Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments Used
2.2. Extraction of Alkaloids from Coriaria nepalensis Stem
2.3. Preparation of MS Specimen
2.4. Preparation of Inhibitor Solution
2.5. Weight Loss Measurement Method
2.6. Electrochemical Measurement
3. Results
3.1. CNSA Characterization
3.1.1. Test of Alkaloids
3.1.2. FTIR Spectroscopic Measurement
3.1.3. UV Spectroscopic Measurement
3.2. Weight Loss Measurement
3.2.1. Effect of Immersion Time
3.2.2. Effect of CNSA Concentration
3.2.3. Adsorption Isotherm
3.3. Electrochemical Measurement
Polarization Curves
4. Discussion and Mechanism of Corrosion Inhibition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, J.R. Corrosion: Understanding the Basics; Asm International: Almere, The Netherlands, 2000; ISBN 1-61503-068-9. [Google Scholar]
- Yaro, A.S.; Khadom, A.A.; Wael, R.K. Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid. Alex. Eng. J. 2013, 52, 129–135. [Google Scholar] [CrossRef] [Green Version]
- El-Lateef, H.M.A.; Abo-Riya, M.A.; Tantawy, A.H. Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic gemini surfactants on carbon steel pipelines in acid pickling processes. Corros. Sci. 2016, 108, 94–110. [Google Scholar] [CrossRef]
- Oguzie, E. Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros. Sci. 2007, 49, 1527–1539. [Google Scholar] [CrossRef]
- Chapagain, A.; Acharya, D.; Das, A.K.; Chhetri, K.; Oli, H.B.; Yadav, A.P. Alkaloid of Rhynchostylis retusa as Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem 2022, 3, 211–224. [Google Scholar] [CrossRef]
- Dhakal, K.; Bohora, D.; Bista, B.; Oli, H.; Singh, S.; Bhattarai, D.; Karki, N.; Yadav, A. Alkaloids extract of Alnus nepalensis bark as a green inhibitor for mild steel corrosion in 1 M H2SO4 solution. J. Nepal Chem. Soc. 2022, 43, 76–92. [Google Scholar] [CrossRef]
- Singh, W.P.; Bockris, J. Toxicity Issues of Organic Corrosion Inhibitors: Applications of QSAR Model. In CORROSION 96; OnePetro: Richardson, TX, USA, 1996. [Google Scholar]
- Stupnišek-Lisac, E.; Bozic, A.L.; Cafuk, I. Low-Toxicity Copper Corrosion Inhibitors. Corrosion 1998, 54, 713–720. [Google Scholar] [CrossRef]
- Rani, B.E.A.; Basu, B.B.J. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. Int. J. Corros. 2012, 2012, 380217. [Google Scholar] [CrossRef]
- Asipita, S.A.; Ismail, M.; Majid, M.Z.A.; Majid, Z.A.; Abdullah, C.; Mirza, J. Green Bambusa Arundinacea leaves extract as a sustainable corrosion inhibitor in steel reinforced concrete. J. Clean. Prod. 2014, 67, 139–146. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [Google Scholar] [CrossRef]
- Sexena, A.; Prasad, D.; Haldhar, R. Use of Butea monosperma Extracts as Green Corrosion Inhibitor for Mild Steel in 0.5 MH2SO4. Int. J. of Electrochem. Sci. 2017, 12, 8793–8805. [Google Scholar] [CrossRef]
