Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry
Abstract
:1. Introduction
2. Methods and Literature Overview
3. Cyber-Physical Systems
3.1. Cyber-Physical Systems Enabled by Artificial Intelligence
3.2. Control, Optimization, Artificial Intelligence and Cyber-Physical Systems
3.3. Digital Twins, Artificial Intelligence and Cyber-Physical Systems
4. Perspectives for Chemical Industry and Cyber-Physical Systems
A Study Case, Upgrading of Methane, and the Potential Impact of CPS in the This Business
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Karray, F.; Garcia-Ortiz, A.; Jmal, M.W.; Obeid, A.M.; Abid, M. EARNPIPE: A Testbed for Smart Water Pipeline Monitoring Using Wireless Sensor Network. Procedia Comput. Sci. 2016, 96, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.S.; Regufe, M.J.; Ribeiro, A.M.; Nogueira, I.B.R. Sustainable Energy Management of Institutional Buildings through Load Prediction Models: Review and Case Study. In AI and Learning System-Industrial Applications and Future Directions; Intech Open: London, UK, 2021; p. 13. [Google Scholar] [CrossRef]
- Oleghe, O.; Salonitis, K. A framework for designing data pipelines for manufacturing systems. Procedia CIRP 2020, 93, 724–729. [Google Scholar] [CrossRef]
- L-Alawi, M.A.; Bouferguene, A.; Mohamed, Y. Industrial pipelines data generator. Data Br. 2020, 32, 106275. [Google Scholar] [CrossRef] [PubMed]
- Brahan, J.W.; Lam, K.P.; Chan, H.; Leung, W. AICAMS: Artificial intelligence crime analysis and management system. Knowl.-Based Syst. 1998, 11, 355–361. [Google Scholar] [CrossRef]
- Feldstein, S. The Road to Digital Unfreedom: How Artificial Intelligence is Reshaping Repression. J. Democr. 2019, 30, 40–52. [Google Scholar] [CrossRef]
- Loh, E. Medicine and the rise of the robots: A qualitative review of recent advances of artificial intelligence in health. BMJ Lead. 2018, 2, 59–63. [Google Scholar] [CrossRef]
- Nogueira, I.B.R.; Ribeiro, A.M.; Requião, R.; Pontes, K.V.; Koivisto, H.; Rodrigues, A.E.; Loureiro, J.M. A quasi-virtual online analyser based on an artificial neural networks and offline measurements to predict purities of raffinate/extract in simulated moving bed processes. Appl. Soft Comput. J. 2018, 67, 29–47. [Google Scholar] [CrossRef]
- Nogueira, I.; Fontes, C.; Sartori, I.; Pontes, K.; Embiruçu, M. A model-based approach to quality monitoring of a polymerization process without online measurement of product specifications. Comput. Ind. Eng. 2017, 106, 123–136. [Google Scholar] [CrossRef]
- Abodunrin, O.; Oloye, G.; Adesola, B. Coronavirus Pandemic and Its Implication on Global Economy. Int. J. Arts Lang. Bus. Stud. 2020, 4, 13–23. [Google Scholar]
- Umadia, K.S.; Kasztelnik, K. The Financial Innovative Business Strategies of Small to Medium Scale Enterprises in Developing Country and Influence for the Global Economy Performance. Socioecon. Chall. 2020, 4, 20–32. [Google Scholar] [CrossRef]
- Leiva-leon, D.; Perez-quiros, G.E. Rots, Real-Time Weakness of the Global Economy: A First Assessment of the Coronavirus Crisis; Banco de Espana Working Paper No. 2015; Banco de Espana: Madrid, Spain, 2020. [Google Scholar] [CrossRef]
- Schätz, B.; Törngren, M.; Bensalem, S.; Cengarle, M.V.; Pfeifer, H.; McDermid, J.; Passerone, R.; Sangiovanni-Vincentelli, A. Cyber-Physical European Roadmap & Strategy. CyPhERS Tech. Rep. 2015. Available online: cyphers.eu/sites/default/files/d6.1+2-report.pdf (accessed on 7 July 2021).
