Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ED | electric dipole |
MD | magnetic dipole |
EQ | electric quadrupole |
MQ | Magnetic Quadrupole |
References
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef]
- Nookala, N.; Lee, J.; Tymchenko, M.; Gomez-Diaz, J.S.; Demmerle, F.; Boehm, G.; Lai, K.; Shvets, G.; Amann, M.C.; Alu, A.; et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 2016, 3, 283. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High-Q Quasibound States in the Continuum for Nonlinear Metasurfaces. Phys. Rev. Lett. 2019, 123, 253901. [Google Scholar] [CrossRef]
- Hähnel, D.; Golla, C.; Albert, M.; Zentgraf, T.; Myroshnychenko, V.; Förstner, J.; Meier, C. A multi-mode super-fano mechanism for enhanced third harmonic generation in silicon metasurfaces. Light Sci. Appl. 2023, 12, 97. [Google Scholar] [CrossRef]
- Prokhorov, A.V.; Gubin, M.Y.; Shesterikov, A.V.; Arsenin, A.V.; Volkov, V.S.; Evlyukhin, A.B. Lasing Effect in Symmetrical van der Waals Heterostructured Metasurfaces Due to Lattice-Induced Multipole Coupling. Nano Lett. 2023, 23, 11105–11111. [Google Scholar] [CrossRef]
- Hemmatyar, O.; Abdollahramezani, S.; Kiarashinejad, Y.; Zandehshahvar, M.; Adibi, A. Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. Nanoscale 2019, 11, 21266. [Google Scholar] [CrossRef]
- Altug, H.; Oh, S.H.; Maier, S.A.; Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 2022, 17, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Fan, X.; Fang, W.; Zhang, B.; Cao, S.; Sun, Q.; Wang, D.; Niu, H.; Li, C.; Wei, X.; et al. High-Q Fano resonances in all-dielectric metastructures for enhanced optical biosensing applications. Biomed. Opt. Express 2024, 15, 294–305. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, X.; Wei, X.; Li, C.; Zhao, T.; Fang, W.; Niu, H.; Bai, C.; Kumar, S. Highly sensitive multiple fano resonances excitation on all-dielectric metastructure. Opt. Rev. 2023, 30, 208–216. [Google Scholar] [CrossRef]
- Benea-Chelmus, I.C.; Mason, S.; Meretska, M.L.; Elder, D.L.; Kazakov, D.; Shams-Ansari, A.; Dalton, L.R.; Capasso, F. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun. 2022, 13, 3170. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, M.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Zeng, Q.; Tang, B.; Ahmad, S.; Sun, T. Polarization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mater. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Wang, K.; Titchener, J.G.; Kruk, S.S.; Xu, L.; Chung, H.P.; Parry, M.; Kravchenko, I.I.; Chen, Y.H.; Solntsev, A.S.; Kivshar, Y.S.; et al. Quantum Metasurface for Multiphoton Interference and State Reconstruction. Science 2018, 361, 1104–1108. [Google Scholar] [CrossRef]
- Redit, C.; Ommo, C. Metasurfaces go mainstream. Nat. Photonics 2023, 17, 6. [Google Scholar] [CrossRef]
- Shah, Y.D.; Dada, A.C.; Grant, J.P.; Cumming, D.R.S.; Altuzarra, C.; Nowack, T.S.; Lyons, A.; Clerici, M.; Faccio, D. An All-Dielectric Metasurface Polarimeter. ACS Photonics 2022, 9, 3245–3252. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhu, Y.; Duan, J.; Qin, M.; Wu, F.; Xiao, S. Enhancing Goos-Hänchen shift based on magnetic dipole quasi-bound states in the continuum in all-dielectric metasurfaces. Opt. Express 2021, 29, 29541–29549. [Google Scholar] [CrossRef] [PubMed]
- Capasso, F. Metaoptics for the consumer market. Nat. Photonics 2023, 17, 6–7. [Google Scholar] [CrossRef]
- Pourmand, M.; Choudhury, P.K. Light-Matter Interaction at the Sub-Wavelength Scale: Pathways to Design Nanophotonic Devices. In Adventures in Contemporary Electromagnetic Theory; Mackay, T.G., Lakhtakia, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 281–314. [Google Scholar] [CrossRef]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–570. [Google Scholar] [CrossRef]
- Yue, Z.; Li, J.; Li, J.; Zheng, C.; Liu, J.; Wang, G.; Xu, H.; Chen, M.; Zhang, Y.; Zhang, Y.; et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci. 2022, 1, 210014-1–210014-8. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Wróbel, J.; Kula, P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 2019, 9, 20367. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, S.; Qin, J. Tunable Fano Resonance and Enhanced Sensing in Terahertz Metamaterial. Front. Phys. 2021, 8, 605125. [Google Scholar] [CrossRef]
