Development of Biofidelic Skin Simulants Based on Fresh Cadaveric Skin Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation from Cadaveric Skin
2.2. Designing and 3D Printing of Mold for Simulant Fabrication
2.3. Fabrication of Candidate Skin Tissue Simulants
2.4. Uniaxial Tensile Testing of Cadaveric Samples and Candidate Skin Tissue Simulants
2.5. Curve Fitting of the Skin Tissue Simulants Using Hyperelastic Models
3. Results and Discussion
3.1. Stress–Strain Plots of Cadaveric Skin
3.2. Stress–Strain Plots of the Developed Skin Tissue Simulants
3.3. Repeatability Test of the Controlled Samples
3.4. Hyperelastic Curve-Fitting Modeling of Skin Tissue Simulants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oltulu, P.; Ince, B.; Kokbudak, N.; Findik, S.; Kilinc, F. Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique. Turk. Plast. Surg. 2018, 26, 56–61. [Google Scholar] [CrossRef]
- Summerfield, A.; Meurens, F.; Ricklin, M.E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 2015, 66, 14–21. [Google Scholar] [CrossRef]
- Gallagher, S.; Josyula, K.; Rahul; Kruger, U.; Gong, A.; Song, A.; Eschelbach, E.; Crawford, D.; Pham, T.; Sweet, R.; et al. Mechanical behavior of full-thickness burn human skin is rate-independent. Sci. Rep. 2024, 14, 11096. [Google Scholar] [CrossRef] [PubMed]
- McLafferty, E.; Hendry, C.; Alistair, F. The integumentary system: Anatomy, physiology and function of skin. Nurs. Stand. 2012, 27, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.; Payne, T.; Bibb, R. Design of human surrogates for the study of biomechanical injury: A review. Crit. Rev. Biomed. Eng. 2013, 41, 51–89. [Google Scholar] [CrossRef]
- Pissarenko, A.; Meyers, M.A. The materials science of skin: Analysis, characterization, and modeling. Prog. Mater. Sci. 2020, 110, 100634. [Google Scholar] [CrossRef]
- Payne, T.; Mitchell, S.; Bibb, R.; Waters, M. The evaluation of new multi-material human soft tissue simulants for sports impact surrogates. J. Mech. Behav. Biomed. Mater. 2015, 41, 336–356. [Google Scholar] [CrossRef] [PubMed]
- Wan Abas, W.A.B.; Barbenel, J.C. Biaxial tension test of human skin in vivo. J. Biomed. Eng. 1982, 4, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Delalleau, A.; Josse, G.; Lagarde, J.M.; Zahouani, H.; Bergheau, J.M. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Ski. Res. Technol. 2008, 14, 152–164. [Google Scholar] [CrossRef]
- Falland-Cheung, L.; Waddell, J.N.; Lazarjan, M.S.; Jermy, M.C.; Winter, T.; Tong, D.; Brunton, P.A. Use of agar/glycerol and agar/glycerol/water as a translucent brain simulant for ballistic testing. J. Mech. Behav. Biomed. Mater. 2017, 65, 665–671. [Google Scholar] [CrossRef]
- Pandey, P.K.; Harmukh, A.; Khan, M.K.; Iqbal, M.A.; Ganpule, S.S. Ballistic response of skin simulant against fragment simulating projectiles. Def. Technol. 2023, 30, 70–82. [Google Scholar] [CrossRef]
- Payne, T.; Mitchell, S.; Bibb, R.; Waters, M. Development of novel synthetic muscle tissues for sports impact surrogates. J. Mech. Behav. Biomed. Mater. 2015, 41, 357–374. [Google Scholar] [CrossRef]
- Chanda, A.; Upchurch, W. Biomechanical Modeling of Wounded Skin. J. Compos. Sci. 2018, 2, 69. [Google Scholar] [CrossRef]
- Lim, J.; Hong, J.; Chen, W.W.; Weerasooriya, T. Mechanical response of pig skin under dynamic tensile loading. Int. J. Impact Eng. 2011, 38, 130–135. [Google Scholar] [CrossRef]
- Shergold, O.A.; Fleck, N.A.; Radford, D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Eng. 2006, 32, 1384–1402. [Google Scholar] [CrossRef]
- Gupta, V.; Chanda, A. Biomechanics of skin grafts: Effect of pattern size, spacing and orientation. Eng. Res. Express 2022, 4, 015006. [Google Scholar] [CrossRef]
- Jussila, J.; Leppaniemi, A.; Paronen, M.; Kulomaki, E. Ballistic skin simulant. Forensic Sci. Int. 2005, 150, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Chanda, A. Biomechanical Modeling of Human Skin Tissue Surrogates. Biomimetics 2018, 3, 18. [Google Scholar] [CrossRef]
- Fenton, L.A.; Horsfall, I.; Carr, D.J. Skin and skin simulants. Aust. J. Forensic Sci. 2018, 52, 96–106. [Google Scholar] [CrossRef]
- Daly, C.H. Biomechanical properties of dermis. J. Investig. Dermatol. 1982, 79, 17–20. [Google Scholar] [CrossRef]
