Designing Channel Attention Fully Convolutional Networks with Neural Architecture Search for Customer Socio-Demographic Information Identification Using Smart Meter Data
Abstract
:1. Introduction
2. Methodology
2.1. Search Space Design
2.2. BO-Based Search Strategy
Algorithm 1 BO-based Search Algorithm | |
| |
1: procedure BO_Search() | |
2: . | ▹ Randomly initialized architectures |
3: for all | |
4: for to T do | |
5: | |
6: | |
7: | ▹ Architecture evaluation |
8: | |
9: end for | |
10: end procedure |
2.3. Architecture Evaluation Strategy
3. Experiments
3.1. Smart Meter Dataset
3.2. Implementation Details
3.2.1. NAS Hyperparameters
3.2.2. Network Training During Searching
3.3. Baseline Methods for Performance Comparison
3.3.1. SVM
3.3.2. PCA + SVM (PS)
3.3.3. RF
3.3.4. PCA + RF (PR)
3.3.5. CNN-SVM
3.3.6. A 1D-CNN
3.3.7. A 2D-CNN
3.3.8. CNN-LSTM
4. Results
4.1. Search Results
4.2. Performance Comparison Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsumoto, S. How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data. Energy Policy 2016, 94, 214–223. [Google Scholar] [CrossRef]
- Ma, W.; Fang, S.; Liu, G.; Zhou, R. Modeling of district load forecasting for distributed energy system. Appl. Energy 2017, 204, 181–205. [Google Scholar] [CrossRef]
- Lin, J.; Marshall, K.R.; Kabaca, S.; Frades, M.; Ware, D. Energy affordability in practice: Oracle Utilities Opower’s business Intelligence to meet low and moderate income need at Eversource. Electr. J. 2020, 33, 106687. [Google Scholar] [CrossRef]
- Brown, M.A.; Soni, A.; Lapsa, M.V.; Southworth, K.; Cox, M. High energy burden and low-income energy affordability: Conclusions from a literature review. Prog. Energy 2020, 2, 042003. [Google Scholar] [CrossRef]
- Beckel, C.; Sadamori, L.; Santini, S. Automatic socio-economic classification of households using electricity consumption data. In Proceedings of the e-Energy 2013—Proceedings of the 4th ACM International Conference on Future Energy Systems, Berkeley, CA, USA, 21–24 May 2013; pp. 75–86. [Google Scholar]
- Beckel, C.; Sadamori, L.; Staake, T.; Santini, S. Revealing household characteristics from smart meter data. Energy 2014, 78, 397–410. [Google Scholar] [CrossRef]
- Hopf, K.; Sodenkamp, M.; Kozlovkiy, I.; Staake, T. Feature extraction and filtering for household classification based on smart electricity meter data. Comput. Sci. Res. Dev. 2016, 31, 141–148. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Gan, D.; Yang, J.; Kirschen, D.S.; Kang, C. Deep learning-based socio-demographic information identification from smart meter data. IEEE Trans. Smart Grid 2018, 10, 2593–2602. [Google Scholar] [CrossRef]
- Gajowniczek, K.; Zabkowski, T.; Sodenkamp, M. Revealing Household Characteristics from Electricity Meter Data with Grade Analysis and Machine Learning Algorithms. Appl. Sci. 2018, 8, 1654. [Google Scholar] [CrossRef]
- Fahim, M.; Sillitti, A. Analyzing Load Profiles of Energy Consumption to Infer Household Characteristics Using Smart Meters. Energies 2019, 12, 773. [Google Scholar] [CrossRef]
- Yan, S.; Li, K.; Wang, F.; Ge, X.; Lu, X.; Mi, Z.; Chen, H.; Chang, S. Time–frequency feature combination based household characteristic identification approach using smart meter data. IEEE Trans. Ind. Appl. 2020, 56, 2251–2262. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Chang, X.; Cao, X.; Yan, S.; Li, K.; Duić, N.; Shafie-Khah, M.; Catalão, J.P. Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data. Energy 2022, 238, 121728. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Wu, Z.; Zhu, B. Socio-demographic Information Extraction from Load Profile Using Convolutional Neural Network. In Proceedings of the 2022 International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID 2022), Xi’an, China, 15–17 April 2022; Atlantis Press: Amsterdam, The Netherlands, 2022; pp. 703–715. [Google Scholar]
