Efficient Paddy Grain Quality Assessment Approach Utilizing Affordable Sensors
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution and Paper Organization
- Proposing a reliable, fully automatic, and explainable IoT paddy grain quality assessment system based on affordable sensors and ML techniques.
- Proposing a novel method for moisture calculation based on paddy grain weight versus volume estimation.
- Providing an extensive evaluation of the proposed method on a paddy grain dataset collected from distant locations in India.
2. Methodology
2.1. Hardware Setup for Paddy Grain Dataset Collection
2.2. Proposed System
2.2.1. Image Preprocessing
2.2.2. Adulteration Detection Method
Algorithm 1 Implementation of the Adulteration Detection Method |
Inputs: Length (L), Width (W), and mid-point intensity () Output: Paddy Grain or Foreign Element Step:1 Calculate ratio ( of L and W Step:2 If : ‘Foreign Element’ Else-If : ‘Foreign Element’ Else: ‘Paddy Grain’ Step:3 Repeat the process for each contour |
2.2.3. Moisture Prediction Method
2.2.4. Constructing a Quality Assessment Model Based on ANFIS
- Color: 0–1;
- Size: 3–9 mm;
- Weight: 1000–1010 g.
- Layer 1: This layer serves the purpose of fuzzification. It uses input membership functions (MFs) for input variables and converts them into the input for the next layer. Every node ‘i’ with a corresponding membership function outputs the following:
- Layer 2: This layer acts as the rule base. It takes membership values as input. Each node multiplies the input and outputs the value according to the rule. The output of this layer is
- Layer 3: This layer is used to normalize the range of firing by the neurons. The ratio of every node strength () to the sum of strengths of all node strengths is used to denote it:
- Layer 4: This layer is also called the defuzzification layer. It calculates the parameter functions for the previous layer’s outputs. The output of this layer is the summation of all incoming outputs from previous cells:
- Layer 5: This is the output layer. The output node calculates the whole output as the sum of all input signals. It is stated as
2.2.5. Database and Connections
3. Experiments and Results
3.1. Analyzing the Changes in the Moisture and Weight of Paddy Grain
3.2. Performance of ANFIS-Based Paddy Grain Quality Assessment Model
3.3. Rule Base Extraction
4. Assessing the Performances of Other ML Classifiers
Real-Time Performance
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MSE | Mean Squared Error; |
AI | Artificial Intelligence; |
ML | Machine Learning; |
ZMF | Z Membership Function. |
References
- Nagarajan, S.; Jagadish, S.V.K.; Prasad, A.H.; Thomar, A.K.; An, A.; Pal, M.; Agarwal, P.K. Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agric. Ecosyst. Environ. 2010, 138, 274–281. [Google Scholar] [CrossRef]
- Rebeira, S.P.; Wickramasinghe, H.A.M.; Samarasinghe, W.L.G.; Prashantha, B.D.R. Diversity of grain quality characteristics of traditional rice (Oryza sativa L.) varieties in Sri Lanka. Trop. Agric. Res. 2014, 25, 470–478. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Y.; Feng, L.; Hao, W.; Li, C.; Yang, Y.; Fan, X.; Li, Q.; Zhang, C.; Liu, Q. Genetic dissection and functional differentiation of ALKa and ALKb, two natural alleles of the ALK/SSIIa gene, responding to low gelatinization temperature in rice. Rice 2020, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Hema, L.K.; Velmurugan, S.; Sunil, D.N.; Aziz, S.T.; Thirunavkarasu, S. IOT based real-time control and monitoring system for food grain procurement and storage. IOP Conf. Ser. Mater. Sci. Eng. 2020, 993, 012079. [Google Scholar] [CrossRef]
- Hill, L.D. Grain grades and standards. In Grain Marketing; CRC Press: Boca Raton, FL, USA, 2021; pp. 121–158. [Google Scholar]
- Fuentes, G.A. Middlemen and agents in the procurement of paddy: Institutional arrangements from the rural Philippines. J. Asian Econ. 1998, 9, 307–331. [Google Scholar] [CrossRef]
- Dreze, J.; Khera, R. Understanding leakages in the public distribution system. Econ. Political Wkly. 2015, 50, 39–42. [Google Scholar]
- Keshava, S.R. Economic Conditions of Farmers. Indian Econ. 2023, 132. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4338334 (accessed on 15 April 2024).
