A Sustainable Approach to Managing Invasive Macroalgae: Assessment of the Nutritional Profile and the Potential for Enteric Methane Mitigation of Rugulopteryx okamurae
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Design
- -
- Low level: A1% (1% DM, of the total dry matter of the basal diet);
- -
- High level: A5% (5% DM, of the total dry matter of the basal diet).
2.2. Seaweed Collection
2.3. Determination of Chemical Parameters of R. okamurae and Basal Diet
2.4. Determination of Biological Parameters of R. okamurae
2.5. Measuring Gas and Methane Production In Vitro
2.6. Statistical Analyses
3. Results
3.1. Chemical and Biological Composition of Rugulopteryx okamurae
3.2. Total Gas and Methane Production
4. Discussion
4.1. Chemical Composition of Rugulopteryx okamurae
4.2. Addition of Rugulopteryx okamurae to Total Gas and Methane Production In Vitro
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Myer, P.R.; Clemmons, B.A.; Schneider, L.G.; Ault, T.B. Microbiomes in ruminant protein production and food security. CAB Rev. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef]
- Allen, M.R.; Dube, O.P.; Solecki, W.A.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2024; p. 84. Available online: http://pure.iiasa.ac.at/id/eprint/15716/ (accessed on 23 May 2024).
- Løvendahl, P.; Difford, G.F.; Li, B.; Chagunda, M.G.G.; Huhtanen, P.; Lidauer, M.H.; Lassen, J.; Lund, P. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 2018, 12, s336–s349. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.; Price, W.; McClelland, S.; Pelaez, A.; Cueva, S.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Wanapat, M.; Prachumchai, R.; Dagaew, G.; Matra, M.; Phupaboon, S.; Sommai, S.; Suriyapha, C. Potential use of seaweed as a dietary supplement to mitigate enteric methane emission in ruminants. Sci. Total Environ. 2024, 931, 173015. [Google Scholar] [CrossRef] [PubMed]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; De Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Nunes, H.P.B.; Dias, C.S.M.M.; Álvaro, N.V.; Borba, A.E.S. Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay. Animals 2024, 14, 967. [Google Scholar] [CrossRef]
- Lester, R.E.; Macqueen, A.; Armstrong, E.K.; Dodemaide, D.T.; Dwyer, G.K.; Mock, T.S.; Payne, S.; Smith, M.; Storen, M.; Webb, L. Can Freshwater Plants and Algae Act as an Effective Feed Supplement to Reduce Methane Emissions from Ruminant Livestock? Sci. Total Environ. 2023, 914, 169296. [Google Scholar] [CrossRef] [PubMed]
- Colin, R.L.; Buse, K.K.; Watson, A.K.; Erickson, G.E.; Kononoff, P.J. Effect of Alga 1.0 on Reducing Enteric Methane Emissions from Cattle. J. Anim. Sci. 2023, 101, 221–222. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- DeClerck, L.; Leliaert, F.; Verbruggen, H.; Lane, C.E.; DePaula, J.C.; Payo, D.I.; Coppejans, E. A revised classification of thw dictyoteae (Dictyotales, Phaeophyceae) based on rbcL and 26S ribosomal DNA sequence data analyses. J. Phycol. 2006, 42, 1271–1288. [Google Scholar] [CrossRef]
- Verlaque, M.; Steen, F.; De Clerck, O. Rugulopteryx (Dictyotales, Phaeophyceae), a genus recently introduced to the Mediterranean. Phycologia 2009, 48, 536–542. [Google Scholar] [CrossRef]
- Ruitton, S.; Blanfuné, A.; Boudouresque, C.F.; Guillemain, D.; Michotey, V.; Roblet, S.; Thibault, D.; Thibaut, T.; Verlaque, M. Rapid Spread of the Invasive Brown Alga Rugulopteryx okamurae in a National Park in Provence (France, Mediterranean Sea). Water 2021, 13, 2306. [Google Scholar] [CrossRef]
- Sempere-Valverde, J.; Ostale, E.; Maestre, M.; Gonzalez, R.; Bazairi, H.; Espinosa, F. Impacts of the non-indigenous seaweed Rugulopteryx okamurae on a Mediterranean coralligenous community (Strait of Gibraltar): The role of long-term monitoring. Ecol. Indic. 2021, 121, 107135. [Google Scholar] [CrossRef]
- De la Lama-Calvente, M.J.; Fernández-Rodríguez, J.; Llanos, J.M.; Mancilla-Leytón, R.; Borja, R. Enhancing methane production from the invasive macroalga Rugulopteryx okamurae through anaerobic co-digestion with olive mill solid waste: Process performance and kinetic analysis. J. Appl. Phycol. 2021, 33, 4113–4124. [Google Scholar] [CrossRef]