- Xu, R.; Li, X.D.; Huang, L. A deep learning method for household characteristic classification from smart meter data. In Proceedings of the EMIE 2022; The 2nd International Conference on Electronic Materials and Information Engineering, Hangzhou, China, 15–17 April 2022; pp. 1–5. [Google Scholar]
- Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [Google Scholar] [CrossRef]
- Luo, Z.; Qi, R.; Li, Q.; Zheng, J.; Shao, S. ABODE-Net: An Attention-based Deep Learning Model for Non-intrusive Building Occupancy Detection Using Smart Meter Data. In Proceedings of the International Conference on Smart Computing and Communication, New York, NY, USA, 18–20 November 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 152–164. [Google Scholar]
- He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl. Based Syst. 2021, 212, 106622. [Google Scholar] [CrossRef]
- Song, Y.; Wang, A.; Zhao, Y.; Wu, H.; Iwahori, Y. Multi-Scale Spatial–Spectral Attention-Based Neural Architecture Search for Hyperspectral Image Classification. Electronics 2023, 12, 3641. [Google Scholar] [CrossRef]
- Li, Q.; Luo, Z.; Qi, R.; Zheng, J. Automatic Searching of Lightweight and High-Performing CNN Architectures for EEG-Based Driving Fatigue Detection. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Sharifi, A.A.; Zoljodi, A.; Daneshtalab, M. TrajectoryNAS: A Neural Architecture Search for Trajectory Prediction. Sensors 2024, 24, 5696. [Google Scholar] [CrossRef]
- Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019, 116, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Cao, H. A new attention mechanism to classify multivariate time series. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 11–17 July 2020. [Google Scholar]
- Li, Q.; Luo, Z.; Qi, R.; Zheng, J. DeepTPA-Net: A Deep Triple Attention Network for sEMG-Based Hand Gesture Recognition. IEEE Access 2023, 11, 96797–96807. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y. GMTP: Enhanced Travel Time Prediction with Graph Attention Network and BERT Integration. AI 2024, 5, 2926–2944. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, G.; Zhuang, P.; Zhao, W.; Zhou, L. CATNet: Cascaded attention transformer network for marine species image classification. Expert Syst. Appl. 2024, 256, 124932. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Li, G.; Zhou, L.; Zhao, W.; Pan, X. AGANet: Attention-Guided Generative Adversarial Network for Corn Hyperspectral Images Augmentation. IEEE Trans. Consum. Electron. 2024. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Frazier, P.I. Bayesian optimization. In Recent Advances in Optimization and Modeling of Contemporary Problems; Informs: Hanover, MD, USA, 2018; pp. 255–278. [Google Scholar]
- Ma, L.; Cui, J.; Yang, B. Deep neural architecture search with deep graph bayesian optimization. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki, Greece, 14–17 October 2019; pp. 500–507. [Google Scholar]
- Zhang, Q.; Hu, W.; Liu, Z.; Tan, J. TBM performance prediction with Bayesian optimization and automated machine learning. Tunn. Undergr. Space Technol. 2020, 103, 103493. [Google Scholar] [CrossRef]
- White, C.; Neiswanger, W.; Savani, Y. Bananas: Bayesian optimization with neural architectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 10293–10301. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th Annual Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain, 12–14 December 2011; Volume 24, pp. 1–9. [Google Scholar]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Hoffman, M.; Brochu, E.; De Freitas, N. Portfolio Allocation for Bayesian Optimization. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), Barcelona, Spain, 14–17 July 2011; pp. 327–336. [Google Scholar]
- Commission for Energy Regulation (CER) Smart Metering Project, Irish Social Science Data Archive. 2012. Available online: https://www.ucd.ie/issda/data/commissionforenergyregulationcer/ (accessed on 10 November 2024).
