Electric Field-Dependence of Double Layer Capacitances by Current-Controlled Charge-Discharge Steps
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sivaraman, P.; Thakur, A.; Kushwaha, R.K.; Ratna, D.; Samui, A. Poly (3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Electrochem. Solid-State Lett. 2006, 9, A435–A438. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, Z.H.; Li, J. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 2006, 16, 2141–2146. [Google Scholar] [CrossRef]
- Rani, J.R.; Thangavel, R.; Oh, S.-I.; Lee, Y.S.; Jang, J.-H. An ultra-high-energy density supercapacitor; fabrication based on thiol-functionalized graphene oxide scrolls. Nanomaterials 2019, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.R. Static space? charge effects in the diffuse double layer. J. Chem. Phys. 1954, 22, 1317–1322. [Google Scholar] [CrossRef]
- Sivaraman, P.; Mishra, S.P.; Potphode, D.D.; Thakur, A.P.; Shashidhara, K.; Samui, A.B.; Bhattacharyya, A.R. A supercapacitor based on longitudinal unzipping of multi-walled carbon nanotubes for high temperature application. RSC Adv. 2015, 5, 83546–83557. [Google Scholar] [CrossRef]
- Kotatha, D.; Hirata, M.; Ogino, M.; Uchida, S.; Ishikawa, M.; Furuike, T.; Tamura, H. Preparation and characterization of electrospun gelatin nanofibers for use as nonaqueous electrolyte in electric double-layer capacitor. J. Nanotechnol. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Uchaikin, V.V.; Ambrozevich, A.S.; Sibatov, R.T.; Ambrozevich, S.A.; Morozova, E.V. Memory and nonlinear transport effects in charging–discharging of a supercapacitor. Tech. Phys. 2016, 61, 250–259. [Google Scholar] [CrossRef]
- Lück, J.; Latz, A.; Lueck, J. Modeling of the electrochemical double layer and its impact on intercalation reactions. Phys. Chem. Chem. Phys. 2018, 20, 27804–27821. [Google Scholar] [CrossRef]
- Niu, J.; Pell, W.G.; Conway, B.E. Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material. J. Power Sources 2006, 156, 725–740. [Google Scholar] [CrossRef]
- Singh, A.; Chandra, A. Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci. Rep. 2015, 5, 15551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.; Solis, M.S.; Magasinski, A.; Fuertes, A.B.; Yushin, G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: A case study for pseudocapacitance detection. Energy Environ. Sci. 2013, 6, 2465. [Google Scholar] [CrossRef] [Green Version]
- Allagui, A.; Freeborn, T.J.; Elwakil, A.; Maundy, B.J. Reevaluation of performance of electric double-layer capacitors from constant-current charge/discharge and cyclic voltammetry. Sci. Rep. 2016, 6, 38568. [Google Scholar] [CrossRef] [PubMed]
- Estrada, M.; Ulloa, F.; Ávila, M.; Sanchez, J.; Cerdeira, A.; Castro-Carranza, A.; Iniguez, B.; Marsal, L.F.; Pallares, J. Frequency and voltage dependence of the capacitance of mis structures fabricated with polymeric materials. IEEE Trans. Electron Devices 2013, 60, 2057–2063. [Google Scholar] [CrossRef]
- Ang, C.; Yu, Z. DC electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model. Phys. Rev. B 2004, 69, 174109. [Google Scholar] [CrossRef] [Green Version]
- Khaldi, O.; Gonon, P.; Vallée, C.; Mannequin, C.; Kassmi, M.; Sylvestre, A.; Jomni, F. Differences between direct current and alternating current capacitance nonlinearities in high-k dielectrics and their relation to hopping conduction. J. Appl. Phys. 2014, 116, 84104. [Google Scholar] [CrossRef]
