcalfe, S.; Munday, P.L. Temperature is the evil twin: Effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecol. Appl. 2015, 25, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Crain, C.M.; Kroeker, K.; Halpern, B.S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 2008, 11, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Piggott, J.J.; Townsend, C.R.; Matthaei, C.D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 2015, 5, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, G.; Navarro, C.; Cortés, P.P.; Imarai, M.; Montoya, M.; Valenzuela, B.; Jara, P.; Acuña-Castillo, C.; Fernández, R. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish Shellfish Immunol. 2014, 40, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Prabu, E.; Felix, S.; Felix, N.; Ahilan, B.; Ruby, P. An overview on significance of fish nutrition in aquaculture industry. Int. J. Fish. Aquat. Stud. 2017, 5, 349–355. [Google Scholar]
- Gao, X.; Zhai, H.; Peng, Z.; Yu, J.; Yan, L.; Wang, W.; Ren, T.; Han, Y. Comparison of nutritional quality, flesh quality, muscle cellularity, and expression of muscle growth-related genes between wild and recirculating aquaculture system (RAS)-farmed black rockfish (Sebastes schlegelii). Aquac. Int. 2023, 31, 2263–2280. [Google Scholar] [CrossRef]
- Reid, G.K.; Gurney-Smith, H.J.; Flaherty, M.; Garber, A.F.; Forster, I.; Brewer-Dalton, K.; Knowler, D.; Marcogliese, D.J.; Chopin, T.; Moccia, R.D.; et al. Climate change and aquaculture: Considering adaptation potential. Aquac. Environ. Interact. 2019, 11, 603–624. [Google Scholar] [CrossRef]
- Killen, S.S.; Marras, S.; McKenzie, D.J. Fuel, fasting, fear: Routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. J. Anim. Ecol. 2011, 80, 1024–1033. [Google Scholar] [CrossRef]
- Seibel, H.; Baßmann, B.; Rebl, A. Blood Will Tell: What Hematological Analyses Can Reveal about Fish Welfare. Front. Vet. Sci. 2021, 8, 616955. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.P.; Stevens, E.D. Size and hematological impact of the splenic erythrocyte reservoir in rainbow trout, Oncorhynchus mykiss. Fish Physiol. Biochem. 1991, 9, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Mofizur Rahman, M.; Bae Kim, H.; Ja Baek, H. Changes in Blood Cell Morphology and Number of Red Spotted Grouper, Epinephelus akaara in Response to Thermal Stress. Dev. Reprod. 2019, 23, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Hisar, O.; Yılmaz, S.; Gürkan, M.; Hisar, Ş.A. The effects of elevated carbon dioxide and temperature levels on tilapia (Oreochromis mossambicus): Respiratory enzymes, blood pH and hematological parameters. Environ. Toxicol. Pharmacol. 2016, 44, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Islam, M.J.; Slater, M.J.; Bögner, M.; Zeytin, S.; Kunzmann, A. Extreme ambient temperature effects in European seabass, Dicentrarchus labrax: Growth performance and hemato-biochemical parameters. Aquaculture 2020, 522, 735093. [Google Scholar] [CrossRef]
- Mateus, A.P.; Power, D.M.; Canário, A.V.M. Stress and Disease in Fish. In Fish Diseases; Academic Press: Cambridge, MA, USA, 2017; pp. 187–220. [Google Scholar] [CrossRef]
