Dynamic Excitation of Surface Plasmon Polaritons with Vector Laguerre–Gaussian Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Fabrication, and Characterization of the Circular Bragg Grating
2.2. Leakage Radiation Microscopy
2.3. Vector Beams
3. Results and Discussion
3.1. Numerical Simulations and Vector Beams
3.2. Experimental Results with LRM, Incident Vector Beams
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPPs | Surface plasmon polaritons |
LG | Laguerre–Gauss |
VB | Vector beam |
SLM | Spatial light modulator |
LRM | Leakage radiation microscopy |
TM | Transverse magnetic |
EBL | Electron beam lithography |
PMMA | PolyMethyl MethAcrylate |
CCD | Charge-coupled device |
FDTD | Finite-difference time domain |
References
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 1988; Volume 111. [Google Scholar]
- Zia, R.; Schuller, J.A.; Chandran, A.; Brongersma, M.L. Plasmonics: The next chip-scale technology. Mater. Today 2006, 9, 20–27. [Google Scholar] [CrossRef]
- Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006, 311, 189. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturforschung A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Lévêque, G.; Martin, O.J.F. Optimization of finite diffraction gratings for the excitation of surface plasmons. J. Appl. Phys. 2006, 100, 124301. [Google Scholar] [CrossRef]
- de la Cruz, S.; Méndez, E.R.; Macías, D.; Salas-Montiel, R.; Adam, P.M. Compact surface structures for the efficient excitation of surface plasmon-polaritons. Phys. Status Solidi B 2012, 249, 1178–1187. [Google Scholar] [CrossRef]
- Salomon, L.; Bassou, G.; Aourag, H.; Dufour, J.P.; de Fornel, F.; Carcenac, F.; Zayats, A.V. Local excitation of surface plasmon polaritons at discontinuities of a metal film: Theoretical analysis and optical near-field measurements. Phys. Rev. B 2002, 65, 125409. [Google Scholar] [CrossRef]
- Yin, L.; Vlasko-Vlasov, V.K.; Pearson, J.; Hiller, J.M.; Hua, J.; Welp, U.; Brown, D.E.; Kimball, C.W. Subwavelength Focusing and Guiding of Surface Plasmons. Nano Lett. 2005, 5, 1399–1402. [Google Scholar] [CrossRef]
- Tellez-Limon, R.; Fevrier, M.; Apuzzo, A.; Salas-Montiel, R.; Blaize, S. Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires. Photon. Res. 2014, 2, 24–30. [Google Scholar] [CrossRef]
- Tellez-Limon, R.; Fevrier, M.; Apuzzo, A.; Salas-Montiel, R.; Blaize, S. Numerical analysis of tip-localized surface plasmon resonances in periodic arrays of gold nanowires with triangular cross section. J. Opt. Soc. Am. B 2017, 34, 2147–2154. [Google Scholar] [CrossRef]
- Tellez-Limon, R.; Blaize, S.; Gardillou, F.; Coello, V.; Salas-Montiel, R. Excitation of surface plasmon polaritons in a gold nanoslab on ion-exchanged waveguide technology. Appl. Opt. 2020, 59, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Hecht, B.; Bielefeldt, H.; Novotny, L.; Inouye, Y.; Pohl, D.W. Local Excitation, Scattering, and Interference of Surface Plasmons. Phys. Rev. Lett. 1996, 77, 1889–1892. [Google Scholar] [CrossRef] [PubMed]
- Janunts, N.A.; Baghdasaryan, K.S.; Nerkararyan, K.V.; Hecht, B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt. Commun. 2005, 253, 118–124. [Google Scholar] [CrossRef]
- Rui, G.; Zhan, Q. Tailoring optical complex fields with nano-metallic surfaces. Nanophotonics 2015, 4, 2–25. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Yuan, G.H.; Wang, Q.; Tan, P.S.; Lin, J.; Yuan, X.C. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam. Nanotechnology 2012, 23, 385204. [Google Scholar] [CrossRef]
- Wang, J. Data information transfer using complex optical fields: A review and perspective (Invited Paper). Chin. Opt. Lett. 2017, 15, 030005. [Google Scholar] [CrossRef]
- Maurer, C.; Jesacher, A.; Fürhapter, S.; Bernet, S.; Ritsch-Marte, M. Tailoring of arbitrary optical vector beams. New J. Phys. 2007, 9, 78. [Google Scholar] [CrossRef]
- Sancho-Parramon, J.; Bosch, S. Dark Modes and Fano Resonances in Plasmonic Clusters Excited by Cylindrical Vector Beams. ACS Nano 2012, 6, 8415–8423. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Bautista, G.; Turquet, L.; Setälä, T.; Kauranen, M.; Turunen, J. Efficient hybrid-mode excitation in plasmonic nanoantennas by tightly focused higher-order vector beams. J. Opt. Soc. Am. B 2021, 38, 521–529. [Google Scholar] [CrossRef]
- Chen, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination. Nano Lett. 2009, 9, 4320–4325. [Google Scholar] [CrossRef] [PubMed]
