Recent Progression and Opportunities of Polysaccharide Assisted Bio-Electrolyte Membranes for Rechargeable Charge Storage and Conversion Devices
Abstract
:1. Introduction
2. Ion Transport Mechanisms in the Polymer Electrolytes
- 1.
- Arrhenius relationship
- 2.
- Vogel–Tamman–Fulchar model
3. Challenges Faced by All Solid-State Electrical Systems
4. Ion-Conducting Biopolymer Systems
4.1. Pectin-Based Biopolymer Electrolytes
4.2. Carrageenan-Based Ion-Conducting Electrolytes
4.3. Tamarind Seed Polysaccharide-Based Electrolyte Membranes
4.4. Cellulose Acetate-Based Electrolytes
4.5. Starch and Their Derivatives-Based Ion Conducting Electrolytes
5. Recent Progress in the Biopolymer-Inspired Electrochemical Devices
5.1. Solid-State Polymer Batteries
5.2. Supercapacitors
5.3. Dye-Sensitized Solar Cell
5.4. Fuel Cell Operations
6. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OCP | Open Circuit Potential |
Alutaraldehyde | GA |
MIBs | Magnesium Ion Batteries |
DMFC | Direct Methanol Fuel Cell |
EDLC | Electric Double Layer Capacitor |
GCD | Galvanostatic Charging Discharging |
IEC | Ionic Exchange Capacity |
OCV | Open Circuit Voltage |
TSP | Tamarind Seed Polysaccharide |
Tg | Glass Transition Temperature |
DSSC | Dye-Sensitized Solar Cell |
Ea | Activation Energy |
EC | Ethylene Carbonate |
Mg | Magnesium |
i-C | Iota-Carrageenan |
K-C | Kappa-Carrageenan |
CMC | Carboxymethyl Carrageenan |
BmImCl | 1-butyl-3-methylimidazolium chloride |
SN | Succinonitrile |
CA | Cellulose Acetate |
References
- Wang, C.; Wallace, G.G. Flexible electrodes and electrolytes for energy storage. Electrochim. Acta 2015, 175, 87. [Google Scholar] [CrossRef]
- Alipoori, S.; Mazinani, S.; Aboutalebi, S.M.; Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storag. 2020, 27, 101072. [Google Scholar] [CrossRef]
- Perumal, P.; Christopher Selvin, P.; Selvasekarapandian, S.; Sivaraj, P.; Abhilash, K.P.; Moniha, V.; Manjula Devi, R. Plasticizer incorporated, novel eco-friendly bio-polymer based solid bio-membrane for electrochemical clean energy applications. Polym. Degrad. Stab. 2019, 159, 43. [Google Scholar] [CrossRef]
- Guo, T.; Song, J.; Jin, Y.; Sun, Z.; Li, L. Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohyd. Polym. 2019, 206, 801. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497. [Google Scholar] [CrossRef]
- Tan, S.; Zeng, X.; Ma, Q.; Wu, X.; Guo, Y. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 2018, 1, 113. [Google Scholar] [CrossRef]
- Kim, J.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Moon Choi, J.; Chung, H.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; Gong, Y.; Wilkinsone, D.P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363. [Google Scholar] [CrossRef]
- Dell, R.M. Batteries: Fifty years of materials development. Solid State Ion. 2000, 134, 139. [Google Scholar] [CrossRef]
- Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storag. Mater. 2016, 5, 139. [Google Scholar] [CrossRef]
- Fenton, D.E.; Parker, J.M.; Wright, P.V. Complexes of Alkali Metal Ions with Poly (etylene oxide). Polymer 1973, 14, 589. [Google Scholar] [CrossRef]
- Jabbour, L.; Bongiovanni, R.; Chaussy, D.; Gerbaldi, C.; Beneventi, D. Cellulose-based Li-ion batteries: A review. Cellulose 2013, 20, 1523. [Google Scholar] [CrossRef]
- Singh, R.; Polu, A.R.; Bhattacharya, B.; Rhee, H.; Varlikli, C.; Singh, P.K. Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew. Sust. Energ. Rev. 2016, 65, 1098. [Google Scholar] [CrossRef]