- Müller, R.; Kornblith, S.; Hinton, G.E. When does label smoothing help? In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32, pp. 1–10. [Google Scholar]
- Eunus, S.I.; Hossain, S.; Ridwan, A.; Adnan, A.; Islam, M.S.; Karim, D.Z.; Alam, G.R.; Uddin, J. ECARRNet: An Efficient LSTM-Based Ensembled Deep Neural Network Architecture for Railway Fault Detection. AI 2024, 5, 482–503. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Rao, M.; Qin, Y.; Wang, Z.; Ji, Y. Explicit speed-integrated LSTM network for non-stationary gearbox vibration representation and fault detection under varying speed conditions. Reliab. Eng. Syst. Saf. 2025, 254, 110596. [Google Scholar] [CrossRef]
Components | Hyperparameters () | Choices |
---|---|---|
Network Depth | Number of basic blocks () | 3/4/5 |
Basic Block | Conv—number of filters () | 32/64/128 |
Conv—kernel size () | 3/5/7/9 | |
Conv—stride size () | 1/2/4 | |
CA layer () | 0/1 | |
Classification Block | Dropout rate () | 0.5/0.6 |
Acquisition Function | Abbr. | Formulation |
---|---|---|
Expected Improvement | EI | |
Probability of Improvement | PI | |
Upper Confidence Bound | UCB |
Question Number | Socio-Demographic Info | Class Labels | Number of Samples |
---|---|---|---|
300 | Age of chief income earner | Young (<35) | 436 |
Medium (35∼65) | 2819 | ||
Senior (>65) | 953 | ||
310 | Chief income earner has retired or not | Yes | 1285 |
No | 2947 | ||
401 | Social class of chief income earner | A or B | 642 |
C1 or C2 | 1840 | ||
D or E | 1593 | ||
410 | Have children or not | Yes | 1229 |
No | 3003 | ||
450 | House type | Detached or bungalow | 2189 |
Semi-detached or terraced | 1964 | ||
453 | Age of the house | Old (≥30) | 2151 |
New (<30) | 2077 | ||
460 | Number of bedrooms | Low (=3) | 1884 |
High (=4) | 1470 | ||
Very High (>4) | 474 | ||
4704 | Cooking facility type | Electrical | 1272 |
Not electrical | 2960 | ||
4905 | Energy-efficient light bulb proportion | Up to half | 2746 |
Three quarters or more | 1486 | ||
5418 | Level of education of the chief income earner | Primary/no education | 534 |
Secondary | 1886 | ||
Third level | 1580 |
Q# | SVM | PS | RF | PR | CNN-SVM | 1D-CNN | 2D-CNN | CNN-LSTM | SEACAT-Net |
---|---|---|---|---|---|---|---|---|---|
300 | 0.3672 | 0.3427 | 0.3943 | 0.3919 | 0.3263 | 0.3497 | 0.4245 | 0.4377 | 0.4720 |
310 | 0.5845 | 0.5817 | 0.6438 | 0.6232 | 0.4999 | 0.6072 | 0.6557 | 0.6634 | 0.6731 |
401 | 0.2805 | 0.3051 | 0.4132 | 0.4122 | 0.2428 | 0.3760 | 0.4411 | 0.4346 | 0.4510 |
410 | 0.3575 | 0.3666 | 0.6420 | 0.6489 | 0.5030 | 0.6510 | 0.6831 | 0.6701 | 0.7025 |