- Faria, J.; Prestes, A.C.L.; Moreu, I.; Martins, G.M.; Neto, A.I.; Cacabelos, E. Arrival and proliferation of the invasive seaweed Rugulopteryx okamurae in NE Atlantic islands. Bot. Mar. 2022, 65, 45–50. [Google Scholar] [CrossRef]
- Barcellos, L.; Pham, C.K.; Menezes, G.; Bettencourt, R.; Rocha, N.; Carvalho, M.; Felgueiras, H.P.A. Concise Review on the Potential Applications of Rugulopteryx okamurae Macroalgae. Mar. Drugs 2023, 21, 40. [Google Scholar] [CrossRef]
- Ocaña, O.; Afonso-Carrillo, J.; Ballesteros, E. Massive proliferation of a dictyotalean species (Phaeophyceae, Ochrophyta) through the Strait of Gibraltar (Research note). Rev. Acad. Canar. Cienc. 2016, 28, 165. [Google Scholar]
- García-Gómez, J.C.; Sempere-Valverde, J.; González, A.R.; Martínez-Chacón, M.; Olaya-Ponzone, L.; Sánchez-Moyano, E.; Ostalé-Valriberas, E.; Megina, C. From exotic to invasive in record time: The extreme impact of Rugulopteryx okamurae (Dictyotales, Ochrophyta) in the strait of Gibraltar. Sci. Total Environ. 2020, 704, 135408. [Google Scholar] [CrossRef]
- García-Gómez, J.C.; Florido, M.; Olaya-Ponzone, L.; Rey Díaz de Rada, J.; Donázar-Aramendía, I.; Chacón, M.; Quintero, J.J.; Magariño, S.; Megina, C. Monitoring Extreme Impacts of Rugulopteryx okamurae (Dictyotales, Ochrophyta) in El Estrecho Natural Park (Biosphere Reserve). Showing Radical Changes in the Underwater Seascape. Front. Ecol. Evol. 2021, 9, 639161. [Google Scholar] [CrossRef]
- Belanche, A.; Jones, E.; Parveen, I.; Newbold, C.J. A metagenomics approach to evaluate the impact of dietary supplementation with Ascophyllum nodosum or Laminaria digitata on rumen function in Rusitec fermenters. Front. Microbiol. 2016, 7, 299. [Google Scholar] [CrossRef] [PubMed]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 5, 483–501. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis, 12th ed.; AOAC: Washington, DC, USA, 1999. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Applications); Agriculture Handbook No. 379; ARS-USDA: Washington, DC, USA, 1970. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Alexander, R.H.; McGowan, M. The routine determination of in vitro digestibility of organic matter in forages: An investigation of the problems associated with continuous large-scale operation. J. Br. Grassl. Soc. 1966, 21, 140–147. [Google Scholar] [CrossRef]
- Borba, A.A.E.S.; Correia, P.J.A.; Fernandes, J.M.M.; Borba, A.F.R.S. Comparison of three sources of inocula for predicting apparent digestibility of ruminant feedstuffs. Anim. Res. 2001, 50, 265–273. [Google Scholar] [CrossRef]
- Nunes, H.P.B.; Maduro Dias, C.S.A.M.; Borba, A.E.S. Bioprospecting essential oils of exotic species as potential mitigations of ruminant enteric methanogenesis. Helyion 2023, 9, e12786. [Google Scholar] [CrossRef]
- Manns, D.; Nielsen, M.M.; Bruhn, A.; Saake, B.; Meyer, A.S. Compositional variations of brown seaweeds Laminaria digitata and Saccharina latissima in Danish waters. J. Appl. Phycol. 2017, 29, 1493–1506. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; Miranda, M.; Sweeney, T.; Lopez-Alonso, M.; O’Doherty, J. Seasonal Variation of the Proximate Composition, Mineral Content, Fatty Acid Profiles and Other Phytochemical Constituents of Selected Brown Macroalgae. Mar. Drugs 2021, 19, 204. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Oliveira, G.A.; de Castilhos, F.; Renard, C.M.G.C.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Mišcová, L. Chemical composition of seaweed. In Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; Kim, S., Ed.; Wiley-Blackwell: Chichester, UK, 2012; pp. 173–192. [Google Scholar]
- Choi, Y.Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Kim, D.H.; Lee, S.S. The potential nutritive value of Sargassum fulvellum as a feed ingredient for ruminants. Algal Res. 2021, 45, 10176. [Google Scholar] [CrossRef]
- Wild, K.J.; Steinga, H.; Rodehutscord, M. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1306–1319. [Google Scholar] [CrossRef]
- Fiset, C.; Irwin, A.J.; Finkel, Z.V. The macromolecular composition of noncalcified marine macroalgae. J. Phycol. 2019, 55, 1361–1369. [Google Scholar] [CrossRef]
- Campbell, M.; Theodoridou, K.; Koidis, A. The Potential Applications of Brown Seaweed as An Alternative Feed for Ruminant Livestock. Ph.D. Thesis, Queen’s University, Belfast, UK, 2021. [Google Scholar]