- Sequeira, C.; Santo, D. Polymer electrolytes Fundamentals and Applications; Woodhead Publishing Limited: Sawston, UK, 2010. [Google Scholar]
- Mohanty, A.K.; Misra, M.; Drazel, L.T. Natural Fibers, Biopolymers & Biocomposites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ngai, K.; Ramesh, S.; Ramesh, K.; Juan, J. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259. [Google Scholar] [CrossRef]
- Mobarak, N.N.; Ramli, N.; Ahmad, A.; Rahman, M. Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ion. 2012, 224, 51. [Google Scholar] [CrossRef]
- Shamsudin, I.J.; Ahmad, A.; Hassan, N.H.; Kaddami, H. Biopolymer electrolytes based on carboxymethyl ҡ-carrageenan and imidazolium ionic liquid. Ionics 2016, 22, 841. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038. [Google Scholar] [CrossRef]
- Hou, W.; Chen, C.; Wang, C.; Huang, Y. The effect of different lithium salts on conductivity of comb-like polymer electrolyte with chelating functional group. Electrochim. Acta. 2003, 48, 679. [Google Scholar] [CrossRef]
- Aziz, S.B.; Woo, T.J.; Kadir, M.F.Z.; Ahmed, H.M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Dev. 2018, 3, 1. [Google Scholar] [CrossRef]
- Ratner, M.A.; Johansson, P.; Shriver, D.F. Polymer electrolytes: Ionic transport mechanisms and relaxation coupling. MRS Bull. 2000, 25, 31. [Google Scholar] [CrossRef]
- Ratner, M.A.; MacCallum, I.J.R.; Vincent, C.A. Polymer Electrolytes Reviews; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Willaims, M.L.; Landel, R.F.; Ferry, J.D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 1955, 77, 3701. [Google Scholar] [CrossRef]
- Ding, L.M.; Shi, J.; Yang, C.Z. Ion-conducting polymers based on modified alternating maleic anhydride copolymer with oligo (oxyethylene) side chains. Synth. Met. 1997, 87, 157. [Google Scholar] [CrossRef]
- Adams, G.; Gibbs, J.H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 43, 139. [Google Scholar] [CrossRef]
- Shriver, D.F.; Dupon, R.; Stainer, M. Mechanism of ion conduction in alkali metal-polymer complexes. J. Power Sources 1983, 9, 383. [Google Scholar] [CrossRef]
- Druger, S.D.; Ratner, M.A.; Nitzan, A. Generalized hopping model for frequency-dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes. Phys. Rev. B 1985, 31, 3939. [Google Scholar] [CrossRef]
- Druger, S.D.; Ratner, M.A.; Nitzan, A. Applications of dynamic bond percolation theory to the dielectric response of polymer electrolytes. Solid State Ion. 1986, 18, 106. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.; Handa, A.K. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47. [Google Scholar] [CrossRef]
- Okenfull, D.G. The Chemistry of High Methoxyl Pectins in the Chemistry and Technology of Pectin; Walter, R.H., Ed.; Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Andrade, J.; Raphael, E.; Pawlicka, A. Plasticized pectin-based gel electrolytes. Electrochim. Acta 2009, 54, 6479. [Google Scholar] [CrossRef]
- Perumal, P.; Christopher Selvin, P.; Selvasekarapandian, S. Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics 2018, 24, 3259. [Google Scholar] [CrossRef]
- Perumal, P.; Selvasekarapandian, S.; Abhilash, K.P.; Sivaraj, P.; Hemalatha, R.; Christopher Selvin, P. Impact of lithium chlorate salts on structural and electrical properties of natural polymer electrolytes for all solid state lithium polymer batteries. Vacuum 2019, 159, 277. [Google Scholar] [CrossRef]
- Mishra, R.K.; Anis, A.; Mondal, S.; Dutta, M.; Banthia, A.K. Chin. Reparation and characterization of amidated pectin based polymer electrolyte membranes. J. Polym. Sci. 2009, 27, 639. [Google Scholar]