- Rice in Jharkhand. Available online: http://forest.jharkhand.gov.in/fresearch/admin/file/research_665.pdf (accessed on 17 April 2022).
- Yayock, E.S.; Ishaya, J. Development and performance evaluation of a grain grading machine for small and medium scale farmers. IOSR J. Agric. Vet. Sci. (IOSR-JAVS) 2020, 13, 33–40. [Google Scholar]
- Singh, A.; Pandey, P.; Nandi, G.C. Influence of human mindset and societal structure in the spread of technology for Service Robots. In Proceedings of the 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 11–13 November 2021; pp. 1–6. [Google Scholar]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Wah, T.N.; San, P.E.; Hlaing, T. Analysis on feature extraction and classification of rice kernels for Myanmar rice using image processing techniques. Int. J. Sci. Res. Publ. 2018, 8, 603–606. [Google Scholar] [CrossRef]
- Ajay, G.; Suneel, M.; Kumar, K.K.; Prasad, P.S. Quality evaluation of rice grains using morphological methods. Int. J. Soft Comput. Eng. 2013, 2, 35–37. [Google Scholar]
- Maheshwari, C.V.; Jain, K.R.; Modi, C.K. Non-destructive quality analysis of Indian Basmati Oryza sativa SSP indica (Rice) using image processing. In Proceedings of the 2012 International Conference on Communication Systems and Network Technologies, Rajkot, Gujarat, India, 11–13 May 2012. [Google Scholar]
- Vithu, P.; Moses, J.A. Machine vision system for food grain quality evaluation: A review. Trends Food Sci. Technol. 2016, 56, 13–20. [Google Scholar] [CrossRef]
- Singh, A.; Narula, R.; Rashwan, H.A.; Abdel-Nasser, M.; Puig, D.; Nandi, G.C. Efficient deep learning-based semantic mapping approach using monocular vision for resource-limited mobile robots. Neural Comput. Appl. 2022, 34, 15617–15631. [Google Scholar] [CrossRef]
- Wijerathna, P.; Lochandaka, R. Rice category identification using heuristic feature guided machine vision approach. In Proceedings of the 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 1–2 December 2018. [Google Scholar]
- Kiratiratanapruk, K.; Temniranrat, P.; Sinthupinyo, W.; Prempree, P.; Chaitavon, K.; Porntheeraphat, S.; Prasertsak, A. Development of paddy rice seed classification process using machine learning techniques for automatic grading machine. J. Sens. 2020, 2020, 7041310. [Google Scholar] [CrossRef]
- Singh, A.; Pandey, P.; Nandi, G.C. Effectiveness of multi-gated sequence model for the learning of kinematics and dynamics of an industrial robot. Ind. Robot Int. J. Robot. Res. Appl. 2021, 48, 62–70. [Google Scholar] [CrossRef]
- Nagoda, N.; Ranathunga, L. Rice sample segmentation and classification using image processing and support vector machine. In Proceedings of the 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 1–2 December 2018. [Google Scholar]
- Herath, H.M.K.K.M.B.; Karunasena, G.M.K.B.; Prematilake, R.D.D. Computer Vision for Agro-Foods: Investigating a Method for Grading Rice Grain Quality in Sri Lanka. In Advance Concepts of Image Processing and Pattern Recognition; Springer: Singapore, 2022; pp. 21–34. [Google Scholar]
- Anami, B.S.; Malvade, N.N.; Palaiah, S. Automated recognition and classification of adulteration levels from bulk paddy grain samples. Inf. Process. Agric. 2019, 6, 47–60. [Google Scholar] [CrossRef]
- Uddin, M.; Islam, M.A.; Shajalal, M.; Hossain, M.A.; Yousuf, M.S.I. Paddy seed variety identification using t20-hog and haralick textural features. Complex Intell. Syst. 2022, 8, 657–671. [Google Scholar] [CrossRef]
- Ansari, N.; Ratri, S.S.; Jahan, A.; Ashik-E-Rabbani, M.; Rahman, A. Inspection of paddy seed varietal purity using machine vision and multivariate analysis. J. Agric. Food Res. 2021, 3, 100109. [Google Scholar] [CrossRef]
- Anandhan, K.; Singh, A.S. Detection of paddy crops diseases and early diagnosis using faster regional convolutional neural networks. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021. [Google Scholar]
- Chen, J.; Gu, Y.; Lian, Y.; Han, M. Online recognition method of impurities and broken paddy grains based on machine vision. Trans. Chin. Soc. Agric. Eng. 2018, 34, 187–194. [Google Scholar]
- Chokphoemphun, S.; Chokphoemphun, S. Moisture content prediction of paddy drying in a fluidized-bed drier with a vortex flow generator using an artificial neural network. Appl. Therm. Eng. 2018, 145, 630–636. [Google Scholar] [CrossRef]
- Kaveh, M.; Sharabiani, V.R.; Chayjan, R.A.; Taghinezhad, E.; Abbaspour-Gilandeh, Y.; Golpour, I. ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Inf. Proc. Agric. 2018, 5, 372–387. [Google Scholar] [CrossRef]
- Ahmad, F.; Younis, M.S.; Zahid, R.U.; Shahid, L.A. Machine Learning Based Grain Moisture Estimation for Real-time Monitoring of High-Temperature Paddy Drying Silo. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020. [Google Scholar]
- Amvicube. Available online: https://tracxn.com/d/companies/amvicube.com (accessed on 17 April 2022).