- Sajedian, I.; Lee, H.; Rho, J. Double-deep Q-learning to increase the efficiency of metasurface holograms. Sci. Rep. 2019, 9, 10899. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Liu, C.; Xiao, Q.; Gua, Z.; Gao, X.; Li, L.; Cui, T.J. Information metasurfaces and intelligent metasurfaces. Photonics Insights 2022, 1, R01. [Google Scholar] [CrossRef]
- Malkiel, I.; Mrejen, M.; Nagler, A.; Arieli, U.; Wolf, L.; Suchowski, H. Plasmonic nanostructure design and characterization via Deep Learning. Light Sci. Appl. 2018, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.; Jeon, Y.; Yang, Y.; Badloe, T.; Rho, J. Cost-Effective and Environmentally Friendly Mass Manufacturing of Optical Metasurfaces Towards Practical Applications and Commercialization. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 11, 685–706. [Google Scholar] [CrossRef]
- Estakhri, N.M.; Edwards, B.; Engheta, N. Inverse-designed metastructures that solve equations. Science 2019, 363, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Pile, D. Metamaterials for the masses. Nat. Photonics 2023, 17, 2–3. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Luo, X.; Ou, X.; Li, L.; Chen, Y.; Yang, P.; Wang, S.; Duan, H. All-dielectric metasurfaces for polarization manipulation: Principles and emerging applications. Nanophotonics 2020, 9, 3755–3780. [Google Scholar] [CrossRef]
- Liu, S.; Vabishchevich, P.P.; Vaskin, A.; Reno, J.L.; Keeler, G.A.; Sinclair, M.B.; Staude, I.; Brener, I. An all-dielectric metasurface as a broadband optical frequency mixer. Nat. Commun. 2018, 9, 2507. [Google Scholar] [CrossRef]
- Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. Multifunct. Mater. 2019, 2, 043001. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, H.; Mao, D.; Du, Y.; Hua, H.; Zhao, W.; Zhao, J. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron. Adv. 2022, 5, 200098. [Google Scholar] [CrossRef]
- Kerker, M.; Wang, D.S.; Giles, C.L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 1983, 73, 765–767. [Google Scholar] [CrossRef]
- Barreda, A.; Albella, P.; Moreno, F.; González, F. Broadband Unidirectional Forward Scattering with High Refractive Index Nanostructures: Application in Solar Cells. Molecules 2021, 26, 4421. [Google Scholar] [CrossRef]
- Valero, A.C.; Shamkhi, H.K.; Kupriianov, A.S.; Weiss, T.; Pavlov, A.A.; Redka, D.; Bobrovs, V.; Kivshar, Y.; Shalin, A.S. Superscattering emerging from the physics of bound states in the continuum. Nat. Commun. 2023, 14, 4689. [Google Scholar] [CrossRef]
- Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett. 2015, 40, 2645. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, P.; Lu, W.; Bai, P.; Zhang, B.; Chen, Z.; Maier, S.A.; Gómez Rivas, J.; Wang, S.; Li, X. High-Q collective Mie resonances in monocrystalline silicon nanoantenna arrays for the visible light. Fundam. Res. 2023, 3, 822–830. [Google Scholar] [CrossRef]
- Cara, E.; Lupi, F.F.; Fretto, M.; Leo, N.D.; Tortello, M.; Gonnelli, R.; Sparnacci, K.; Boarino, L. Directed Self-Assembly of Polystyrene Nanospheres by Direct Laser-Writing Lithography. Nanomaterials 2020, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.P.; Dahlin, A.B.; Jönsson, P.; Höök, F. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films. Biointerphases 2008, 3, FD30–FD40. [Google Scholar] [CrossRef] [PubMed]
- Murataj, I.; Channab, M.; Cara, E.; Pirri, C.F.; Boarino, L.; Angelini, A.; Lupi, F.F. Hyperbolic Metamaterials via Hierarchical Block Copolymer Nanostructures. Adv. Opt. Mater. 2021, 9, 2001933. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, Y.; Man, X. Block copolymer thin films. Phys. Rep. 2021, 932, 1–36. [Google Scholar] [CrossRef]
- Yang, G.G.; Choi, H.J.; Han, K.H.; Kim, J.H.; Lee, C.W.; Jung, E.I.; Jin, H.M.; Kim, S.O. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Appl. Mater. Interfaces 2022, 14, 12011–12037. [Google Scholar] [CrossRef]
- Greybush, N.J.; Pacheco-Peña, V.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. ACS Nano 2019, 13, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Phillip, H.R.; Taft, E.A. Kramers-Kronig Analysis of Reflectance Data for Diamond. Phys. Rev. 1964, 136, A1445–A1448. [Google Scholar] [CrossRef]
- SCHOTT North America, I. Optical Glass Data Sheets. Available online: https://www.schott.com/en-ie/products/optical-glass-P1000267/downloads (accessed on 8 February 2024).