- Muthukrishnan, M.; Shanthi, C.; Selvasekarapandian, S.; Manjuladevi, R.; Perumal, P.; Chrishtopher Selvin, P. Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications. Ionics 2019, 25, 203. [Google Scholar] [CrossRef]
- Kiruthika, S.; Malathi, M.; Selvasekarapandian, S.; Tamilarasan, K.; Moniha, V.; Manjuladevi, R. Eco-friendly biopolymer electrolyte, pectin with magnesium nitrate salt, for application in electrochemical devices. J. Solid State Electrochem. 2019, 23, 2181. [Google Scholar] [CrossRef]
- Kiruthika, S.; Malathi, M.; Selvasekarapandian, S.; Tamilarasan, K.; Maheshwari, T. Conducting biopolymer electrolyte based on pectin with magnesium chloride salt for magnesium battery application. Polym. Bull. 2019, 77, 6299. [Google Scholar] [CrossRef]
- Perumal, P.; Christopher Selvin, P.; Selvasekarapandian, S.; Abhilash, K.P. Bio-host pectin complexed with dilithium borate based solid electrolytes for polymer batteries. Mater. Res. Exp. 2019, 6, 115513. [Google Scholar] [CrossRef]
- Manjuladevi, R.; Christopher Selvin, P.; Selvasekarapandian, S.; Shilpa, R.; Moniha, V. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate. AIP Conf. Proc. 2018, 1942, 140075. [Google Scholar]
- Vijaya, N.; Selvasekarapandian, S.; Sornalatha, M.; Sujithra, K.S.; Monisha, S. Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X = Cl, Br). Ionics 2016, 23, 2799. [Google Scholar] [CrossRef]
- Pasini Cabello, S.D.; Ochoa, N.D.; Takara, E.A.; Molla, S.; Compan, V. Influence of Pectin as a green polymer electrolyte on the transport properties of Chitosan-Pectin membranes. Carbohyd. Polym. 2017, 157, 1759. [Google Scholar] [CrossRef]
- Leones, R.; Botelho, M.B.S.; Sentanin, F.; Cesarino, I.; Pawlicka, A.; Camargo, A.S.S.; Silva, M.M. Pectin-based polymer electrolytes with Ir (III) complexes. Mol. Cryst. Liq. Cryst. 2014, 604, 117. [Google Scholar] [CrossRef]
- Masao, K.; Takayuki, H.; Yuuki, K.; Hirohito, U. Solid type dye-sensitized solar cell using polysaccharide containing redox electrolyte solution. J. Electroanal. Chem. 2004, 572, 21. [Google Scholar]
- Liang, L.; Ang, R.N.S.; Mao, S. Carrageenan and its applications in drug delivery. Carbohyd. Polym. 2014, 103, 1. [Google Scholar]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohyd. Polym. 2009, 77, 167. [Google Scholar] [CrossRef]
- Zainuddin, N.K.; Rasali, N.M.J.; Mazuki, N.F.; Saadiah, M.A.; Samsudin, A.S. Investigation on favourable ionic conduction based on CMC-K carrageenan proton conducting hybrid solid bio-polymer electrolytes for applications in EDLC. Int. J. Hydrogen Energy 2020, 45, 8727. [Google Scholar] [CrossRef]
- Christopher Selvin, P.; Perumal, P.; Selvasekarapandian, S.; Monisha, S.; Boopathi, G.; Leena Chandra, M.V. Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 2018, 24, 3535. [Google Scholar] [CrossRef]
- Mobarak, N.N.; Jumaah, F.N.; Ghani, M.A.; Abdullah, A.; Ahmad, M.P. Carboxymethyl carrageenan based biopolymer electrolytes. Electrochim. Acta 2015, 175, 224. [Google Scholar] [CrossRef]
- Arockia Mary, I.; Selvanayagam, S.; Selvasekarapandian, S.; Srikumar, S.R.; Ponraj, T.; Moniha, V. Lithium ion conducting membrane based on K-carrageenan complexed with lithium bromide and its electrochemical applications. Ionics 2019, 25, 5839. [Google Scholar] [CrossRef]
- Zainuddin, N.K.; Samsudin, A.S. Investigation on the effect of NH4Br at transport properties in k–carrageenan based biopolymer electrolytes via structural and electrical analysis. Mater. Today Commun. 2018, 14, 199. [Google Scholar] [CrossRef]
