Transorbital Alternating Current Stimulation in Glaucoma: State of the Art from Neurophysiological Bases to Clinical Practice
Abstract
:1. Introduction
2. The Residual Activation Theory
3. Electrical Current Stimulation and Low Vision
4. Direct Evidence of Electrical Stimulation Efficacy in Glaucoma
5. Discussion, Limitation and Open Issues
6. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Granata, G.; Iodice, F.; Romanello, R.; Placidi, G.; Gasparini, G.; Falsini, B.; Rossini, P.M. Neurophysiological Effect of Transorbital Electrical Stimulation: Early Results in Advanced Optic Atrophy. Brain Stimul. 2019, 12, 800–802. [Google Scholar] [CrossRef]
- Gupta, N.; Yucel, Y.H. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 2007, 18, 110–114. [Google Scholar] [CrossRef]
- Sabel, B.A.; Kasten, E. Restoration of vision by training of residual functions. Curr. Opin. Ophthalmol. 2000, 11, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Porciatti, V.; Ventura, L.M. Retinal ganglion cell functional plasticity and optic neuropathy: A comprehensive model. J. Neuro-Ophthalmol. 2012, 32, 354–358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amato, R.; Cammalleri, M.; Melecchi, A.; Bagnoli, P.; Porciatti, V. Natural History of Glaucoma Progression in the DBA/2J Model: Early Contribution of Müller Cell Gliosis. Cells 2023, 12, 1272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falsini, B.; Marangoni, D.; Salgarello, T.; Stifano, G.; Montrone, L.; Campagna, F.; Aliberti, S.; Balestrazzi, E.; Colotto, A. Structure-function relationship in ocular hypertension and glaucoma: Interindividual and interocular analysis by OCT and pattern ERG. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.Y.; Chow, V.Y.; Packo, K.H.; Pollack, J.S.; Peyman, G.A.; Schuchard, R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol. 2004, 122, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Ciavatta, V.T.; Mocko, J.A.; Kim, M.K.; Pardue, M.T. Subretinal electrical stimulation preserves inner retinal function in RCS rat retina. Mol. Vis. 2013, 19, 995–1005. [Google Scholar] [PubMed]
- Sabel, B.A.; Thut, G.; Haueisen, J.; Henrich-Noack, P.; Herrmann, C.S.; Hunold, A.; Kammer, T.; Matteo, B.; Sergeeva, E.G.; Waleszczyk, W.; et al. Vision modulation, plasticity and restoration using non-invasive brain stimulation—An IFCN-sponsored review. Clin. Neurophysiol. 2020, 131, 887–911. [Google Scholar] [CrossRef] [PubMed]
- Perin, C.; Viganò, B.; Piscitelli, D.; Matteo, B.M.; Meroni, R.; Cerri, C.G. Non-invasive current stimulation in vision recovery: A review of the literature. Restor. Neurol. Neurosci. 2020, 38, 239–250. [Google Scholar] [CrossRef]
- Duncan, R.O.; Sample, P.A.; Weinreb, R.N.; Bowd, C.; Zangwill, L.M. Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss. Prog. Retin. Eye Res. 2007, 26, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, J.A.; Zangwill, L.M.; Moghimi, S.; Bowd, C.; Saunders, L.J.; Hou, H.; Belghith, A.; Medeiros, F.A.; Williams-Steppe, E.; Acera, T.; et al. Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice. JAMA Ophthalmol. 2021, 139, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mo, X.; Li, D.; Wang, Y.; Fang, Y.; Rong, X.; Miao, H.; Shou, T. Neuroprotective effect of transcorneal electrical stimulation on ischemic damage in the rat retina. Exp. Eye Res. 2011, 93, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Willmann, G.; Schaferhoff, K.; Fischer, M.D.; Arango-Gonzalez, B.; Bolz, S.; Naycheva, L.; Rock, T.; Bonin MBartz-Schmidt, K.U.; Zrenner, E.; Schatz, A.; et al. Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats. Investig. Opthalmology Vis. Sci. 2011, 52, 7529–7537. [Google Scholar] [CrossRef]
- Nagaraju, M.; Saleh, M.; Porciatti, V. IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Investig. Opthalmology Vis. Sci. 2007, 48, 4573–4579. [Google Scholar] [CrossRef]