- Bonino, V.; Angelini, A. High-Q Fano Resonances in Diamond Nanopillars. Opt. Mater. Express 2023, 13, 1110. [Google Scholar] [CrossRef]
- Lin, R.; Alnakhli, Z.; Alqatari, F.; Li, X. Analysis of Tapered Nanopillars for Reflective Metalens: The Role of Higher-Order Modes. IEEE Photonics J. 2020, 12, 4600907. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298. [Google Scholar] [CrossRef]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano Resonances in Photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Riccardi, M.; Kiselev, A.; Achouri, K.; Martin, O.J.F. Multipolar expansions for scattering and optical force calculations beyond the long wavelength approximation. Phys. Rev. B 2022, 106, 115428. [Google Scholar] [CrossRef]
- Grahn, P.; Shevchenko, A.; Kaivola, M. Electromagnetic Multipole Theory for Optical Nanomaterials. New J. Phys. 2012, 14, 093033. [Google Scholar] [CrossRef]
- Mühlig, S.; Menzel, C.; Rockstuhl, C.; Lederer, F. Multipole Analysis of Meta-atoms. Metamaterials 2011, 5, 64–73. [Google Scholar] [CrossRef]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Ding, Y.; Luo, Y.; Liu, Y. A high figure of merit refractive index sensor based on Fano resonance in all-dielectric metasurface. Results Phys. 2020, 16, 102833. [Google Scholar] [CrossRef]
- Zhang, C.; Jing, J.; Wu, Y.; Fan, Y.; Yang, W.; Wang, S.; Song, Q.; Xiao, S. Stretchable All-Dielectric Metasurfaces with Polarization-Insensitive and Full-Spectrum Response. ACS Nano 2020, 14, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Gutruf, P.; Zou, C.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S.; Fumeaux, C. Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. ACS Nano 2016, 10, 133–141. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Cai, G.; Zhuo, J.; Lai, K.; Ye, L. All-dielectric metasurfaces with high Q-factor Fano resonances enabling multi-scenario sensing. Nanophotonics 2022, 11, 4537–4549. [Google Scholar] [CrossRef]
- Bonakdar, A.; Jang, S.J.; Brown, R.L.; Rezaei, M.; Mohseni, H. Deep UV microsphere nanolithography to achieve sub-100 nm feature size. In Nanoengineering: Fabrication, Properties, Optics, and Devices XI; SPIE: San Diego, CA, USA, 2014; Volume 9170, pp. 143–148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonino, V.; Angelini, A. Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances. Optics 2024, 5, 238-247. https://doi.org/10.3390/opt5020017
Bonino V, Angelini A. Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances. Optics. 2024; 5(2):238-247. https://doi.org/10.3390/opt5020017
Chicago/Turabian StyleBonino, Vittorio, and Angelo Angelini. 2024. "Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances" Optics 5, no. 2: 238-247. https://doi.org/10.3390/opt5020017
APA StyleBonino, V., & Angelini, A. (2024). Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances. Optics, 5(2), 238-247. https://doi.org/10.3390/opt5020017