- Rodgers, C.J.; Furones, M.D. Antimicrobial agents in aquaculture: Practice, needs and issues. In The Use of Veterinary Drugs and Vaccines in Mediterranean Aquaculture; Options Mediterr.: Série A. Séminaires, Méditerranéens; n., 86; Rogers, C., Basurco, B., Eds.; CIHEAM: Zaragoza, Spain, 2009; pp. 41–59. [Google Scholar]
- Magnadottir, B. Immunological Control of Fish Diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Lieke, T.; Meinelt, T.; Hoseinifar, S.H.; Pan, B.; Straus, D.L.; Steinberg, C.E.W. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquac. 2020, 12, 943–965. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Maulvault, A.L.; Camacho, C.; Barbosa, V.; Alves, R.; Anacleto, P.; Pousão-Ferreira, P.; Rosa, R.; Marques, A.; Diniz, M.S. Living in a multi-stressors environment: An integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification. Environ. Res. 2019, 169, 7–25. [Google Scholar] [CrossRef]
- Lopes, A.R.; Figueiredo, C.; Sampaio, E.; Diniz, M.; Rosa, R.; Grilo, T.F. Impaired antioxidant defenses and DNA damage in the European glass eel (Anguilla anguilla) exposed to ocean warming and acidification. Sci. Total Environ. 2021, 774, 145499. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, A.; Connell, S.D.; Leung, J.Y.S.; Nagelkerken, I. Adaptive responses of fishes to climate change: Feedback between physiology and behaviour Sci. Total Environ. 2019, 692, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Baldissera, M.D.; Souza, C.F.; Barroso, D.C.; Falk, R.B.; Wagner, R.; Baldisserotto, B.; Val, A.L. Disturbance of oxidant/antioxidant status and impairment on fillet fatty acid profiles in Brycon amazonicus subjected to acute heat stress. Fish Physiol. Biochem. 2020, 46, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; McLellan, L.I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999, 31, 273–300. [Google Scholar] [CrossRef] [PubMed]
- Grim, J.M.; Hyndman, K.A.; Kriska, T.; Girotti, A.W.; Crockett, E.L. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish. J. Exp. Biol. 2011, 214, 3751–3759. [Google Scholar] [CrossRef] [PubMed]
- de Fátima Pereira de Faria, C.; dos Reis Martinez, C.B.; Takahashi, L.S.; de Mello, M.M.M.; Martins, T.P.; Urbinati, E.C. Modulation of the innate immune response, antioxidant system and oxidative stress during acute and chronic stress in pacu (Piaractus mesopotamicus). Fish Physiol. Biochem. 2021, 47, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, I.M. Energy-Limited Tolerance to Stress as a Conceptual Framework to Integrate the Effects of Multiple Stressors. Integr. Comp. Biol. 2013, 53, 597–608. [Google Scholar] [CrossRef]
- Carter, C.G.; Houlihan, D.F. Protein synthesis. Fish Physiol. 2001, 20, 31–75. [Google Scholar] [CrossRef]
SGR | K | VSI | HSI | ERY | LEU | SOD | CAT | TAC | GPx | GST | LPO | HSP70/ HSC70 | Ub | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OW | −11 | ns | −52 | ns | +1 | −37 | Muscle | +15 | −62 | −19 | ns | −33 | −45 | +29 | ns |
Liver | −30 | +51 | ns | −54 | +51 | −55 | +98 | −21 | |||||||
Brain | +12 | −14 | ns | >+100 | ns | −42 | −88 | −26 | |||||||
Gills | ns | −42 | +22 | −40 | +46 | ns | +34 | −33 | |||||||
OA | −42 | ns | ns | +10 | +1 | −29 | Muscle | ns | ns | ns | +60 | −10 | −34 | ns | ns |