- Kamal, C.; Sethuraman, M. Caulerpin—A bis-Indole Alkaloid As a Green Inhibitor for the Corrosion of Mild Steel in 1 M HCl Solution from the Marine Alga Caulerpa racemosa. Ind. Eng. Chem. Res. 2012, 51, 10399–10407. [Google Scholar] [CrossRef]
- Raja, P.B.; Fadaeinasab, M.; Qureshi, A.K.; Rahim, A.A.; Osman, H.; Litaudon, M.; Awang, K. Evaluation of Green Corrosion Inhibition by Alkaloid Extracts of Ochrosia oppositifolia and Isoreserpiline against Mild Steel in 1 M HCl Medium. Ind. Eng. Chem. Res. 2013, 52, 10582–10593. [Google Scholar] [CrossRef]
- Raja, P.B.; Qureshi, A.K.; Rahim, A.A.; Osman, H.; Awang, K. Neolamarckia cadamba alkaloids as eco-friendly corrosion inhibitors for mild steel in 1M HCl media. Corros. Sci. 2013, 69, 292–301. [Google Scholar] [CrossRef]
- Ikeuba, A.; Okafor, P.; Ekpe, U.; Ebenso, E.E. Alkaloid and Non-Alkaloid Ethanolic Extracts from Seeds of Garcinia kola as Green Corrosion Inhibitors of Mild Steel in H2SO4 Solution. Int. J. Electrochem. Sci. 2013, 8, 7455–7467. [Google Scholar]
- Ugi, B.U. Alkaloid and Non Alkaloid Extracts of Solanum melongena Leaves as Green Corrosion Inhibitors on Carbon Steel in Alkaline Medium. Fountain J. Nat. Appl. Sci. 2014, 3. [Google Scholar] [CrossRef]
- Faustin, M.; Maciuk, A.; Salvin, P.; Roos, C.; Lebrini, M. Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies. Corros. Sci. 2015, 92, 287–300. [Google Scholar] [CrossRef]
- Ngouné, B.; Pengou, M.; Nouteza, A.M.; Nanseu-Njiki, C.P.; Ngameni, E. Performances of Alkaloid Extract from Rauvolfia macrophylla Stapf toward Corrosion Inhibition of C38 Steel in Acidic Media. ACS Omega 2019, 4, 9081–9091. [Google Scholar] [CrossRef] [Green Version]
- Sadik, K.; Hamdani, N.E.; Hachim, M.; Byadi, S.; Bahadur, I.; Aboulmouhajir, A. Towards a Theoretical Understanding of Alkaloid-Extract Cytisine Derivatives of Retama monosperma (L.) Boiss. Seeds, as Eco-Friendly Inhibitor for Carbon Steel Corrosion in Acidic 1M HCl Solution. J. Theor. Comput. Chem. 2020, 19, 2050013. [Google Scholar] [CrossRef]
- Parajuli, D.; Sharma, S.; Oli, H.B.; Bohara, D.S.; Bhattarai, D.P.; Tiwari, A.P.; Yadav, A.P. Comparative Study of Corrosion Inhibition Efficacy of Alkaloid Extract of Artemesia vulgaris and Solanum tuberosum in Mild Steel Samples in 1 M Sulphuric Acid. Electrochem 2022, 3, 416–433. [Google Scholar] [CrossRef]
- Lebrini, M.; Robert, F.; Roos, C. Inhibition Effect of Alkaloids Extract from Annona Squamosa Plant on the Corrosion of C38 Steel in Normal Hydrochloric Acid Medium. Int. J. Electrochem. Sci. 2010, 5, 1698–1712. [Google Scholar]
- Lebrini, M.; Robert, F.; Roos, C. Alkaloids Extract from Palicourea guianensis Plant as Corrosion Inhibitor for C38 Steel in 1 M Hydrochloric Acid Medium. Int. J. Electrochem. Sci. 2011, 6, 847–859. [Google Scholar]
- Lecante, A.; Robert, F.; Blandinières, P.; Roos, C. Anti-corrosive properties of S. tinctoria and G. ouregou alkaloid extracts on low carbon steel. Curr. Appl. Phys. 2011, 11, 714–724. [Google Scholar] [CrossRef]