- Singh, G.; Chanda, A. Development and mechanical characterization of artificial surrogates for brain tissues. Biomed. Eng. Adv. 2023, 5, 100084. [Google Scholar] [CrossRef]
- Makode, S.; Singh, G.; Chanda, A. Development of novel anisotropic skin simulants. Phys. Scr. 2021, 96, 125019. [Google Scholar] [CrossRef]
- Martins, P.A.L.S.; Filho, A.L.S.; Fonseca, A.M.R.M.; Santos, A.; Santos, L.; Mascarenhas, T.; Jorge, R.M.N.; Ferreira, A.J.M. Uniaxial mechanical behavior of the human female bladder. Int. Urogynecol. J. 2011, 22, 991–995. [Google Scholar] [CrossRef]
- Karimi, A.; Shojaei, A.; Tehrani, P. Measurement of the mechanical properties of the human gallbladder. J. Med. Eng. Technol. 2017, 41, 541–545. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, F.; Mao, H.; Shen, M.; Yang, K.H. A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 2013, 46, 2795–2801. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.A.L.S.; Natal Jorge, R.M.; Ferreira, A.J.M. A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues. Strain 2006, 42, 135–147. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Wiley, J. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. Meccanica 2002, 37, 489–490. [Google Scholar] [CrossRef]
- Ní Annaidh, A.; Bruyère, K.; Destrade, M.; Gilchrist, M.D.; Otténio, M. Characterization of the anisotropic mechanical properties of 344 excised human skin. J. Mech. Behav. Biomed. Mater. 2012, 5, 139–148. [Google Scholar] [CrossRef]
Sr. No. | Shore Hardness | Material of Shore 5A | Material of Shore 15A | Material of Shore 30A | |||
---|---|---|---|---|---|---|---|
Part A | Part B | Part A | Part B | Part A | Part B | ||
1 | 5A | 50 | 50 | – | – | – | – |
2 | 6A | 45 | 45 | 5 | 5 | – | – |
3 | 8A | 35 | 35 | 15 | 15 | – | – |
4 | 10A | 25 | 25 | 25 | 25 | – | – |
5 | 12A | 15 | 15 | 35 | 35 | – | – |
6 | 14A | 5 | 5 | 45 | 45 | – | – |
7 | 15A | – | – | 50 | 50 | – | – |
8 | 16A | – | – | 47 | 47 | 3 | 3 |
9 | 18A | – | – | 40 | 40 | 10 | 10 |
10 | 20A | – | – | 33 | 33 | 17 | 17 |
11 | 22A | – | – | 27 | 27 | 23 | 23 |
12 | 24A | – | – | 20 | 20 | 30 | 30 |
13 | 26A | – | – | 13 | 13 | 37 | 37 |
14 | 28A | – | – | 7 | 7 | 43 | 43 |
15 | 30A | – | – | – | – | 50 | 50 |
Sr. No. | Shore Hardness of Sample | Mooney–Rivlin | Yeoh | Neo-Hookean | |||
---|---|---|---|---|---|---|---|
c1 | c2 | c1 | c2 | c3 | c1 | ||
1 | 5A | 0.0096019 | 0.0006 | 0.00380 | 0.000594 | 0.000004 | 0.0019406 |
2 | 6A | 0.0132332 | 0.0011 | 0.00941 | 0.000094 | 0.000011 | 0.0055783 |
3 | 8A | 0.0142083 | 0.0013 | 0.00970 | 0.000114 | 0.000023 | 0.0066360 |
4 | 10A | 0.0164332 | 0.0014 | 0.01080 | 0.000894 | 0.000029 | 0.0108246 |
5 | 12A | 0.0171486 | 0.0020 | 0.01233 | 0.000002 | 0.000034 | 0.0057830 |
6 | 14A | 0.0173259 | 0.0030 | 0.01301 | 0.000004 | 0.000042 | 0.0084725 |
7 | 15A | 0.0175032 | 0.0035 | 0.01358 | 0.000012 | 0.00005 | 0.0094663 |
8 | 16A | 0.0188794 | 0.0038 | 0.01365 | 0.000015 | 0.000059 | 0.0104602 |
9 | 18A | 0.0292954 | 0.0047 | 0.02251 | 0.000023 | 0.000078 | 0.0213964 |
10 | 20A | 0.0328677 | 0.0058 | 0.02566 | 0.000027 | 0.000084 | 0.0239112 |
11 | 22A | 0.0384312 | 0.0063 | 0.02849 | 0.000031 | 0.000119 | 0.0321826 |
12 | 24A | 0.0428568 | 0.0071 | 0.03171 | 0.000033 | 0.000134 | 0.0334261 |
13 | 26A | 0.0523601 | 0.0084 | 0.04110 | 0.000038 | 0.000135 | 0.0403316 |
14 | 28A | 0.0591392 | 0.0089 | 0.04334 | 0.000048 | 0.000192 | 0.0488824 |
15 | 30A | 0.0661843 | 0.0112 | 0.04938 | 0.000061 | 0.000205 | 0.0538254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the European Burns Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G.; Yadav, P.; Chanda, A. Development of Biofidelic Skin Simulants Based on Fresh Cadaveric Skin Tests. Eur. Burn J. 2024, 5, 454-463. https://doi.org/10.3390/ebj5040040
Singh G, Yadav P, Chanda A. Development of Biofidelic Skin Simulants Based on Fresh Cadaveric Skin Tests. European Burn Journal. 2024; 5(4):454-463. https://doi.org/10.3390/ebj5040040
Chicago/Turabian StyleSingh, Gurpreet, Pramod Yadav, and Arnab Chanda. 2024. "Development of Biofidelic Skin Simulants Based on Fresh Cadaveric Skin Tests" European Burn Journal 5, no. 4: 454-463. https://doi.org/10.3390/ebj5040040
APA StyleSingh, G., Yadav, P., & Chanda, A. (2024). Development of Biofidelic Skin Simulants Based on Fresh Cadaveric Skin Tests. European Burn Journal, 5(4), 454-463. https://doi.org/10.3390/ebj5040040