- Chitra, R.; Sathya, P.; Selvasekarapandian, S.; Monisha, S.; Moniha, V.; Meyvel, S. Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 2019, 25, 2147. [Google Scholar] [CrossRef]
- Chitra, R.; Sathya, P.; Selvasekarapandian, S.; Meyvel, S. Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym. Bull. 2020, 77, 1555. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Selvasekarapandian, S.; Premalatha, M.; Monisha, S.; Boopathi, G.; Aristatil, G.; Arun, A.; Madeswaran, S. Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 2017, 23, 2775. [Google Scholar] [CrossRef]
- Moniha, V.; Alagar, M.; Selvasekarapandian, S.; Sundaresan, B.; Boopathi, G. Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J. Non Cryst. Solids 2018, 481, 424. [Google Scholar] [CrossRef]
- Moniha, V.; Alagar, M.; Selvasekarapandian, S.; Sundaresan, B.; Hemalatha, R.; Boopathi, G. Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J. Solid State Electrochem. 2018, 22, 3209. [Google Scholar] [CrossRef]
- Shanmuga Priya, S.; Karthika, M.; Selvasekarapandian, S.; Manjuladevi, R. Preparation and characterization of polymer electrolyte based on biopolymer I-Carrageenan with magnesium nitrate. Solid State Ion. 2018, 327, 136. [Google Scholar] [CrossRef]
- Shanmuga Priya, S.; Karthika, M.; Selvasekarapandian, S.; Manjuladevi, R.; Monisha, S. Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 2018, 24, 3861. [Google Scholar] [CrossRef]
- Torres, F.G.; Arroyo, J.; Alvarez, R.; Rodriguez, S.; Troncoso, O.; Lopez, D. Carboxymethyl κ/ι-hybrid carrageenan doped with NH4I as a template for solid bio-electrolytes development. Mater. Chem. Phys. 2019, 223, 659. [Google Scholar] [CrossRef]
- Gidley, M.J.; Lillford, P.J.; Rowlands, D.W.; Lang, P.; Dentini, M.; Crescenzi, V. Structure and solution properties of tamarind-seed polysaccharide. Carbohyd. Res. 1991, 214, 299. [Google Scholar] [CrossRef]
- Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Monisha, S.; Vinotpandi, D.; Selvalakshmi, S. Investigations on proton conducting biopolymer membranes based on tamarind seed polysaccharide incorporated with ammonium thiocyanate. J. Non-Cryst. Solids 2016, 453, 131. [Google Scholar] [CrossRef]
- Sharma, M.; Mondal, D.; Mukesh, C.; Prasad, K. Preparation of tamarind gum based soft ion gels having thixotropic properties. Carbohyd. Polym. 2014, 102, 467. [Google Scholar] [CrossRef]
- Van, F.; Lourenco, N.D.; Pinheiro, H.M.; Bakkerd, M. Carrageenan: A food-grade and biocompatible support for immobilisation techniques. Adv. Synth. Catal. 2002, 344, 815. [Google Scholar]
- Sampath Kumar, L.; Christopher Selvin, P.; Selvasekarapandian, S.; Manjuladevi, R.; Monisha, S.; Perumal, P. Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery. Ionics 2018, 24, 3793. [Google Scholar] [CrossRef]
- Agmon, N. The grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton conductivity: Materials and applications. Chem. Mater. 1996, 8, 610. [Google Scholar] [CrossRef]
- Gao, H.; Lian, K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review. RSC Adv. 2014, 4, 33091. [Google Scholar] [CrossRef]
- Ndruru, L.; Wahyuningrum, D.; Bundjali, B.; Arcana, M. Preparation and characterization of biopolymer electrolyte membranes based on liclo4-complexed methyl cellulose as lithium-ion battery separator. J. Eng. Technol. Sci. 2020, 52, 28. [Google Scholar] [CrossRef]
- Meyer, W.H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 1998, 10, 439. [Google Scholar] [CrossRef]