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Sangiovanni-Vincentelli, A.; Damm, W.; Passerone, R.; Frankenstein, T.D. Contract-based design for cyber-physical systems. Eur. J. Control. 2012, 18, 217–238. [Google Scholar] [CrossRef] [Green Version]
- Basnight, Z.; Butts, J.; Lopez, J.; Dube, T. Analysis of programmable logic controller firmware for threat assessment and forensic investigation. J. Inf. Warf. 2013, 12, 9–15. [Google Scholar]
- Lin, W.C.; Villez, K.R.E.; Garcia, H.E. Experimental validation of a resilient monitoring and control system. J. Process Control. 2014, 24, 621–639. [Google Scholar] [CrossRef]
- Squire, R.; Song, H. Cyber-physical systems opportunities in the chemical industry: A security and emergency management example. Process. Saf. Prog. 2014, 33, 329–332. [Google Scholar] [CrossRef]
- Budiawan, I.; Hidayah, R.P.; Hidayat, E.M.I.; Syaichu, R.A. Design and implementation of cyber-physical system-based automation on plant chemical process: Study case mini batch distillation column. In Proceedings of the 2018 6th International Conference Information Communication Technology ICoICT 2018, Bandung, Indonesia, 3–5 May 2018; pp. 360–365. [Google Scholar] [CrossRef]
- Murphey, R. An Introduction to Collective and Cooperative Systems. In Cooperative Control Optimization; Murphey, R., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 2002; pp. 171–197. [Google Scholar] [CrossRef]
- Baber, J.; Kolodko, J.; Noel, T.; Parent, M.; Vlacic, L. Cooperative autonomous driving: Intelligent vehicles sharing city roads. IEEE Robot. Autom. Mag. 2005, 12, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D. Why are carbon-based materials important in civilization progress and especially in the industry 4.0 stage of the industrial revolution. Mater. Perform. Charact. 2019, 8, 337–370. [Google Scholar] [CrossRef]
- Gamer, T.; Hoernicke, M.; Kloepper, B.; Bauer, R.; Isaksson, A.J. The autonomous industrial plant–future of process engineering, operations and maintenance. J. Process Control. 2020, 88, 101–110. [Google Scholar] [CrossRef]
- Park, H.S. Technology convergence, open innovation, and dynamic economy. J. Open Innov. Technol. Mark. Complex. 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- CEFIC. Sustainability Progress Update 2020; CEFIC: Brussels, Belgium, 2020. [Google Scholar]
- Maria, C.A.; Federica, B.; Francesca, C.; Laurens, H. Digitalization in the agri-food industry: The relationship between technology and sustainable development. Manag. Decis. 2020, 58, 1737–1757. [Google Scholar] [CrossRef]
- Mauro, R. Analysing the role of information technology towards sustainable cities living. Kybernetes 2020, 49, 2037–2052. [Google Scholar] [CrossRef]
- Gil, M.; Albert, M.; Fons, J.; Pelechano, V. Designing human-in-the-loop autonomous Cyber-Physical Systems. Int. J. Hum. Comput. Stud. 2019, 130, 21–39. [Google Scholar] [CrossRef]
- Gil, M.; Albert, M.; Fons, J.; Pelechano, V. Engineering human-in-the-loop interactions in cyber-physical systems. Inf. Softw. Technol. 2020, 126, 106349. [Google Scholar] [CrossRef]
- Sowe, S.K.; Simmon, E.; Zettsu, K.; de Vaulx, F.; Bojanova, I. Cyber-Physical-Human Systems: Putting People in the Loop. IT Prof. 2016, 18, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Radanliev, P.; de Roure, D.; van Kleek, M.; Santos, O.U. Ani, Artificial intelligence in cyber physical systems. AI Soc. 2020, 1–14. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 2017, 5, 20418–20427. [Google Scholar] [CrossRef]
- Jamwal, A.; Agrawal, R.; Manupati, V.K.; Sharma, M.; Varela, L.; Machado, J. Development of cyber physical system based manufacturing system design for process optimization. IOP Conf. Ser. Mater. Sci. Eng. 2020, 997, 012048. [Google Scholar] [CrossRef]
- Yang, W.; Yoshida, K.; Takakuwa, S. Digital Twin-Driven Simulation for a Cyber-Physical System in Industry 4.0. DAAAM Int. Sci. Book 2017, 2017, 227–234. [Google Scholar] [CrossRef]
- Suh, S.C.; Tanik, U.J.; Carbone, J.N.; Eroglu, A. Applied cyber-physical systems. Appl. Cyber Phys. Syst. 2014, 9781461473, 1–253. [Google Scholar] [CrossRef]