- RIPMAPP. Available online: https://riceforafrica.net/old-site/ (accessed on 17 April 2022).
- International Rice Research Institute. Available online: https://www.irri.org/ (accessed on 17 April 2022).
- Chandio, A.; Shen, Y.; Bendechache, M.; Inayat, I.; Kumar, T. AUDD: Audio Urdu digits dataset for automatic audio Urdu digit recognition. Appl. Sci. 2014, 11, 8842. [Google Scholar] [CrossRef]
- Kumar, T.; Park, J.; Bae, S. Intra-Class Random Erasing (ICRE) augmentation for audio classification. In Proceedings of the Korean Society of Broadcast Engineers Conference, Jeju, Korea, 3–7 November 2020; pp. 244–247. [Google Scholar]
- Turab, M.; Kumar, T.; Bendechache, M.; Saber, T. Investigating Multi-Feature Selection and Ensembling for Audio Classification. arXiv 2022, arXiv:2206.07511. [Google Scholar] [CrossRef]
- Kumar, T.; Park, J.; Ali, M.; Uddin, A.; Ko, J.; Bae, S. Binary-classifiers-enabled filters for semi-supervised learning. IEEE Access 2021, 9, 167663–167673. [Google Scholar] [CrossRef]
- Khan, W.; Raj, K.; Kumar, T.; Roy, A.; Luo, B. Introducing Urdu Digits Dataset with Demonstration of an Efficient and Robust Noisy Decoder-Based Pseudo Example Generator. Symmetry 2022, 14, 1976. [Google Scholar] [CrossRef]
- Kumar, T.; Park, J.; Ali, M.; Uddin, A.; Bae, S. Class Specific Autoencoders Enhance Sample Diversity. J. Broadcast Eng. 2021, 26, 844–854. [Google Scholar]
- Khan, W.; Kumar, T.; Cheng, Z.; Raj, K.; Roy, A.; Luo, B. SQL and NoSQL Databases Software architectures performance analysis and assessments—A Systematic Literature review. arXiv 2022, arXiv:2209.06977. [Google Scholar]
- Singh, A.; Raj, K.; Kumar, T.; Verma, S.; Roy, A. Deep learning-based cost-effective and responsive robot for autism treatment. Drones 2023, 7, 81. [Google Scholar] [CrossRef]
- Roy, A.M.; Bhaduri, J.; Kumar, T.; Raj, K. A Computer Vision-Based Object Localization Model for Endangered Wildlife Detection (September 5, 2022). Ecological Economics, Forthcoming. Available online: https://ssrn.com/abstract=4315295 (accessed on 15 April 2024).