- Sampathkumar, L.; Christopher Selvin, P.; Selvasekarapandian, S.; Perumal, P.; Chitra, R.; Muthukrishnan, M. Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics 2019, 25, 1067. [Google Scholar] [CrossRef]
- Perumal, P.; Abhilash, K.P.; Sivaraj, P.; Christopher Selvin, P. Study on Mg-ion conducting solid biopolymer electrolytes based on tamarind seed polysaccharide for magnesium ion batteries. Mater. Res. Bullet. 2019, 118, 110490. [Google Scholar] [CrossRef]
- Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Monisha, S.; Selvalakshmi, S.; Vinoth Pandi, D. Tamarind seed polysaccharide (TSP)-based Li-ion conducting membranes. Ionics 2017, 23, 2677. [Google Scholar] [CrossRef]
- Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Selvalakshmi, S.; Monisha, S. Development of biopolymer electrolyte membrane using Gellan gum biopolymer incorporated with NH4SCN for electro-chemical application. Organ Electron. 2017, 50, 418. [Google Scholar] [CrossRef]
- Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Selvalakshmi, S. Structural and electrical characterization of tamarind seed polysaccharide (TSP) doped with NH4HCO2. AIP Conf. Proc. 2018, 1942, 70005. [Google Scholar]
- Ramesh, S.; Shanti, R.; Morris, E. Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes. Carbohyd. Polym. 2012, 87, 2624. [Google Scholar] [CrossRef]
- Bendaoud, A.; Chalamet, Y. Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing. Carbohyd. Polym. 2014, 108, 75. [Google Scholar] [CrossRef]
- Monisha, S.; Selvasekarapandian, S.; Mathavan, T.; Milton Franklin Benial, A.; Manoharan, S.; Karthikeyan, S. Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J. Mater. Sci. Mater. Electron. 2016, 27, 9314. [Google Scholar] [CrossRef]
- Monisha, S.; Mathavan, T.; Selvasekarapandian, S.; Milton Franklin Benial, A.; Aristatil, G.; Mani, N.; Premalatha, M.; Vinoth pandi, D. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohyd. Polym. 2017, 157, 38. [Google Scholar] [CrossRef]
- Monisha, S.; Mathavan, T.; Selvasekarapandian, S.; Milton Franklin Benial, A.; Premalatha, M. Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 2017, 23, 2697. [Google Scholar] [CrossRef]
- Sudiarti, T.; Wahyuningrum, D.; Bundjali, B.; Made Arcana, I. Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate. IOP Conf. Ser. Mater. Sci. Eng. 2017, 223, 12052. [Google Scholar] [CrossRef]
- Lamanna, L.; Pace, G.; Ilic, I.K.; Cataldi, P.; Viola, F.; Friuli, M.; Galli, V.; Demitri, C.; Caironi, M. Edible Cellulose-based Conductive Composites for Triboelectric Nanogenerators and Supercapacitors. Nano Energy 2023, 108, 108168. [Google Scholar] [CrossRef]
- Palanisamy, G.; Oh, T.; Thangarasu, S. Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers 2023, 15, 659. [Google Scholar] [CrossRef]
- Akhlaq, M.; Mushtaq, U.; Naz, S.; Uroos, M. Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: A review. RSC Adv. 2023, 13, 5723. [Google Scholar] [CrossRef]
- Galliard, T. Starch: Properties and Potentials; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Tang, X.; Alavi, S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7. [Google Scholar] [CrossRef]
- Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim. Acta 2014, 136, 204. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Shukur, M.F.; Kadir, M.F.Z. NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor. Ionics 2017, 23, 3429. [Google Scholar] [CrossRef]
