Airfoil Shape Generation and Feature Extraction Using the Conditional VAE-WGAN-gp
Abstract
:1. Introduction
2. Conditional GAN, VAE, and VAEGAN Models
2.1. Conditional GAN and WGAN-gp
2.2. Conditional VAE
2.3. Conditional VAEGAN
3. CVAE -WGAN-gp Model for Airfoil Generation
3.1. Conditional VAE-WGAN-gp
3.2. Airfoil Generation Framework
4. Numerical Experiments
4.1. Dataset
4.2. Airfoil Generation
- : Smoothness index.
- MSE: Mean squared error of .
- : Index of variety of generated shapes.
4.3. Latent Distribution
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yonekura, K.; Suzuki, K. Data-driven design exploration method using conditional variational autoencoder for airfoil design. Struct. Multidiscip. Optim. 2021, 64, 613–624. [Google Scholar] [CrossRef]
- Yonekura, K.; Wada, K.; Suzuki, K. Generating various airfoils with required lift coefficients by combining NACA and Joukowski airfoils using conditional variational autoencoders. Eng. Appl. Artif. Intell. 2022, 108, 104560. [Google Scholar] [CrossRef]
- Yonekura, K.; Miyamoto, N.; Suzuki, K. Inverse airfoil design method for generating varieties of smooth airfoils using conditional WGAN-gp. Struct. Multidiscip. Optim. 2022, 65, 173. [Google Scholar] [CrossRef]
- Braconnier, T.; Ferrier, M.; Jouhaud, J.C.; Montagnac, M.; Sagaut, P. Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput. Fluids 2011, 40, 195–209. [Google Scholar] [CrossRef]
- Mack, Y.; Goel, T.; Shyy, W.; Haftka, R. Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design. In Evolutionary Computation in Dynamic and Uncertain Environments; Yang, S., Ong, Y.S., Jin, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 323–342. [Google Scholar]
- Yonekura, K.; Watanabe, O. A shape parameterization method using principal component analysis in application to shape optimization. J. Mech. Des. 2014, 136, 121401. [Google Scholar] [CrossRef]
- Nita, K.; Okita, Y.; Nakamata, C.; Kubo, S.; Yonekura, K.; Watanabe, O. Film cooling hole shape optimization using proper orthogonal decomposition. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar] [CrossRef]
- Pfrommer, J.; Zimmerling, C.; Liu, J.; Kärger, L.; Henning, F.; Beyerer, J. Optimisation of manufacturing process parameters using deep neural networks as surrogate models. Procedia Cirp 2018, 72, 426–431. [Google Scholar] [CrossRef]
- Liang, L.; Liu, M.; Martin, C.; Sun, W. A deep learning approach to estimate stress distribution: A fast and accurate surrogate of finite-element analysis. J. R. Soc. Interface 2018, 15, 20170844. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 8–13 December 2014; Volume 2, NIPS’14. pp. 2672–2680. [Google Scholar]
- Yonekura, K.; Omori, K.; Qi, X.; Suzuki, K. Designing ship hull forms using generative adversarial networks. arXiv 2023, arXiv:2311.05470. [Google Scholar]
- Li, H.; Zheng, Y.; Wu, X.; Cai, Q. 3D Model Generation and Reconstruction Using Conditional Generative Adversarial Network. Int. J. Comput. Intell. Syst. 2019, 12, 697–705. [Google Scholar] [CrossRef]
- Li, R.; Li, X.; Hui, K.H.; Fu, C.W. SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation. ACM Trans. Graph. 2021, 40, 1–12. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Xue, T.; Freeman, B.; Tenenbaum, J. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29. [Google Scholar]
- Kato, N.; Suzuki, K.; Kondo, Y.; Suzuki, K.; Yonekura, K. Automotive motor rotor design synthesis using cWGAN-gp with distortion penalty. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Chen, W.; Chiu, K.; Fuge, M. Airfoil Design Parameterization and Optimization using Bézier Generative Adversarial Networks. arXiv 2020, arXiv:2006.12496. [Google Scholar] [CrossRef]
- Sekar, V.; Zhang, M.; Shu, C.; Khoo, B.C. Inverse Design of Airfoil Using a Deep Convolutional Neural Network. AIAA J. 2019, 57, 993–1003. [Google Scholar] [CrossRef]
- Yilmaz, E.; German, B. Conditional Generative Adversarial Network Framework for Airfoil Inverse Design. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual. 15–19 June 2020. [Google Scholar]