450 | 0.5584 | 0.5669 | 0.5938 | 0.5742 | 0.4644 | 0.5893 | 0.5969 | 0.5926 | 0.6062 |
453 | 0.5482 | 0.5466 | 0.5945 | 0.5796 | 0.4836 | 0.5734 | 0.5880 | 0.6022 | 0.6156 |
460 | 0.2882 | 0.2877 | 0.4234 | 0.4070 | 0.2981 | 0.4124 | 0.4183 | 0.4137 | 0.4345 |
4704 | 0.6020 | 0.6054 | 0.6206 | 0.6187 | 0.4945 | 0.6336 | 0.6401 | 0.6636 | 0.6800 |
4905 | 0.4515 | 0.4617 | 0.4893 | 0.4892 | 0.4910 | 0.5193 | 0.5353 | 0.5312 | 0.5529 |
5418 | 0.2144 | 0.2704 | 0.3915 | 0.3897 | 0.2705 | 0.3344 | 0.3815 | 0.4162 | 0.4209 |
Q# | SVM | PS | RF | PR | CNN-SVM | 1D-CNN | 2D-CNN | CNN-LSTM | SEACAT-Net |
---|---|---|---|---|---|---|---|---|---|
300 | 0.3660 | 0.3601 | 0.4007 | 0.3960 | 0.3310 | 0.4578 | 0.5157 | 0.5215 | 0.5271 |
310 | 0.5888 | 0.5866 | 0.6336 | 0.6159 | 0.5008 | 0.6273 | 0.6856 | 0.6866 | 0.6979 |
401 | 0.3805 | 0.3950 | 0.4280 | 0.4184 | 0.3318 | 0.4351 | 0.4612 | 0.4607 | 0.4718 |
410 | 0.3511 | 0.3652 | 0.6311 | 0.6383 | 0.5040 | 0.6731 | 0.7008 | 0.6989 | 0.7064 |
450 | 0.5617 | 0.5669 | 0.5938 | 0.5746 | 0.4984 | 0.5928 | 0.6004 | 0.5978 | 0.6077 |
453 | 0.5544 | 0.5545 | 0.5946 | 0.5798 | 0.5016 | 0.5734 | 0.5880 | 0.6023 | 0.6157 |
460 | 0.3156 | 0.2977 | 0.4221 | 0.4062 | 0.3316 | 0.4498 | 0.4472 | 0.4473 | 0.4378 |
4704 | 0.6048 | 0.6072 | 0.6143 | 0.6122 | 0.4978 | 0.6401 | 0.6650 | 0.6675 | 0.6790 |
4905 | 0.4808 | 0.4737 | 0.5186 | 0.5091 | 0.4984 | 0.5212 | 0.5379 | 0.5342 | 0.5531 |
5418 | 0.2951 | 0.3040 | 0.4018 | 0.3947 | 0.3374 | 0.4027 | 0.4299 | 0.4312 | 0.4249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Li, Q.; Qi, R.; Zheng, J. Designing Channel Attention Fully Convolutional Networks with Neural Architecture Search for Customer Socio-Demographic Information Identification Using Smart Meter Data. AI 2025, 6, 9. https://doi.org/10.3390/ai6010009
Luo Z, Li Q, Qi R, Zheng J. Designing Channel Attention Fully Convolutional Networks with Neural Architecture Search for Customer Socio-Demographic Information Identification Using Smart Meter Data. AI. 2025; 6(1):9. https://doi.org/10.3390/ai6010009
Chicago/Turabian StyleLuo, Zhirui, Qingqing Li, Ruobin Qi, and Jun Zheng. 2025. "Designing Channel Attention Fully Convolutional Networks with Neural Architecture Search for Customer Socio-Demographic Information Identification Using Smart Meter Data" AI 6, no. 1: 9. https://doi.org/10.3390/ai6010009
APA StyleLuo, Z., Li, Q., Qi, R., & Zheng, J. (2025). Designing Channel Attention Fully Convolutional Networks with Neural Architecture Search for Customer Socio-Demographic Information Identification Using Smart Meter Data. AI, 6(1), 9. https://doi.org/10.3390/ai6010009