- Khanmirzaei, M.; Ramesh, S.; Ramesh, K. Polymer electrolyte based dye-sensitized solar cell with rice starch and 1-methyl-3-propylimidazolium iodide ionic liquid. Mater. Des. 2015, 85, 833. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, M.; Srivastava, N. Supercapacitive performance analysis of low cost and environment friendly potato starch based electrolyte system with anodized aluminium and teflon coated carbon cloth as electrode. Electrochim. Acta 2018, 283, 1551. [Google Scholar] [CrossRef]
- Tiwari, T.; Srivastava, N.; Srivastava, P.C. Ion dynamics study of potato starch+ sodium salts electrolyte system. Int. J. Electrochem. 2013, 2013, 1. [Google Scholar] [CrossRef]
- Khanmirzaei, M.H.; Ramesh, S. Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. Int. J. Electrochem. Sci. 2013, 8, 9977. [Google Scholar]
- Hamsan, M.H.; Shukur, M.F.; Kadir, M.F.Z. The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. Ionics 2017, 23, 1137. [Google Scholar] [CrossRef]
- Khanmirzaei, M.H.; Ramesh, S.; Ramesh, K. Effect of different iodide salts on ionic conductivity and structural and thermal behavior of rice-starch-based polymer electrolytes for dye-sensitized solar cell application. Ionics 2015, 21, 2383. [Google Scholar] [CrossRef]
- Ahmad Khiar, A.S.; Arof, A.K. Conductivity studies of starch-based polymer electrolytes. Ionics 2010, 16, 123. [Google Scholar] [CrossRef]
- Teoh, K.H.; Lim, C.; Ramesh, S. Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 2014, 48, 87. [Google Scholar] [CrossRef]
- Tiwari, T.; Pandey, K.; Srivastava, N.; Srivastava, P.C. Effect of glutaraldehyde on electrical properties of arrowroot starch+NaI electrolyte system. J. Appl. Polym. Sci. 2011, 121, 1. [Google Scholar] [CrossRef]
- Tiwari, T.; Srivastava, N.; Srivastava, P.C. Electrical transport study of potato starch-based electrolyte system. Ionics 2011, 17, 353. [Google Scholar] [CrossRef]
- Yadav, M.; Nautiyal, G.; Verma, A.; Kumar, M.; Tiwari, T.; Srivastava, N. Electrochemical characterization of NaClO4–mixed rice starch as a cost-effective and environment-friendly electrolyte. Ionics 2019, 25, 2693. [Google Scholar] [CrossRef]
- Yogananda, K.C.; Ramasamy, E.; Kumar, S.; Vasantha Kumar, S.; Navya Rani, N.; Rangappa, D. Novel rice starch based aqueous gel electrolyte for dye sensitized solar cell application. Mater. Today Proc. 2017, 4, 12238. [Google Scholar] [CrossRef]
- Yusof, Y.M.; Shukur, M.F.; Illias, H.A.; Kadir, M.F.Z. Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys. Scr. 2014, 89, 35701. [Google Scholar] [CrossRef]
- Bementa, E.; Jothi Rajan, M.A.; Gnanadass, E.S. Effect of prolonged duration of gelatinization in starch and incorporation with potassium iodide on the enhancement of ionic conductivity. Polym. Plast Technol. Eng. 2017, 56, 1632. [Google Scholar] [CrossRef]
- Kulshrestha, N.; Gupta, P.N. Structural and electrical characterizations of 50: 50 PVA: Starch blend complexed with ammonium thiocyanate. Ionics 2016, 22, 671. [Google Scholar] [CrossRef]
- Teoh, K.H.; Lim, C.; Liew, C.; Ramesh, S.; Ramesh, K. Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics 2015, 21, 2061. [Google Scholar] [CrossRef]
- Teoh, K.H.; Lim, C.; Liew, C.; Ramesh, S. Preparation and performance analysis of barium titanate incorporated in corn starch-based polymer electrolytes for electric double layer capacitor application. J. Appl. Polym. Sci. 2016, 133, 43275. [Google Scholar] [CrossRef]
- Amran, N.N.A.; Manan, N.S.A.; Kadir, M.F.Z. The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 2016, 22, 1647. [Google Scholar] [CrossRef]