- Ventura, L.M.; Sorokac, N.; De Los Santos, R.; Feuer, W.J.; Porciatti, V. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Investig. Opthalmology Vis. Sci. 2006, 47, 3904–3911. [Google Scholar] [CrossRef]
- Hanif, A.M.; Kim, M.K.; Thomas, J.G.; Ciavatta, V.T.; Chrenek, M.; Hetling, J.R.; Pardue, M.T. Wholeeye electrical stimulation therapy preserves visual function and structure in P23H-1 rats. Exp. Eye Res. 2016, 149, 75–83. [Google Scholar] [CrossRef]
- Morimoto, T.; Miyoshi, T.; Fujikado, T.; Tano, Y.; Fukuda, Y. Electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo. NeuroReport 2002, 13, 227–230. [Google Scholar] [CrossRef]
- Sato, T.; Fujikado, T.; Lee, T.S.; Tano, Y. Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Muller cells. Invest. Ophthalmol. Vis. Sci. 2008, 49, 4641–4646. [Google Scholar] [CrossRef]
- Sato, T.; Fujikado, T.; Morimoto, T.; Matsushita, K.; Harada, T.; Tano, Y. Effect of electrical stimulation on IGF-1 transcription by L-type calcium channels in cultured retinal Muller cells. Jpn. J. Ophthalmol. 2008, 52, 217–223. [Google Scholar] [CrossRef]
- Yucel, Y.H.; Zhang, Q.; Weinreb, R.N.; Kaufman, P.L.; Gupta, N. Effects of retinal ganglion cell loss on magno- parvo, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 2003, 22, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Kanamoto, T.; Souchelnytskyi, N.; Kurimoto, T.; Ikeda, Y.; Sakaue, H.; Munemasa, Y.; Kiuchi, Y. Proteomic study of retinal proteins associated with transcorneal electric stimulation in rats. J. Ophthalmol. 2015, 2015, 492050. [Google Scholar] [CrossRef]
- Bola, M.; Gall, C.; Moewes, C.; Fedorov, A.; Hinrichs, H.; Sabel, B.A. Brain functional connectivity network breakdown and restoration in blindness. Neurology 2014, 83, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.Q.; Gan, D.K.; Xu, H.D.; Xu, G.Z.; Da, C.D. Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp. Neurol. 2009, 219, 439–452. [Google Scholar] [CrossRef]
- Erb, C.; Eckert, S.; Gindorf, P.; Köhler, M.; Köhler, T.; Neuhann, L.; Neuhann, T.; Salzmann, N.; Schmickler, S.; Ellrich, J. Electrical neurostimulation in glaucoma with progressive vision loss. Bioelectron. Med. 2022, 8, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ota, Y.; Ozeki, N.; Yuki, K.; Shiba, D.; Kimura, I.; Tsunoda, K.; Shinoda, K.; Ohde, H.; Tsubota, K. The Efficacy of Transcorneal Electrical Stimulation for the Treatment of Primary Open-angle Glaucoma: A Pilot Study. Keio J. Med. 2018, 67, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Gil-Carrasco, F.; Ochoa-Contreras, D.; Torres, M.A.; Santiago-Amaya, J.; Pérez-Tovar, F.W.; Gonzalez-Salinas, R.; Nino-de-Rivera, L. Transpalpebral Electrical Stimulation as a Novel Therapeutic Approach to Decrease Intraocular Pressure for Open-Angle Glaucoma: A Pilot Study. J. Ophthalmol. 2018, 2018, 2930519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jassim, A.H.; Cavanaugh, M.; Shah, J.S.; Willits, R.; Inman, D.M. Transcorneal Electrical Stimulation Reduces Neurodegenerative Process in a Mouse Model of Glaucoma. Ann. Biomed. Eng. 2021, 49, 858–870. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Anastassiou, G.; Schneegans, A.L.; Selbach, M.; Kremmer, S. Transpalpebral electrotherapy for dry age-related macular degeneration (AMD): An exploratory trial. Restor. Neurol. Neurosci. 2013, 31, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Chaikin, L.; Kashiwa, K.; Bennet, M.; Papastergiou, G.; Gregory, W. Microcurrent stimulation in the treatment of dry and wet macular degeneration. Clin. Ophthalmol. 2015, 9, 2345–2353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Rossi, F.; Guidobaldi, M.; Turco, S.; Amore, F. Transorbital electrical stimulation in retinitis pigmentosa. Better results joining visual pattern stimulation? Brain Stimul. 2020, 13, 1173–1174. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Falsini, B. Preliminary Results of Transorbital Alternating Current Stimulation in Chronic Low Vision: Correlation of Clinical and Neurophysiological Results. Neuromodulation 2023, 26, 892–894. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Jobke, S.; Bersnev, V.; Chibisova, A.; Chibisova, Y.; Gall, C.; Sabel, B.A. Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: A clinical observational study. Brain Stimul. 2011, 4, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Gall, C.; Fedorov, A.B.; Ernst, L.; Borrmann, A.; Sabel, B.A. Repetitive transorbital alternating current stimulation in optic neuropathy. NeuroRehabilitation 2010, 27, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Gall, C.; Sgorzaly, S.; Schmidt, S.; Brandt, S.; Fedorov, A.; Sabel, B.A. Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy. Brain Stimul. 2011, 4, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Gall, C.; Schmidt, S.; Schittkowski, M.P.; Antal, A.; Ambrus, G.G.; Paulus, W.; Dannhauer, M.; Michalik, R.; Mante, A.; Bola, M.; et al. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial. PLoS ONE 2016, 11, e0156134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Röck, T.; Naycheva, L.; Willmann, G.; Wilhelm, B.; Peters, T.; Zrenner, E.; Bartz-Schmidt, K.U.; Gekeler, F.; Schatz, A. Transkorneale Elektrostimulation bei primärem Offenwinkelglaukom [Transcorneal electrical stimulation in primary open angle glaucoma]. Ophthalmologe 2017, 114, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Sabel, B.A.; Fedorov, A.B.; Naue, N.; Borrmann, A.; Herrmann, C.; Gall, C. Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor. Neurol. Neurosci. 2011, 29, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Mante, A.; Ronnefarth, M.; Fleischmann, R.; Gall, C.; Brandt, S.A. Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: A two-week repeated session alternating current stimulation study. Brain Stimul. 2013, 6, 87–93. [Google Scholar] [CrossRef]
- Shinoda, K.; Imamura, Y.; Matsuda, S.; Seki, M.; Uchida, A.; Grossman, T.; Tsubota, K. Transcutaneous electrical retinal stimulation therapy for age-related macular degeneration. Open Ophthalmol. J. 2008, 2, 132–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freeman, D.K.; Eddington, D.K.; Rizzo, J.F., 3rd; Fried, S.I. Selective activation of neuronal targets with sinusoidal electric stimulation. J. Neurophysiol. 2010, 104, 2778–2791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, R.; Soden, P.A.; Lee, E. Tissue-Engineered Models for Glaucoma Research. Micromachines 2020, 11, 612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcos, L.F.; Wilson, S.L.; Roach, P. Tissue engineering of the retina: From organoids to microfluidic chips. J. Tissue Eng. 2021, 10, 20417314211059876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gellner, A.K.; Reis, J.; Fritsch, B. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation. Front. Cell. Neurosci. 2016, 10, 188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flammer, J.; Konieczka, K.; Flammer, A.J. The primary vascular dysregulation syndrome: Implications for eye diseases. EPMA J. 2013, 4, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurimoto, T.; Oono, S.; Oku, H.; Tagami, Y.; Kashimoto, R.; Takata, M.; Okamoto, N.; Ikeda, T.; Mimura, O. Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects. Clin. Ophthalmol. 2010, 4, 1441–1446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henrich-Noack, P.; Sergeeva, E.G.; Eber, T.; You, Q.; Voigt, N.; Köhler, J.; Wagner, S.; Lazik, S.; Mawrin, C.; Xu, G.; et al. Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage. Sci. Rep. 2017, 7, 627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Reference | Disease |
Experimental
Population | Stimulation Site | Frequency and Intensity | Type and Waveform | Duration | Days of Treatment |
---|---|---|---|---|---|---|---|
Anastassiou et al., 2013 [30] | Dry age-related macular degeneration | 12 patients, 10 patients sham | Palpebral, both eyes | 5–80 Hz; 150–220 μA | Transpalpebral-ES; waveform not indicated | Every session included 8 spots (40 s/spot) | 5 days, 2 sessions on each day |