- Nogueira, I.B.R. Artificial Intelligence and Cyber-Physical Systems: A Short Review and Perspectives for the Future. COJ Robot. Artif. Intell. 2021, 1, 1–2. [Google Scholar]
- Reis, M.S.; Gins, G. Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis. Processes 2017, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- de Sá, A.S.; Macêdo, R.J.d. QoS Self-configuring Failure Detectors for Distributed Systems. In IFIP International Conference on Distributed Applications and Interoperable Systems; Eliassen, F., Kapitza, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 126–140. [Google Scholar]
- Hosen, M.A.; Hussain, M.A.; Mjalli, F.S. Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation. Control Eng. Pract. 2011, 19, 454–467. [Google Scholar] [CrossRef]
- Wang, C.; Klatt, K.D.G.; Engell, S.; Hanisch, F. Neural network-based identification of SMB chromatographic processes. Control Eng. Pract. 2003, 11, 949–959. [Google Scholar] [CrossRef]
- Lucia, S.; Finkler, T.; Basak, D.; Engell, S. A new Robust NMPC Scheme and its application to a semi-batch reactor example. IFAC Proc. Vol. 2012, 45, 69–74. [Google Scholar] [CrossRef]
- Subraveti, S.G.; Li, Z.; Prasad, V.; Rajendran, A. Machine Learning-Based Multiobjective Optimization of Pressure Swing Adsorption. Ind. Eng. Chem. Res. 2019, 58, 20412–20422. [Google Scholar] [CrossRef]
- Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 2019, 65, 466–478. [Google Scholar] [CrossRef]
- Ye, F.; Ma, S.; Tong, L.; Xiao, J.; Bénard, P.; Chahine, R. Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption. Int. J. Hydrogen Energy 2019, 44, 5334–5344. [Google Scholar] [CrossRef]
- Koshijima, K.; Niida, T.; Umeda, I. A micro module approach to the design and control of autonomous decentralized chemical plant. J. Process Control 1996, 6, 169–176. [Google Scholar] [CrossRef]
- Oliveira, L.M.C.; Koivisto, H.; Iwakiri, I.G.I.; Loureiro, J.M.; Ribeiro, A.M.; Nogueira, I.B.R. Modelling of a pressure swing adsorption unit by deep learning and artificial Intelligence tools. Chem. Eng. Sci. 2020, 224, 115801. [Google Scholar] [CrossRef]
- Dean, J. The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design. In Proceedings of the 2020 International Solid-State Circuits Conference, San Francisco, CA, USA, 16–20 February 2020. [Google Scholar]
- Boullé, N.; Dallas, V.; Nakatsukasa, Y.; Samaddar, D. Classification of chaotic time series with deep learning. Phys. D Nonlinear Phenom. 2020, 403, 132261. [Google Scholar] [CrossRef] [Green Version]
- François-lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. arXiv 2018, arXiv:1811.12560. [Google Scholar] [CrossRef] [Green Version]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspective Complex System; Springer International Publishing: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Ganguli, R.; Adhikari, S. The digital twin of discrete dynamic systems: Initial approaches and future challenges. Appl. Math. Model. 2020, 77, 1110–1128. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2019, 58, 1. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Sánchez, A.S.; Oliveira-Esquerre, K.P.; dos Reis Nogueira, I.B.; de Jong, P.; Filho, A.A. Water Loss Management Through Smart Water Systems. Modeling Optim. Sci. Technol. 2020, 17, 233–266. [Google Scholar] [CrossRef]
- Ohshima, M.; Tanigaki, M. Quality Control of Polymer Production Processes. J. Process Control. 2000, 10, 135–148. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0959152499000426 (accessed on 7 July 2021). [CrossRef]
- Capriglione, D.; Carratù, M.; Liguori, C.; Paciello, V.; Sommella, P. A soft stroke sensor for motorcycle rear suspension. Meas. J. Int. Meas. Confed. 2017, 106, 46–52. [Google Scholar] [CrossRef]
- Santana, V.V.; Martins, M.A.F.; Loureiro, J.M.; Ribeiro, A.M.; Rodrigues, A.E.; Nogueira, I.B.R. Optimal fragrances formulation using a deep learning neural network architecture: A novel systematic approach. Comput. Chem. Eng. 2021, 150, 107344. [Google Scholar] [CrossRef]