- Karki, R.; Bajgai, A.K.; Khadka, N.; Thapa, O.; Mukhiya, T.; Oli, H.B.; Bhattarai, D.P. Acacia catechu Bark Alkaloids as Novel Green Inhibitors for Mild Steel Corrosion in a One Molar Sulphuric Acid Solution. Electrochem 2022, 3, 668–687. [Google Scholar] [CrossRef]
- Hanini, K.; Benahmed, M.; Boudiba, S.; Selatnia, I.; Akkal, S.; Laouer, H. Experimental and Theoretical Studies of Taxus Baccata Alkaloid Extract as Eco-Friendly Anticorrosion for Carbon Steel in Acidic Solution. Prot. Met. Phys. Chem. Surfaces 2021, 57, 222–233. [Google Scholar] [CrossRef]
- Raja, P.B.; Qureshi, A.K.; Rahim, A.A.; Awang, K.; Mukhtar, M.R.; Osman, H. Indole Alkaloids of Alstonia angustifolia var. latifolia as Green Inhibitor for Mild Steel Corrosion in 1 M HCl Media. J. Mater. Eng. Perform. 2013, 22, 1072–1078. [Google Scholar] [CrossRef]
- Guo, L.; Qiang, T.; Ma, Y.; Wang, K.; Du, K. Optimisation of tannin extraction from Coriaria nepalensis bark as a renewable resource for use in tanning. Ind. Crop. Prod. 2020, 149, 112360. [Google Scholar] [CrossRef]
- Kumar, P.; Bhatt, R.; Singh, L.; Sati, O.; Khan, A.; Ahmad, A. Antimicrobial activities of essential oil and methanol extract of Coriaria nepalensis. Nat. Prod. Res. 2011, 25, 1074–1081. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Ma, S.; Yu, D.; Yu, S. New compounds from the roots of Coriaria nepalensis. Chin. Chem. Lett. 2018, 29, 467–470. [Google Scholar] [CrossRef]
- Wei, H.; Zeng, F.; Lu, M.; Tang, R. Studies on chemical constituents from the root of Coriaria nepalensis wall (Coriaria sinica Maxim). Yao Xue Xue Bao Acta Pharm. Sin. 1998, 33, 688–692. [Google Scholar]
- Silverstein, R.M.; Bassler, G.C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Sharma, Y.R. Elementary Organic Spectroscopy; S. Chand Publishing: New Delhi, India, 2007; ISBN 81-219-2884-2. [Google Scholar]
- Andoor, P.A.; Okeoma, K.B.; Mbamara, U.S. Adsorption and Thermodynamic Studies of the Corrosion Inhibition Effect of Rosmarinus Officinalis L. Leaves on Aluminium Alloy in 0.25 M HCl and Effect of an External Magnetic Field. Int. J. Phys. Sci. 2021, 16, 79–95. [Google Scholar]
- Karki, N.; Choudhary, Y.; Yadav, A.P. Thermodynamic, Adsorption and Corrosion Inhibition Studies of Mild Steel by Artemisia vulgaris Extract from Methanol as Green Corrosion Inhibitor in Acid Medium. J. Nepal Chem. Soc. 2018, 39, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Oli, H.B.; Parajuli, D.L.; Sharma, S.; Chapagain, A.; Yadav, A.P. Adsorption Isotherm and Activation Energy of Inhibition of Alkaloids on Mild Steel Surface in Acidic Medium. Amrit Res. J. 2021, 2, 59–67. [Google Scholar] [CrossRef]
- Karki, N.; Neupane, S.; Gupta, D.K.; Das, A.K.; Singh, S.; Koju, G.M.; Chaudhary, Y.; Yadav, A.P. Berberine isolated from Mahonia nepalensis as an eco-friendly and thermally stable corrosion inhibitor for mild steel in acid medium. Arab. J. Chem. 2021, 14, 103423. [Google Scholar] [CrossRef]