- Gómez, D.E.; Teo, Z.Q.; Altissimo, M.; Davis, T.J.; Earl, S.; Roberts, A. The Dark Side of Plasmonics. Nano Lett. 2013, 13, 3722–3728. [Google Scholar] [CrossRef]
- Tidwell, S.C.; Ford, D.H.; Kimura, W.D. Generating radially polarized beams interferometrically. Appl. Opt. 1990, 29, 2234–2239. [Google Scholar] [CrossRef]
- Serrano-Trujillo, A.; Palafox, L.E.; Ruiz-Cortés, V. Study of spatially inhomogeneous polarized beams in a differential interference imaging technique. Opt. Eng. 2020, 59, 014105. [Google Scholar] [CrossRef]
- Gorodetski, Y.; Shitrit, N.; Bretner, I.; Kleiner, V.; Hasman, E. Observation of Optical Spin Symmetry Breaking in Nanoapertures. Nano Lett. 2009, 9, 3016–3019. [Google Scholar] [CrossRef]
- Gjonaj, B.; Aulbach, J.; Johnson, P.M.; Mosk, A.P.; Kuipers, L.; Lagendijk, A. Active spatial control of plasmonic fields. Nat. Photonics 2011, 5, 360–363. [Google Scholar] [CrossRef]
- Genevet, P.; Lin, J.; Kats, M.A.; Capasso, F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun. 2012, 3, 1278. [Google Scholar] [CrossRef]
- Liu, A.P.; Xiong, X.; Ren, X.F.; Cai, Y.J.; Rui, G.H.; Zhan, Q.W.; Guo, G.C.; Guo, G.P. Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Sci. Rep. 2013, 3, 2402. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Wei, S.; Min, C.; Yuan, G.; Zhu, S.W.; Lei, T.; Yuan, X.C. Dynamic cosine-Gauss plasmonic beam through phase control. Opt. Express 2014, 22, 13541–13546. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Trujillo, A.; Palafox, L.E.; Ruiz-Cortés, V. Engineering of cylindrical vector fields with a twisted nematic spatial light modulator. Appl. Opt. 2017, 56, 1310–1316. [Google Scholar] [CrossRef]
- Drezet, A.; Hohenau, A.; Koller, D.; Stepanov, A.; Ditlbacher, H.; Steinberger, B.; Aussenegg, F.R.; Leitner, A.; Krenn, J.R. Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng. B 2008, 149, 220–229. [Google Scholar] [CrossRef]
- Mollet, O.; Cuche, A.; Drezet, A.; Huant, S. Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip. Diam. Relat. Mater. 2011, 20, 995–998. [Google Scholar] [CrossRef]
- Garcia-Ortiz, C.E.; Coello, V.; Han, Z.; Bozhevolnyi, S.I. Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles. Opt. Lett. 2013, 38, 905–907. [Google Scholar] [CrossRef]
- Garcia-Ortiz, C.E.; Cortes, R.; Gómez-Correa, J.E.; Pisano, E.; Fiutowski, J.; Garcia-Ortiz, D.A.; Ruiz-Cortes, V.; Rubahn, H.G.; Coello, V. Plasmonic metasurface Luneburg lens. Photonics Res. 2019, 7, 1112–1118. [Google Scholar] [CrossRef]
- Tovar, A.A. Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams. J. Opt. Soc. Am. A 1998, 15, 2705–2711. [Google Scholar] [CrossRef]
- Vyas, S.; Kozawa, Y.; Sato, S. Polarization singularities in superposition of vector beams. Opt. Express 2013, 21, 8972–8986. [Google Scholar] [CrossRef]
- Vyas, S.; Kozawa, Y.; Miyamoto, Y. Creation of polarization gradients from superposition of counter propagating vector LG beams. Opt. Express 2015, 23, 33970–33979. [Google Scholar] [CrossRef]
- Pinnell, J.; Nape, I.; Sephton, B.; Cox, M.A.; Rodríguez-Fajardo, V.; Forbes, A. Modal analysis of structured light with spatial light modulators: A practical tutorial. J. Opt. Soc. Am. A 2020, 37, C146–C160. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Simon, H.J.; Guha, J.K. Directional surface plasmon scattering from silver films. Opt. Commun. 1976, 18, 391–394. [Google Scholar] [CrossRef]
D1 | D2 | D3 | D4 |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Ramírez, A.; Zhai, T.; Salas-Montiel, R.; Ruiz-Cortés, V. Dynamic Excitation of Surface Plasmon Polaritons with Vector Laguerre–Gaussian Beams. Optics 2024, 5, 523-533. https://doi.org/10.3390/opt5040039
Peña-Ramírez A, Zhai T, Salas-Montiel R, Ruiz-Cortés V. Dynamic Excitation of Surface Plasmon Polaritons with Vector Laguerre–Gaussian Beams. Optics. 2024; 5(4):523-533. https://doi.org/10.3390/opt5040039
Chicago/Turabian StylePeña-Ramírez, Aldo, Tingting Zhai, Rafael Salas-Montiel, and Víctor Ruiz-Cortés. 2024. "Dynamic Excitation of Surface Plasmon Polaritons with Vector Laguerre–Gaussian Beams" Optics 5, no. 4: 523-533. https://doi.org/10.3390/opt5040039
APA StylePeña-Ramírez, A., Zhai, T., Salas-Montiel, R., & Ruiz-Cortés, V. (2024). Dynamic Excitation of Surface Plasmon Polaritons with Vector Laguerre–Gaussian Beams. Optics, 5(4), 523-533. https://doi.org/10.3390/opt5040039