- Saito, H.; Kanzaki, D.; Yonekura, K. Applications of machine learning in surge prediction for vehicle turbochargers. Mach. Learn. Appl. 2024, 16, 100560. [Google Scholar] [CrossRef]
- Yonekura, K.; Hattori, H.; Shikada, S.; Maruyama, K. Turbine blade optimization considering smoothness of the Mach number using deep reinforcement learning. Inf. Sci. 2023, 642, 119066. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Proceedings of the Low Reynolds Number Aerodynamics, Notre Dame, IN, USA, 5–7 June 1989; Mueller, T.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; Volume 54, Lecture Notes in Engineering. pp. 1–12. [Google Scholar]
- Wada, K.; Suzuki, K.; Yonekura, K. Physics-guided training of GAN to improve accuracy in airfoil design synthesis. Comput. Methods Appl. Mech. Eng. 2024, 421, 116746. [Google Scholar] [CrossRef]
- Yonekura, K. Physics-guided generative adversarial network to learn physical models. arXiv 2023, arXiv:2304.11488. [Google Scholar]
- Wang, J.; Li, R.; He, C.; Chen, H.; Cheng, R.; Zhai, C.; Zhang, M. An inverse design method for supercritical airfoil based on conditional generative models. Chin. J. Aeronaut. 2022, 35, 62–74. [Google Scholar] [CrossRef]
- Achour, G.; Sung, W.J.; Pinon-Fischer, O.J.; Mavris, D.N. Development of a Conditional Generative Adversarial Network for Airfoil Shape Optimization. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 2261. [Google Scholar]
- Press, W.H.; Teukolsky, S.A. Savitzky-Golay Smoothing Filters. Comput. Phys. 1990, 4, 669–672. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of Wasserstein GANs. arXiv 2017, arXiv:1704.00028. [Google Scholar]
- Yonekura, K.; Aoki, R.; Suzuki, K. Quantification and reduction of uncertainty in aerodynamic performance of GAN-generated airfoil shapes using MC dropouts. Theor. Appl. Mech. Lett. 2024, 100504. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Nash, C.; Williams, C.K.I. The shape variational autoencoder: A deep generative model of part-segmented 3D objects. Comput. Graph. Forum 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Guan, Y.; Jahan, T.; van Kaick, O. Generalized Autoencoder for Volumetric Shape Generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. In Proceedings of the 33rd International Conference on Machine Learning; New York, New York, USA, 20–22 June 2016, Balcan, M.F., Weinberger, K.Q., Eds.; Proceedings of Machine Learning Research: Cambridge, MA, USA; Volume 48, pp. 1558–1566.
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. IEEE Trans. Knowl. Data Eng. 2021, 35, 3313–3332. [Google Scholar] [CrossRef]
- Arjovsky, M.; Bottou, L. Towards Principled Methods for Training Generative Adversarial Networks. arXiv 2017, arXiv:1701.04862. [Google Scholar]
- Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2017, arXiv:1701.00160. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Kwon, H. Adversarial image perturbations with distortions weighted by color on deep neural networks. Multimed. Tools Appl. 2023, 82, 13779–13795. [Google Scholar] [CrossRef]
- Abbot, I.H.; von Doenhoff, A.E.; Stivers, L., Jr. Summary of Airfoil Data; Langley Memorial Aeronautical Laboratory: Langley, Hampton, VA, USA, 1945. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
MSE ↓ | |||
---|---|---|---|
cGAN | 4.91 | 0.047 | 0.152 |
cWGAN-gp | 0.047 | 0.320 | |
-CVAE [1] | 3.95 | 0.027 | 0.226 |
VAE-WGAN-gp | 3.50 | 0.028 | 0.243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yonekura, K.; Tomori, Y.; Suzuki, K. Airfoil Shape Generation and Feature Extraction Using the Conditional VAE-WGAN-gp. AI 2024, 5, 2092-2103. https://doi.org/10.3390/ai5040102
Yonekura K, Tomori Y, Suzuki K. Airfoil Shape Generation and Feature Extraction Using the Conditional VAE-WGAN-gp. AI. 2024; 5(4):2092-2103. https://doi.org/10.3390/ai5040102
Chicago/Turabian StyleYonekura, Kazuo, Yuki Tomori, and Katsuyuki Suzuki. 2024. "Airfoil Shape Generation and Feature Extraction Using the Conditional VAE-WGAN-gp" AI 5, no. 4: 2092-2103. https://doi.org/10.3390/ai5040102
APA StyleYonekura, K., Tomori, Y., & Suzuki, K. (2024). Airfoil Shape Generation and Feature Extraction Using the Conditional VAE-WGAN-gp. AI, 5(4), 2092-2103. https://doi.org/10.3390/ai5040102