- Mahapatra, M.S.; Mahanty, B. Effective public procurement of food grains: A case of India under differential charges. Comput. Ind. Eng. 2021, 154, 107165. [Google Scholar] [CrossRef]
- Verma, A.; Rathore, A.S.; Kumari, A.C. An automated approach to public distribution system using internet of things. Procedia Comput. Sci. 2018, 132, 288–296. [Google Scholar] [CrossRef]
- Singh, A.; Pandey, P.; Puig, D.; Nandi, G.C.; Abdel-Nasser, M. Reliable Scene Recognition Approach for Mobile Robots with Limited Resources Based on Deep Learning and Neuro-Fuzzy Inference. Trait. Signal 2022, 39, 1255. [Google Scholar] [CrossRef]
- Matuzeviciute, G.M.; Abdykanova, A.; Kume, S.; Nishiaki, Y.; Tabaldiev, K. The effect of geographical margins on cereal grain size variation: Case study for highlands of Kyrgyzstan. J. Archaeol. Sci. Rep. 2018, 20, 400–410. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, Z.; Wang, L.; Fu, J.; Zhang, Y.; Li, Z.; Ma, L.; Liu, P.; Zhang, Y.; Liu, M.; et al. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize. Mol. Genet. Genom. 2020, 295, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Nandi, G.C. Machine learning based joint torque calculations of industrial robots. In Proceedings of the 2018 Conference on Information and Communication Technology (CICT), Jabalpur, India, 26–28 October 2018; pp. 1–6. [Google Scholar]
- Karaboga, D.; Kaya, E. Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey. Artif. Intell. Rev. 2019, 52, 2263–2293. [Google Scholar] [CrossRef]
- Pi, Raspberry. Raspberry pi 3 Model b. 2015. Available online: https://www.raspberrypi.org (accessed on 15 April 2024).
Paddy Type | Morphology | Meter Settings | Moisture |
---|---|---|---|
Radha | Thickest | L1 | 10.2 |
Radha Moist | Thick | L1 | 20.1 |
Ranjit | Longest, thick | L7 | 14.7 |
Jaya | Pale Yellowish, thick | L1 | 12.7 |
Kanxi | Pure Yellow, Thick | L1 | 14.3 |
Sona | Thin, Small | L7 | 12.2 |
Zeera | Thinnest, Long | L7 | 13 |
Moist (%) | Weight (in Kgs) | |||||
---|---|---|---|---|---|---|
Ranjit | Zeera | Radha | Sona | Kanxi | Zaya | |
10 | 1.02 | 1.01 | 1.02 | 1.03 | 1.03 | 1.02 |
13 | 1.02 | 1.01 | 1.02 | 1.03 | 1.03 | 1.02 |
18.24 | 1.02 | 1.03 | 1.03 | 1.04 | 1.04 | 1.02 |
22 | 1.04 | 1.04 | 1.04 | 1.05 | 1.05 | 1.04 |
25.4 | 1.08 | 1.07 | 1.07 | 1.09 | 1.08 | 1.08 |
30.7 | 1.09 | 1.08 | 1.08 | 1.1 | 1.1 | 1.1 |
Metric | Value |
---|---|
Training error | 0.0011855 |
Testing error | 0.0007 |
Test Accuracy | 98.58 |
Rule No. | Colour | Size | Weight | Quality |
---|---|---|---|---|
Rule | P | SS | L | HQ |
Rule | P | SS | H | HQ |
Rule | P | LS | H | LQ |
Rule | P | LS | L | HQ |
Rule | B | SS | H | LQ |
Rule | B | LS | L | LQ |
Rule | B | SS | L | HQ |
Rule | B | LS | H | LQ |
Method | Training Accuracy (%) | Testing Accuracy (%) |
---|---|---|
99.28 | 97.14 | |
99.28 | 96.42 | |
98.57 | 96.42 | |
LR | 97.85 | 95.0 |
MNB | 87.85 | 86.42 |
BNB | 97.14 | 95.71 |
GNB | 92.85 | 89.28 |
KNN | 97.14 | 92.85 |
Proposed | 99.28 | 98.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Raj, K.; Meghwar, T.; Roy, A.M. Efficient Paddy Grain Quality Assessment Approach Utilizing Affordable Sensors. AI 2024, 5, 686-703. https://doi.org/10.3390/ai5020036
Singh A, Raj K, Meghwar T, Roy AM. Efficient Paddy Grain Quality Assessment Approach Utilizing Affordable Sensors. AI. 2024; 5(2):686-703. https://doi.org/10.3390/ai5020036
Chicago/Turabian StyleSingh, Aditya, Kislay Raj, Teerath Meghwar, and Arunabha M. Roy. 2024. "Efficient Paddy Grain Quality Assessment Approach Utilizing Affordable Sensors" AI 5, no. 2: 686-703. https://doi.org/10.3390/ai5020036
APA StyleSingh, A., Raj, K., Meghwar, T., & Roy, A. M. (2024). Efficient Paddy Grain Quality Assessment Approach Utilizing Affordable Sensors. AI, 5(2), 686-703. https://doi.org/10.3390/ai5020036