- Marcondes, R.F.M.S.; D’Agostini, P.S.; Ferreira, J.; Girotto, E.M.; Pawlicka, A.; Dragunski, D.C. Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ion. 2010, 181, 586. [Google Scholar] [CrossRef]
- Pang, S.; Tay, C.; Chin, S. Starch-based gel electrolyte thin films derived from native sago (Metroxylon sagu) starch. Ionics 2014, 20, 1455. [Google Scholar] [CrossRef]
- Shukur, M.F.; Ibrahim, F.M.; Majid, N.A.; Ithnin, R.; Kadir, M.F.Z. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys. Scr. 2013, 88, 25601. [Google Scholar] [CrossRef]
- Aziz, S.B.; Asnawi, A.S.F.M.; Mohammed, P.A.; Abdulwahid, R.T.; Yusof, Y.M.; Abdullah, R.M.; Kadir, M.F.Z. Impedance, circuit simulation, transport properties and energy storage behavior of plasticized lithium ion conducting chitosan based polymer electrolytes. Polym. Test. 2021, 101, 107286. [Google Scholar] [CrossRef]
- Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 2014, 20, 977. [Google Scholar] [CrossRef]
- Shukur, M.F.; Kadir, M.F.Z. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim. Acta 2015, 158, 152. [Google Scholar] [CrossRef]
- Shukur, M.F.; Kadir, M.F.Z. Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 2015, 21, 111. [Google Scholar] [CrossRef]
- Yusof, Y.M.; Majid, N.A.; Kasmani, R.M.; Illias, H.A.; Kadir, M.F.Z. The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol. Cryst. Liq. Cryst. 2014, 603, 73. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Aziz, S.B.; Shukur, M.F.; Kadir, M.F.Z. Protonic cell performance employing electrolytes based on plasticized methylcellulose-potato starch-NH4NO3. Ionics 2019, 25, 559. [Google Scholar] [CrossRef]
- Yusof, Y.M.; Kadir, M.F.Z. Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methylcellulose-potato starch blend. Mol. Cryst. Liq. Cryst. 2016, 627, 220. [Google Scholar] [CrossRef]
- Yusof, Y.M.; Illias, H.A.; Shukur, M.F.; Kadir, M.F.Z. Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries. Ionics 2017, 23, 681. [Google Scholar] [CrossRef]
- Shukur, M.F.; Majid, N.A.; Ithnin, R.; Kadir, M.F.Z. Effect of plasticization on the conductivity and dielectric properties of starch–chitosan blend biopolymer electrolytes infused with NH4Br. Phys. Scr. 2013, T157, 14051. [Google Scholar] [CrossRef]
- Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Protonic transport analysis of starch-chitosan blend based electrolytes and application in electrochemical device. Mol. Cryst. Liq. Cryst. 2014, 603, 52. [Google Scholar] [CrossRef]
- Khanmirzaei, M.H.; Ramesh, S. Nanocomposite polymer electrolyte based on rice starch/ionic liquid/TiO2 nanoparticles for solar cell application. Measurement 2014, 58, 68. [Google Scholar] [CrossRef]
- Liew, C.; Ramesh, S. Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohyd. Polym. 2015, 124, 222. [Google Scholar] [CrossRef]
- Liew, C.; Ramesh, S. Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellulose 2013, 20, 3227. [Google Scholar] [CrossRef]
- Ramesh, S.; Shanti, R.; Morris, E. Studies on the plasticization efficiency of deep eutectic solvent in suppressing the crystallinity of corn starch based polymer electrolytes. Carbohyd. Polym. 2012, 87, 701. [Google Scholar] [CrossRef]
- Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: The effect of glycerol and 1-butyl-3-methylimidazolium chloride. Ionics 2016, 22, 1113. [Google Scholar] [CrossRef]
- Azli, A.A.; Manan, N.S.A.; Kadir, M.F.Z. The development of Li+ conducting polymer electrolyte based on potato starch/graphene oxide blend. Ionics 2017, 23, 411. [Google Scholar] [CrossRef]