- Karki, N.; Neupane, S.; Chaudhary, Y.; Gupta, D.; Yadav, A. Equisetum Hyemale: A New Candidate for Green Corrosion Inhibitor Family. Int. J. Corros. Scale Inhib. 2021, 10, 206–227. [Google Scholar]
- Karthik, R.; Muthukrishnan, P.; Chen, S.-M.; Jeyaprabha, B.; Prakash, P. Anti-Corrosion Inhibition of Mild Steel in 1M Hydrochloric Acid Solution by Using Tiliacora accuminata Leaves Extract. Int. J. Electrochem. Sci. 2015, 10, 3707–3725. [Google Scholar]
- Chkirate, K.; Azgaou, K.; Elmsellem, H.; El Ibrahimi, B.; Sebbar, N.K.; Anouar, E.H.; Benmessaoud, M.; El Hajjaji, S.; Essassi, E.M. Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl)methyl]benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. J. Mol. Liq. 2021, 321, 114750. [Google Scholar] [CrossRef]
- Tan, B.; Zhang, S.; He, J.; Li, W.; Qiang, Y.; Wang, Q.; Xu, C.; Chen, S. Insight into anti-corrosion mechanism of tetrazole derivatives for X80 steel in 0.5 M H2SO4 medium: Combined experimental and theoretical researches. J. Mol. Liq. 2021, 321, 114464. [Google Scholar] [CrossRef]
- Fekkar, G.; Yousfi, F.; Elmsellem, H.; Aiboudi, M.; Ramdani, M.; Abdel-Rahman, I.; Hammouti, B.; Bouyazza, L. Eco-Friendly Chamaerops Humilis L. Fruit Extract Corrosion Inhibitor for Mild Steel in 1 M HCl. Int. J. Corros. Scale Inhib. 2020, 9, 446–459. [Google Scholar]
- Hafez, B.; Mokhtari, M.; Elmsellem, H.; Steli, H. Environmentally Friendly Inhibitor of the Corrosion of Mild Steel: Commercial Oil of Eucalyptus. Int. J. Corros. Scale Inhib. 2019, 8, 573–585. [Google Scholar]
S.N. | Plant Name | Metal | Medium | Method | I.E. (%) | Conc. | Reference |
---|---|---|---|---|---|---|---|
1. | Caulerpa racemose | MS | 1 M HCl | Weight loss | 83 | 100 ppm | [13] |
Polarization | 80 | 25 ppm | |||||
EIS | 85 | 25 ppm | |||||
2. | Ochrosia oppositifolia/Bark & leaves | MS | 1 M HCl | Polarization | 94 | 20–25 ppm | [14] |
EIS | 89–90 | 25 ppm | |||||
3. | Neolamarckia cadamba/Bark & leaves | MS | 1 M HCl | Polarization | 89 | 5 ppm | [15] |
EIS | 83 | ||||||
4. | Garcinia kola/Seed | MS | 5 M H2SO4 | Weight loss | 98.8 | 10 g/L | [16] |
Hydrogen evolution | 99.4 | ||||||
5. | Solanum melongena/Leaves | Carbon steel | Na2CO3 | Weight loss | 81.1 | 3 g/L | [17] |
6. | Geisso spermum leave | C38 steel | 1 M HCl | Polarization | 92 | 100 ppm | [18] |
7. | Rauvolfia macrophylla/Bark | C38 steel | 1 M HCl & 0.5 M H2SO4 | EIS | 97, 93 | 200 ppm | [19] |
Polarization | 92, 93 | ||||||
8. | Retama monosperma/Seed | Carbon steel | 1 M HCl | Electrochemical | 94.42 | 400 ppm | [20] |
9. | Rychnostilus retusa/Rhizome | MS | 1 M H2SO4 | Weight loss | 87.51 | 1000 ppm | [5] |
Polarization | 93.24 | ||||||
10. | Artemisia vulragis/Stem | MS | 1 M H2SO4 | Weight loss | 92.58 | 1000 ppm | [21] |
Polarization | 88.06 | ||||||
Solanum tubersum/Stem | MS | 1 M H2SO4 | Weight loss | 90.79 | |||
Polarization | 83.22 | ||||||