- Harb, T.B.; Chow, F. An overview of beach-cast seaweeds: Potential and opportunities for the valorization of underused waste biomass. Algal Res. 2022, 62, 102643. [Google Scholar] [CrossRef]
- Fonseca, F.; Fuentes, J.; Vizcaíno, A.J.; Alarcón, F.J.; Mancera, J.M.; Martínez-Rodríguez, G.; Martos-Sitcha, J.A. From invasion to fish fodder: Inclusion of the brown algae Rugulopteryx okamurae in aquafeeds for European sea bass Dicentrarchus labrax (L., 1758). Aquaculture 2023, 568, 739318. [Google Scholar] [CrossRef]
- Vizcaíno, A.; Sáez, M.; Galafat, A.; Galindo-Melero, R.; Perera, E.; Casal-Porras, I.; Zubía, E.; Vega, J.; Figueroa, F.; Martínez, T.; et al. Effects of feeding European seabass (Dicentrarchus labrax) juveniles with crude, hydrolysed and fermented biomass of the invasive macroalga Rugulopteryx okamurae (Ochrophyta). Aquac. Rep. 2024, 34, 101877. [Google Scholar] [CrossRef]
- Machado, L. Feeding livestock seaweed: Effects on health and production. J. Anim. Sci. 2018, 96, 1117–1135. [Google Scholar]
- Zhang, X. Effects of various brown seaweeds on in vitro rumen fermentation and methane production. Algal Res. 2021, 55, 102229. [Google Scholar]
- Eckard, R.J.; Grainger, C.; De Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, A. Brown algae as a feed additive: Nutritional and health impacts on ruminant—A review. In Animal Feed: Types, Nutrition and Safety; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 1–32. [Google Scholar]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
DM (%) | CP (%DM) | NDF (%DM) | ADF (%DM) | ADL (%DM) | EE (%DM) | Ash (%DM) | DMD (%) | OMD (%) | |
---|---|---|---|---|---|---|---|---|---|
Basal Diet | 10.35 | 19.79 | 64.14 | 33.9 | 3.34 | 1.09 | 14.56 | 76.03 | 72.41 |
Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation | |
---|---|---|---|---|---|
Dry Matter (%) | 9.86 | 10.46 | 10.11 | 0.31 | 3.11 |
Crude Protein (%DM) | 17.42 | 20.02 | 18.68 | 1.30 | 6.97 |
NDF (%DM) | 54.03 | 56.67 | 55.71 | 1.46 | 2.62 |
ADF (%DM) | 41.96 | 45.04 | 43.28 | 1.59 | 3.66 |
ADL (%DM) | 17.41 | 19.75 | 18.62 | 1.17 | 6.29 |
EE (%DM) | 1.64 | 1.82 | 1.68 | 0.06 | 3.37 |
Ash (%DM) | 29.87 | 35.36 | 31.86 | 3.04 | 9.53 |
DMD (%) | 16.29 | 17.65 | 16.60 | 0.93 | 5.60 |
OMD (%) | 9.21 | 9.76 | 9.47 | 0.27 | 2.85 |
Treatment | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|---|---|
Control | 29.59 a | 51.95 a | 99.03 a | 147.89 a | 154.53 a | 155.25 a |
A1% | 22.18 a,b | 25.35 b | 46.59 b | 66.36 b | 66.49 b | 66.72 b |
A5% | 17.68 b | 26.18 b | 40.6 b | 40.65 c | 40.77 c | 40.99 c |
SEM | 3.69 | 2.79 | 2.93 | 2.87 | 1.84 | 1.99 |
p-value | 0.023 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|---|---|
Control | 12.28 a | 20.78 a | 29.02 a | 37.62 a | 39.16 a | 40.5 a |
A1% | 4.53 a,b | 13.91 b | 23.86 a | 23.87 b | 24.24 b | 24.76 b |
A5% | 0 b | 0 c | 0.32 b | 0.64 c | 0.96 c | 0.96 c |
SEM | 0.18 | 0.25 | 0.29 | 0.30 | 0.87 | 0.98 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, H.P.B.; Maduro-Dias, C.; Carvalho, J.; Borba, A. A Sustainable Approach to Managing Invasive Macroalgae: Assessment of the Nutritional Profile and the Potential for Enteric Methane Mitigation of Rugulopteryx okamurae. Oceans 2024, 5, 662-671. https://doi.org/10.3390/oceans5030038
Nunes HPB, Maduro-Dias C, Carvalho J, Borba A. A Sustainable Approach to Managing Invasive Macroalgae: Assessment of the Nutritional Profile and the Potential for Enteric Methane Mitigation of Rugulopteryx okamurae. Oceans. 2024; 5(3):662-671. https://doi.org/10.3390/oceans5030038
Chicago/Turabian StyleNunes, Helder P. B., Cristiana Maduro-Dias, Joana Carvalho, and Alfredo Borba. 2024. "A Sustainable Approach to Managing Invasive Macroalgae: Assessment of the Nutritional Profile and the Potential for Enteric Methane Mitigation of Rugulopteryx okamurae" Oceans 5, no. 3: 662-671. https://doi.org/10.3390/oceans5030038
APA StyleNunes, H. P. B., Maduro-Dias, C., Carvalho, J., & Borba, A. (2024). A Sustainable Approach to Managing Invasive Macroalgae: Assessment of the Nutritional Profile and the Potential for Enteric Methane Mitigation of Rugulopteryx okamurae. Oceans, 5(3), 662-671. https://doi.org/10.3390/oceans5030038