Photonic Crystals Fabricated by Two-Photon Polymerization with Mechanical Defects
Abstract
:1. Introduction
2. Design, Fabrication, and Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, Y.; Gong, J.P. Tunable one-dimensional photonic crystals from soft materials. J. Photoch. Photobio. C 2015, 23, 45–67. [Google Scholar] [CrossRef]
- Steel, M.; Levy, M.; Osgood, R. High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects. IEEE Photonic Tech. Lett. 2000, 12, 1171–1173. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Z.; Wu, Y.; Yang, B. One-dimensional photonic crystals: Fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 2016, 6, 4505–4520. [Google Scholar] [CrossRef]
- Yablonovitch, E. Photonic crystals. J. Mod. Optic. 1994, 41, 173–194. [Google Scholar] [CrossRef]
- Tolmachev, V.A.; Baldycheva, A.V.; Berwick, K.; Perova, T.S. Influence of fluctuations of the geometrical parameters on the photonic band gaps in one-dimensional photonic crystals. Prog. Electromagn. Res. 2012, 126, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.H.; Elsayed, H.A.; Malek, C. Defect modes properties in one-dimensional photonic crystals employing a superconducting nanocomposite material. Opt. Appl. 2018, 48, 53–64. [Google Scholar]
- Park, S.; Li, Y.; Norton, B.; McLamb, M.; Boreman, G.D.; Hofmann, T. One-dimensional Photonic Crystals Fabricated Using Stereolithographic Single Layer Assembly for the Terahertz Spectral Range. J. Infrared Millim. Terahertz 2020, 41, 542–551. [Google Scholar] [CrossRef]
- Wu, C.J.; Wang, Z.H. Properties of defect modes in one-dimensional photonic crystals. Pr. Electromagn. Res. 2010, 103, 169–184. [Google Scholar] [CrossRef] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fullager, D.; Park, S.; Childers, D.; Fesperman, R.; Boreman, G.; Hofmann, T. High-contrast infrared polymer photonic crystals fabricated by direct laser writing. Opt. Lett. 2018, 43, 4711–4714. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, H.; Li, H.; Zhang, Y.; Zhu, S. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett. 2003, 83, 5386–5388. [Google Scholar] [CrossRef]
- Sánchez, A.; Porta, A.; Orozco, S. Photonic band-gap and defect modes of a one-dimensional photonic crystal under localized compression. J. Appl. Phys. 2017, 121, 173101. [Google Scholar] [CrossRef]
- Scotognella, F.; Chiasera, A.; Criante, L.; Aluicio-Sarduy, E.; Varas, S.; Pelli, S.; Łukowiak, A.; Righini, G.C.; Ramponi, R.; Ferrari, M. Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating. Ceram. Int. 2015, 41, 8655–8659. [Google Scholar] [CrossRef]
- Langer, R.; Barski, A.; Simon, J.; Pelekanos, N.; Konovalov, O.; Andre, R.; Dang, L.S. High-reflectivity GaN/GaAlN Bragg mirrors at blue/green wavelengths grown by molecular beam epitaxy. Appl. Phys. Lett. 1999, 74, 3610–3612. [Google Scholar] [CrossRef]
- Rybin, M.V.; Shishkin, I.I.; Samusev, K.B.; Belov, P.A.; Kivshar, Y.S.; Kiyan, R.V.; Chichkov, B.N.; Limonov, M.F. Band structure of photonic crystals fabricated by two-photon polymerization. Crystals 2015, 5, 61–73. [Google Scholar] [CrossRef]
- Houbertz, R.; Declerck, P.; Passinger, S.; Ovsianikov, A.; Serbin, J.; Chichkov, B. Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic–organic hybrid polymers with ultra-short laser pulses. Phys. Status Solidi A 2007, 204, 3662–3675. [Google Scholar] [CrossRef]
- Stinson, V.P.; Park, S.; McLamb, M.; Boreman, G.; Hofmann, T. Photonic Crystals with a Defect Fabricated by Two-Photon Polymerization for the Infrared Spectral Range. Optics 2021, 2, 284–291. [Google Scholar] [CrossRef]