11. | Alnus nepalensis/Bark | MS | 1 M H2SO4 | Weight loss | 71.94 | 1000 ppm | [6] |
Polarization | 78.48 | ||||||
12. | Annona Squamosa/Leaves & seed | C38 | 1 M HCl | Polarization | 84 | 100 ppm | [22] |
EIS | 92 | ||||||
13. | Palicourea guianensis/Leaves | C38 | 1 M HCl | Polarization | 88 | 100 ppm | [23] |
EIS | 89 | ||||||
14. | Guatteria ouregou/leaves | C38 | 0.1 M HCl | Polarization | 88 | 250 ppm | [24] |
EIS | 92 | ||||||
Simira tinctoria/Bark | C38 | 0.1 M HCl | Polarization | 90 | |||
EIS | 92 | ||||||
15. | Acacia catechu/Bark | Mild Steel | 1 M H2SO4 | Weight loss Polarization | 93.96 98.54 | 1000 ppm | [25] |
16. | Taxus buccata/Areal | Carbon Steel | 1 M HCl | Weight loss Polarization EIS | 83.85 84.49 86.12 | 200 ppm | [26] |
17. | Alstonica angustifolia var. latfolia/leaves | Mild Steel | 1 M HCl | Polarization EIS | 84 88 | 5 mg/L | [27] |
S.N. | Experiment | Observations | Result |
---|---|---|---|
1. | Mayer’s Test | The appearance of the orange precipitate. | Positive |
2. | Dragendroff ’s Test | The appearance of orange-red color. | Positive |
Medium | OCP (V) | Anodic Slope (V/decade) | Cathodic Slope (V/decade) | Icorr (mA/cm2) | I. E. (%) |
---|---|---|---|---|---|
Acid | −0.529 | 0.00533 | −0.147 | 0.0205 | - |
200 ppm | −0.514 | 0.00185 | −0.1325 | 0.0079 | 65.29 |
400 ppm | −0.525 | 0.00138 | −0.1484 | 0.0057 | 74.11 |
600 ppm | −0.496 | 0.00106 | −0.2153 | 0.0017 | 80.11 |
800 ppm | −0.494 | 0.00079 | −0.2080 | 0.0009 | 85.18 |
1000 ppm | −0.500 | 0.00067 | −0.2046 | 0.0003 | 87.43 |
Medium | OCP (V) | Anodic Slope (V/decade) | Cathodic Slope (V/decade) | Icorr (mA/cm2) | I.E. (%) |
---|---|---|---|---|---|
Acid | −0.526 | 0.0761 | −0.1416 | 0.01246 | - |
200 ppm | −0.515 | 0.0558 | −0.1646 | 0.00268 | 78.49 |
400 ppm | −0.528 | 0.0621 | −0.2023 | 0.00098 | 92.13 |
600 ppm | −0.505 | 0.0624 | −0.2167 | 0.00086 | 93.10 |
800 ppm | −0.505 | 0.0617 | −0.1958 | 0.00068 | 94.54 |
1000 ppm | −0.500 | 0.0551 | −0.1944 | 0.00037 | 97.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oli, H.B.; Thapa Magar, J.; Khadka, N.; Subedee, A.; Bhattarai, D.P.; Pant, B. Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem 2022, 3, 713-727. https://doi.org/10.3390/electrochem3040047
Oli HB, Thapa Magar J, Khadka N, Subedee A, Bhattarai DP, Pant B. Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem. 2022; 3(4):713-727. https://doi.org/10.3390/electrochem3040047
Chicago/Turabian StyleOli, Hari Bhakta, Jamuna Thapa Magar, Nawaraj Khadka, Anup Subedee, Deval Prasad Bhattarai, and Bishweshwar Pant. 2022. "Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution" Electrochem 3, no. 4: 713-727. https://doi.org/10.3390/electrochem3040047
APA StyleOli, H. B., Thapa Magar, J., Khadka, N., Subedee, A., Bhattarai, D. P., & Pant, B. (2022). Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem, 3(4), 713-727. https://doi.org/10.3390/electrochem3040047