- Szewczyk, A.; Sikula, J.; Sedlakova, V.; Majzner, J.; Sedlák, P.; Kuparowitz, T. Voltage dependence of supercapacitor capacitance. Metrol. Meas. Syst. 2016, 23, 403–411. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, W.-J.; Wei, L.; Ding, S.-J. Voltage-dependent capacitance behavior and underlying mechanisms in metal-insulator-metal capacitors with Al2O3-ZrO2-SiO2 nano-laminates. J. Phys. D Appl. Phys. 2016, 49, 135106. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and its Applications. In Modern Aspects of Electrochemistry; Conway, B.E., Bockris, J.O., White, R.E., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; Volume 32, pp. 143–248. [Google Scholar]
- Nyikos, L.; Pajkossy, T. Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 1985, 30, 1533–1540. [Google Scholar] [CrossRef]
- Brug, G.; Eeden, A.V.D.; Sluyters-Rehbach, M.; Sluyters, J. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Zoltowski, P. On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem. 1998, 443, 149–154. [Google Scholar] [CrossRef]
- Hou, Y.; Aoki, K.J.; Chen, J.; Nishiumi, T. Invariance of double layer capacitance to polarized potential in halide solutions. Univers. J. Chem. 2013, 1, 162–169. [Google Scholar] [CrossRef]
- Wang, H.; Aoki, K.J.; Chen, J.; Nishiumi, T.; Zeng, X.; Ma, X. Power law for frequency-dependence of double layer capacitance of graphene flakes. J. Electroanal. Chem. 2015, 741, 114–119. [Google Scholar] [CrossRef]
- Hou, Y.; Aoki, K.J.; Chen, J.; Nishiumi, T. Solvent variables controlling electric double layer capacitance at the metal-solution interface. J. Phys. Chem. C 2014, 118, 10153–10158. [Google Scholar] [CrossRef]
- Zhao, X.; Aoki, K.J.; Chen, J.; Nishiumi, T. Examination of the Gouy-Chapman theory for double layer capacitance in deionized latex suspensions. RSC Adv. 2014, 4, 63171–63181. [Google Scholar] [CrossRef]
- Aoki, K.J. Molecular interaction model for frequency-dependence of double layer capacitors. Electrochim. Acta 2016, 188, 545–550. [Google Scholar] [CrossRef]
- Aoki, K.J.; Chen, J.; Wang, Z. Quantitative relation of the frequency dispersion of double layer capacitances to surface roughness. Adv. Nanosci. Nanotechnol. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, N. Supercapacitors performance evaluation. Adv. Energy Mater. 2014, 5, 1401401. [Google Scholar] [CrossRef] [Green Version]
- Heyd, D.V.; Harrington, D.A. Platinum oxide growth kinetics for cyclic voltammetry. J. Electroanal. Chem. 1992, 335, 19–31. [Google Scholar] [CrossRef]
- Aoki, K.J.; Chen, J.; He, R. Potential step for double-layer capacitances obeying the power law. ACS Omega 2020, 5, 7497–7502. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.; Aoki, K.J.; Chen, J. Electric Field-Dependence of Double Layer Capacitances by Current-Controlled Charge-Discharge Steps. Electrochem 2020, 1, 217-225. https://doi.org/10.3390/electrochem1020015
He R, Aoki KJ, Chen J. Electric Field-Dependence of Double Layer Capacitances by Current-Controlled Charge-Discharge Steps. Electrochem. 2020; 1(2):217-225. https://doi.org/10.3390/electrochem1020015
Chicago/Turabian StyleHe, Ridong, Koichi Jeremiah Aoki, and Jingyuan Chen. 2020. "Electric Field-Dependence of Double Layer Capacitances by Current-Controlled Charge-Discharge Steps" Electrochem 1, no. 2: 217-225. https://doi.org/10.3390/electrochem1020015
APA StyleHe, R., Aoki, K. J., & Chen, J. (2020). Electric Field-Dependence of Double Layer Capacitances by Current-Controlled Charge-Discharge Steps. Electrochem, 1(2), 217-225. https://doi.org/10.3390/electrochem1020015