- Anna, H.R.S.; Barreto, A.G.; Tavares, F.W.; de Souza, M.B. Machine learning model and optimization of a PSA unit for methane-nitrogen separation. Comput. Chem. Eng. 2017, 104, 377–391. [Google Scholar] [CrossRef]
- Martins, M.A.F.; Rodrigues, A.E.; Loureiro, J.M.; Ribeiro, A.M.; Nogueira, I.B.R. Artificial Intelligence-oriented economic non-linear model predictive control applied to a pressure swing adsorption unit: Syngas purification as a case study. Sep. Purif. Technol. 2021, 276, 119333. [Google Scholar] [CrossRef]
- Ji, X.; He, G.; Xu, J.; Guo, Y. Study on the mode of intelligent chemical industry based on cyber-physical system and its implementation. Adv. Eng. Softw. 2016, 99, 18–26. [Google Scholar] [CrossRef]
- Bogataj, D.; Battini, D.; Calzavara, M.; Persona, A. The ageing workforce challenge: Investments in collaborative robots or contribution to pension schemes, from the multi-echelon perspective. Int. J. Prod. Econ. 2019, 210, 97–106. [Google Scholar] [CrossRef]
- Calzavara, M.; Battini, D.; Bogataj, D.; Sgarbossa, F.; Zennaro, I. Ageing workforce management in manufacturing systems: State of the art and future research agenda. Int. J. Prod. Res. 2020, 58, 729–747. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.L. Managing Food Production Systems for Resilience. In Principles National Resources Stewardship Resilience-Based Managment a Change; Springer: New York, NY, USA, 2008; pp. 1–46. [Google Scholar]
- Rufford, T.E.; Smart, S.; Watson, G.C.Y.; Graham, B.F.; Boxall, J.; da Costa, J.C.D.; May, E.F. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Eng. 2012, 94, 123–154. [Google Scholar] [CrossRef]
- Speight, J.G. Preface to the second edition. In Natural Gas, 2nd ed.; Speight, J.G., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2019; pp. xi–xiii. [Google Scholar] [CrossRef]
- Weinstock, E.D.H. Cryogenic Technology; Boston Technology Publisher Inc.: Cambridge, UK, 1969. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy Globally Consistent Data on World Energy Markets and Authoritative Publications in the Field of Energy The Statistical Review World of World Energy and Data on World Energy Markets from is The Review has been Providing. 2020, p. 66. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 7 July 2021).
- Moura, R.; Beer, M.; Patelli, E.; Lewis, J.; Knoll, F. Human error analysis: Review of past accidents and implications for improving robustness of system design. In Proceedings of the Safety and Reliability, Methodology and Applications-Proceedings of the European Safety and Reliability Conference ESREL 2014, Wrocław, Poland, 14–18 September 2014; pp. 1037–1046. [Google Scholar] [CrossRef]
- Nicolescu, R.; Huth, M.; Radanliev, P.; de Roure, D. Mapping the values of IoT. J. Inf. Technol. 2018, 33, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, C.; Singh, A.; Luthra, S. Barriers to industry 4.0 adoption and its performance implications: An empirical investigation of emerging economy. J. Clean. Prod. 2021, 285, 124809. [Google Scholar] [CrossRef]
- Anderson, G. The Economic Impact of Technology Infrastructure for Additive Manufacturing; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016; pp. 1–4. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, L.M.C.; Dias, R.; Rebello, C.M.; Martins, M.A.F.; Rodrigues, A.E.; Ribeiro, A.M.; Nogueira, I.B.R. Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry. AI 2021, 2, 429-443. https://doi.org/10.3390/ai2030027
Oliveira LMC, Dias R, Rebello CM, Martins MAF, Rodrigues AE, Ribeiro AM, Nogueira IBR. Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry. AI. 2021; 2(3):429-443. https://doi.org/10.3390/ai2030027
Chicago/Turabian StyleOliveira, Luis M. C., Rafael Dias, Carine M. Rebello, Márcio A. F. Martins, Alírio E. Rodrigues, Ana M. Ribeiro, and Idelfonso B. R. Nogueira. 2021. "Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry" AI 2, no. 3: 429-443. https://doi.org/10.3390/ai2030027
APA StyleOliveira, L. M. C., Dias, R., Rebello, C. M., Martins, M. A. F., Rodrigues, A. E., Ribeiro, A. M., & Nogueira, I. B. R. (2021). Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry. AI, 2(3), 429-443. https://doi.org/10.3390/ai2030027