Liver | ns | +52 | ns | −58 | +53 | ns | +68 | ns | |||||||
Brain | −14 | +16 | +48 | ns | ns | −29 | −46 | ns | |||||||
Gills | ns | −56 | ns | −37 | −6 | ns | +83 | −33 | |||||||
OWA | −49 | −35 | −30 | +10 | +1 | −29 | Muscle | +21 | −73 | −66 | −12 | −25 | −60 | −61 | ns |
Liver | −25 | +21 | ns | −63 | +83 | −40 | ns | ns | |||||||
Brain | −27 | +9 | +21 | +24 | ns | ns | −47 | −21 | |||||||
Gills | −30 | −57 | ns | −21 | −18 | ns | >+100 | −40 |
df | Pseudo-F | p-Value | Unique Perms | |
---|---|---|---|---|
Fitness indicators | ||||
SGR | 3 | 60.68 | 0.0001 | 9949 |
K | 3 | 8.65 | 0.0003 | 9956 |
VSI | 3 | 97.93 | 0.0001 | 9954 |
HSI | 3 | 5.03 | 0.0076 | 9947 |
Hematological parameters | ||||
Erythrocytes | 3 | 5.56 | 0.0133 | 9964 |
Leukocytes | 3 | 5.56 | 0.0117 | 9954 |
Biochemical biomarkers | ||||
Muscle | ||||
SOD | 3 | 8.20 | 0.0041 | 9938 |
CAT | 3 | 30.93 | 0.0001 | 9921 |
TAC | 3 | 181.71 | 0.0001 | 9904 |
GPx | 3 | 33.99 | 0.0004 | 9922 |
GST | 3 | 39.87 | 0.0001 | 9947 |
LPO | 3 | 22.88 | 0.0001 | 9940 |
HSC70/HSP70 | 3 | 57.45 | 0.0001 | 9949 |
Ub | 3 | 5.36 | 0.0066 | 9948 |
Liver | ||||
SOD | 3 | 26.12 | 0.0001 | 9929 |
CAT | 3 | 79.80 | 0.0001 | 9943 |
TAC | 3 | 21.95 | 0.0001 | 9932 |
GPx | 3 | 46.63 | 0.0006 | 9925 |
GST | 3 | 55.25 | 0.0001 | 9941 |
LPO | 3 | 78.22 | 0.0001 | 9912 |
HSC70/HSP70 | 3 | 29.40 | 0.0001 | 9921 |
Ub | 3 | 7.43 | 0.0044 | 9944 |
Brain | ||||
SOD | 3 | 35.96 | 0.0001 | 9900 |
CAT | 3 | 13.08 | 0.0002 | 9934 |
TAC | 3 | 25.41 | 0.0001 | 9945 |
GPx | 3 | 102.87 | 0.0001 | 9940 |
GST | 3 | 12.70 | 0.0018 | 9939 |
LPO | 3 | 136.65 | 0.0001 | 9958 |
HSC70/HSP70 | 3 | 147.51 | 0.0001 | 9958 |
Ub | 3 | 49.35 | 0.0003 | 9945 |
Gills | ||||
SOD | 3 | 38.34 | 0.0001 | 9944 |
CAT | 3 | 124.39 | 0.0001 | 9913 |
TAC | 3 | 19.75 | 0.0001 | 9925 |
GPx | 3 | 144.25 | 0.0001 | 9890 |
GST | 3 | 306.99 | 0.0001 | 9940 |
LPO | 3 | 1.89 | 0.1895 | 9938 |
HSC70/HSP70 | 3 | 215.09 | 0.0001 | 9850 |
Ub | 3 | 22.07 | 0.0011 | 9945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, M.; Pousão-Ferreira, P.; Diniz, M.S.; Marques, A.; Rosa, R.; Anacleto, P.; Maulvault, A.L. Integrated Multi-Biomarker Responses of Juvenile Zebra Seabream (Diplodus cervinus) to Warming and Acidification Conditions. Oceans 2024, 5, 571-590. https://doi.org/10.3390/oceans5030033
Dias M, Pousão-Ferreira P, Diniz MS, Marques A, Rosa R, Anacleto P, Maulvault AL. Integrated Multi-Biomarker Responses of Juvenile Zebra Seabream (Diplodus cervinus) to Warming and Acidification Conditions. Oceans. 2024; 5(3):571-590. https://doi.org/10.3390/oceans5030033
Chicago/Turabian StyleDias, Marta, Pedro Pousão-Ferreira, Mário S. Diniz, António Marques, Rui Rosa, Patrícia Anacleto, and Ana L. Maulvault. 2024. "Integrated Multi-Biomarker Responses of Juvenile Zebra Seabream (Diplodus cervinus) to Warming and Acidification Conditions" Oceans 5, no. 3: 571-590. https://doi.org/10.3390/oceans5030033
APA StyleDias, M., Pousão-Ferreira, P., Diniz, M. S., Marques, A., Rosa, R., Anacleto, P., & Maulvault, A. L. (2024). Integrated Multi-Biomarker Responses of Juvenile Zebra Seabream (Diplodus cervinus) to Warming and Acidification Conditions. Oceans, 5(3), 571-590. https://doi.org/10.3390/oceans5030033