- Stinson, V.P.; Shuchi, N.; McLamb, M.; Boreman, G.D.; Hofmann, T. Mechanical Control of the Optical Bandgap in One-Dimensional Photonic Crystals. Micromachines 2022, 13, 2248. [Google Scholar] [CrossRef]
- Park, S.; Li, Y.; McLamb, M.; Norton, B.; Boreman, G.D.; Hofmann, T. Highly Localized Defect Mode in Polymer-Based THz Photonic Crystals Fabricated Using Stereolithography. J. Infrared Millim. Terahertz 2020, 41, 825–833. [Google Scholar] [CrossRef]
- Park, S.; Norton, B.; Boreman, G.D.; Hofmann, T. Mechanical tuning of the terahertz photonic bandgap of 3D-printed one-dimensional photonic crystals. J. Infrared Millim. Terahertz 2021, 42, 220–228. [Google Scholar] [CrossRef]
- Aly, A.H.; Elsayed, H.A. Defect mode properties in a one-dimensional photonic crystal. Physica B 2012, 407, 120–125. [Google Scholar] [CrossRef]
- Lee, H.Y.; Yao, T. Design and evaluation of omnidirectional one-dimensional photonic crystals. J. Appl. Phys. 2003, 93, 819–830. [Google Scholar] [CrossRef]
- Vinogradov, A.; Dorofeenko, A.; Erokhin, S.; Inoue, M.; Lisyansky, A.; Merzlikin, A.; Granovsky, A. Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys. Rev. B 2006, 74, 045128. [Google Scholar] [CrossRef] [Green Version]
- Wan, B.F.; Zhou, Z.W.; Xu, Y.; Zhang, H.F. A theoretical proposal for a refractive index and angle sensor based on one-dimensional photonic crystals. IEEE Sens. J. 2020, 21, 331–338. [Google Scholar] [CrossRef]
- Nelson, R.; Haus, J. One-dimensional photonic crystals in reflection geometry for optical applications. Appl. Phys. Lett. 2003, 83, 1089–1091. [Google Scholar] [CrossRef]
- Juodkazis, S.; Mizeikis, V.; Seet, K.K.; Misawa, H.; Wegst, U.G. Mechanical properties and tuning of three-dimensional polymeric photonic crystals. Appl. Phys. Lett. 2007, 91, 241904. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Q.; Zheng, X. Flexible mechanochromic photonic crystals: Routes to visual sensors and their mechanical properties. J. Mater. Chem. C 2018, 6, 3182–3199. [Google Scholar] [CrossRef]
- Xia, J.; Qiao, Q.; Zhou, G.; Chau, F.S.; Zhou, G. Opto-mechanical photonic crystal cavities for sensing application. Appl. Sci. 2020, 10, 7080. [Google Scholar] [CrossRef]
- Jansen, C.; Wietzke, S.; Astley, V.; Mittleman, D.M.; Koch, M. Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies. Appl. Phys. Lett. 2010, 96, 111108. [Google Scholar] [CrossRef] [Green Version]
- Jayne, R.K.; Stark, T.J.; Reeves, J.B.; Bishop, D.J.; White, A.E. Dynamic Actuation of Soft 3D Micromechanical Structures Using Micro-Electromechanical Systems (MEMS). Adv. Mater. Technol. 2018, 3, 1700293. [Google Scholar] [CrossRef]
- Ding, L.; Li, Y.; Zhou, C.; Hu, M.; Xiong, Y.; Zeng, Z. In-fiber Mach-Zehnder interferometer based on three-core fiber for measurement of directional bending. Sensors 2019, 19, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindal, S.K.; Raghuwanshi, S.K.; Kumar, A. Realization of MOEMS pressure sensor using mach zehnder interferometer. J. Mech. Sci. Technol. 2015, 29, 3831–3839. [Google Scholar] [CrossRef]
- Agarwal, S.; Mishra, J.K.; Priye, V. Highly sensitive MOEMS integrated photonic crystal cavity resonator for nano-mechanical sensing. Opt. Commun. 2020, 474, 126150. [Google Scholar] [CrossRef]
- Chaudhary, V.S.; Kumar, D.; Mishra, R.; Sharma, S. Hybrid dual core photonic crystal fiber as hydrostatic pressure sensor. Optik 2020, 210, 164497. [Google Scholar] [CrossRef]
- Rajasekar, R.; Robinson, S. Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 2019, 14, 3–15. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Schartner, E.P.; Otten, D.; Yu, Z.; Lancaster, D.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. Multi-point optical fiber pressure sensor. In Proceedings of the AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019, Melbourne, Australia, 9–12 December 2019; Volume 11200, pp. 40–41. [Google Scholar]