Bola et al., 2014 [23] | Chronic prechiasmatic visual system damage | 7 patients, 8 patients sham | Skin near the eyeball | Current strength above (125%) phosphene threshold as reported by the patients | rtACS; biphasic | 40 min | 10 days |
Chaikin et al., 2015 [31] | Wet and dry age-related macular degeneration | 17 patients, 25 eyes with dry type, 6 eyes with wet type | Palpebral, both eyes | 3–162 Hz; 150 μA | rtACS | 35 min | Once a week |
De Rossi et al., 2020 [32] | Retinitis pigmentosa | 6 patients | Over and below the eyeball | 5–30 Hz; 1000 μA | rtACS | 20–40 min | 10 days |
Granata et al., 2019 [1] | Optic atrophy | 11 patients | Over and below the eyeball | 10 Hz; 1 mA | rtACS | 20 min | 10 days |
Granata et al., 2022 [33] | Chronic low vision | 32 patients | Over and below the eyeball | 10 Hz; 1 mA | rtACS | 20 min | 10 days |
Erb et al., 2022 [25] | Glaucoma | 70 patients, 101 eyes | Supraorbital and infraorbital | 5–34 Hz; 1.2 mA | rtACS; biphasic | 40 min | 10 days |
Federov et al., 2011 [34] | Optic nerve damage | 446 patients | Upper eyelide | 5 Hz; intensity increase stepwise by 10 µA per second | rtACS; biphasic | 25–40 min | 10 days |
Gall et al., 2010 [35] | Optic nerve damage | 1 patient | On the eyelid in both eyes | 10–30 Hz; <600 μA | rtACS; biphasic | 30–40 min | 10 days |
Gall et al., 2011 [36] | Optic nerve damage | 24 patients; 18 patients sham | Near the eyeball in both eyes | 5 Hz; intensity increase stepwise by 10 µA per second | rtACS; pulse square or sinus | 20–40 min | 10 days |
Gall et al., 2016 [37] | Optic nerve damage | 45 patients, 37 patients sham | Near the eyeball in both eyes | Frequency not indicated; intensity +/−0.5 mA | rtACS | 50 min | 10 days |
Gil-Carrasco et al., 2018 [27] | Open angle glaucoma | 46 patients, 78 eyes | On the eyelid in both eyes | 10 Hz, 100 µA | Transpalpebral-ES; biphasic | 40 min | 10 days |
Ota et al., 2018 [26] | Open angle glaucoma | 4 patients, 5 eyes | On the conjunctiva and the lower part of the cornea | 20 Hz, 300 µA or 500 µA | rtACS; biphasic | 30 min | Every 3 month, not indicates days |
Rock et al., 2017 [38] | Open angle glaucoma | 14 patients | Near the eyeball with DTL electrodes | 20 Hz; intensity of current set on phosphene threshold | Transcorneal-ES; biphasic | 30 min | One a week for 6 consecutive weeks |
Sabel et al., 2011 [39] | Optic nerve damage | 12 patients, 10 patients sham | Near the eyeball | 0.5–25 Hz; <1000 µA | rtACS | 15 min | 10 days |
Schmidt et al., 2013 [40] | Prechiasmatic partial optic nerve damage | 18 patients, 6 patients sham | Orbital, both eyes | 9–37 Hz; maximal amplitude <500 µA | rtACS | 25–40 min | 10 days |
Shinoda et al., 2008 [41] | Wet and dry age-related macular degeneration | Palpebral, both eyes | 21 patitents, 16 (27 eyes) with wet and 5 (7 eyes) with dry type | 290 Hz for 1 min, 31 Hz for 2 min, 8.9 Hz for 10 min, 0.28 Hz for 7 min; 800 μA | Transpalpebral-ES; monophasic | 20 min | 4 times per day for up to 1 month |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granata, G.; Delicati, S.; Falsini, B. Transorbital Alternating Current Stimulation in Glaucoma: State of the Art from Neurophysiological Bases to Clinical Practice. Optics 2024, 5, 353-363. https://doi.org/10.3390/opt5030026
Granata G, Delicati S, Falsini B. Transorbital Alternating Current Stimulation in Glaucoma: State of the Art from Neurophysiological Bases to Clinical Practice. Optics. 2024; 5(3):353-363. https://doi.org/10.3390/opt5030026
Chicago/Turabian StyleGranata, Giuseppe, Sharon Delicati, and Benedetto Falsini. 2024. "Transorbital Alternating Current Stimulation in Glaucoma: State of the Art from Neurophysiological Bases to Clinical Practice" Optics 5, no. 3: 353-363. https://doi.org/10.3390/opt5030026
APA StyleGranata, G., Delicati, S., & Falsini, B. (2024). Transorbital Alternating Current Stimulation in Glaucoma: State of the Art from Neurophysiological Bases to Clinical Practice. Optics, 5(3), 353-363. https://doi.org/10.3390/opt5030026