- Lao, Z.; Xia, N.; Wang, S.; Xu, T.; Wu, X.; Zhang, L. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review. Micromachines 2021, 12, 465. [Google Scholar] [CrossRef]
- Upadhyaya, A.M.; Hasan, M.K.; Abdel-Khalek, S.; Hassan, R.; Srivastava, M.C.; Sharan, P.; Islam, S.; Saad, A.M.E.; Vo, N. A comprehensive review on the optical micro-electromechanical sensors for the biomedical application. Front. Public Health 2021, 9, 759032. [Google Scholar] [CrossRef]
- Park, S.; Stinson, V.P.; McLamb, M.; Boreman, G.D.; Hofmann, T. Mechanical tuning of defect modes in polymer-based terahertz one-dimensional photonic crystals fabricated by stereolithography. Opt. Eng. 2021, 60, 117104. [Google Scholar] [CrossRef]
- Calin, B.S.; Paun, I.A. A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication. Int. J. Mol. Sci. 2022, 23, 14270. [Google Scholar] [CrossRef]
- Păun, I.A.; Mustăciosu, C.C.; Popescu, R.C.; Călin, B.Ş.; Mihăilescu, M. Collagen/chitosan functionalization of complex 3d structures fabricated by laser direct writing via two-photon polymerization for enhanced osteogenesis. Int. J. Mol. Sci. 2020, 21, 6426. [Google Scholar] [CrossRef]
- Paun, I.A.; Zamfirescu, M.; Luculescu, C.R.; Acasandrei, A.M.; Mustaciosu, C.C.; Mihailescu, M.; Dinescu, M. Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering. Appl. Surf. Sci. 2017, 392, 321–331. [Google Scholar] [CrossRef]
- Joya, Y.F.; Wang, T.; Liu, Z. Formation and antibacterial activities of nanostructured TiO2 based thin films by sol-gel/laser-induced technique. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics, Orlando, FL, USA, 23–27 October 2011; Volume 2011, pp. 1152–1160. [Google Scholar]
- Fullager, D.B.; Boreman, G.D.; Hofmann, T. Infrared dielectric response of nanoscribe IP-dip and IP-L monomers after polymerization from 250 cm−1 to 6000 cm−1. Opt. Mater. Express 2017, 7, 888–894. [Google Scholar] [CrossRef]
- Cai, W.; Shalaev, V.M. Optical Metamaterials; Springer: Berlin/Heidelberg, Germany, 2010; Volume 10. [Google Scholar]
- Li, Y.; Fullager, D.; Angelbello, E.; Childers, D.; Boreman, G.; Hofmann, T. Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing. Opt. Lett. 2018, 43, 239–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, X.; Wang, N.; Wang, Z.; Jiang, H.; Jia, Y.; Zhou, N.; Qiu, M. Customizable and highly sensitive 3D micro-springs produced by two-photon polymerizations with improved post-treatment processes. Appl. Phys. Lett. 2022, 120, 171107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stinson, V.P.; Shuchi, N.; Louisos, D.; McLamb, M.; Boreman, G.D.; Hofmann, T. Photonic Crystals Fabricated by Two-Photon Polymerization with Mechanical Defects. Optics 2023, 4, 300-309. https://doi.org/10.3390/opt4020021
Stinson VP, Shuchi N, Louisos D, McLamb M, Boreman GD, Hofmann T. Photonic Crystals Fabricated by Two-Photon Polymerization with Mechanical Defects. Optics. 2023; 4(2):300-309. https://doi.org/10.3390/opt4020021
Chicago/Turabian StyleStinson, Victoria Paige, Nuren Shuchi, Dustin Louisos, Micheal McLamb, Glenn D. Boreman, and Tino Hofmann. 2023. "Photonic Crystals Fabricated by Two-Photon Polymerization with Mechanical Defects" Optics 4, no. 2: 300-309. https://doi.org/10.3390/opt4020021
APA StyleStinson, V. P., Shuchi, N., Louisos, D., McLamb, M., Boreman, G. D., & Hofmann, T. (2023). Photonic Crystals Fabricated by Two-Photon Polymerization with Mechanical Defects. Optics, 4(2), 300-309. https://doi.org/10.3390/opt4020021