- Ramesh, S.; Shanti, R.; Morris, E.; Durairaj, R. Utilisation of corn starch in production of ‘green’polymer electrolytes. Mater. Res. Innov. 2011, 15, 8. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, J.; Zhang, J.; Jin, S.; Jiang, Y.; Zhang, S.; Li, Z.; Zhi, C.; Due, G.; Zhou, H. Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Adv. 2019, 9, 16313. [Google Scholar] [CrossRef]
- Leng, L.; Zeng, X.; Chen, P.; Shu, T.; Song, H.; Fu, Z.; Wang, H.; Liao, S. A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte. Electrochim. Acta 2015, 176, 1108. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Zuo, X.; Liu, S.; Li, Z. Polyethylene-supported polyvinylidene fluoride–cellulose acetate butyrate blended polymer electrolyte for lithium ion battery. J. Power Sources 2013, 226, 101. [Google Scholar] [CrossRef]
- Nirmale, T.C.; Karbhal, I.; Kalubarme, R.S.; Shelke, M.V.; Varma, A.J.; Kale, B.B. Facile synthesis of unique cellulose triacetate based flexible and high performance gel polymer electrolyte for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 34773. [Google Scholar] [CrossRef]
- Zhao, M.; Zuo, X.; Wang, C.; Xiao, X.; Liu, J.; Nan, J. Preparation and performance of the polyethylene-supported polyvinylidene fluoride/cellulose acetate butyrate/nano-SiO2 particles blended gel polymer electrolyte. Ionics 2016, 22, 2123. [Google Scholar] [CrossRef]
- Lin, Y.; Li, J.; Liu, K.; Liu, Y.; Liu, J.; Wang, X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem. 2016, 18, 3796. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. J. Chem. Soc. Rev. 2015, 44, 7484. [Google Scholar] [CrossRef]
- Hu, X.; Fan, L.; Qin, G.; Shen, Z.; Chen, J.; Wang, M.; Yang, J.; Chen, Q. Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J. Power Sources 2019, 414, 201. [Google Scholar] [CrossRef]
- Perumal, P.; Christopher Selvin, P. Boosting the performance of electric double layer capacitor via engaging pectin macromolecular electrolyte with elevated ionic conductivity and potential window stability. Chem. Eng. J. Adv. 2021, 8, 100178. [Google Scholar] [CrossRef]
- Sudhakar, Y.N.; Selvakumar, M. Ionic conductivity studies and dielectric studies of poly (styrene sulphonic acid)/starch blend polymer electrolyte containing LiClO4. J. Appl. Electrochem. 2013, 43, 21. [Google Scholar] [CrossRef]
- Wisinska, N.H.; Skunik-Nuckowska, M.; Garbacz, P.; Dyjak, S.; Wieczorek, W.; Kulesza, P.J. Polysaccharide-based hydrogel electrolytes enriched with poly (norepinephrine) for sustainable aqueous electrochemical capacitors. J. Environ. Chem. Eng. 2023, 11, 109346. [Google Scholar] [CrossRef]
- Zhang, P.; Li, M.; Jing, Y.; Zhang, X.; Su, S.; Zhu, J.; Yu, N. Highly flexible cellulose-based hydrogel electrolytes: Preparation and application in quasi solid-state supercapacitors with high specific capacitance. J. Mater. Sci. 2023, 58, 1694. [Google Scholar] [CrossRef]
- Agiorgousis, M.L.; Sun, Y.; Zeng, H.; Zhang, S. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 2014, 136, 14570. [Google Scholar] [CrossRef] [PubMed]
- Suait, M.S.; Rahman, M.Y.A.; Ahmad, A. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol. Energy 2015, 115, 452. [Google Scholar] [CrossRef]
- Wang, W.; Zhuo, S.; Wang, L.; Fang, S.; Lin, Y. Mono-ion transport electrolyte based on ionic liquid polymer for all-solid-state dye-sensitized solar cells. Sol. Energy 2012, 86, 1546. [Google Scholar] [CrossRef]
- Federico Bella Nadhratun, N.; Mobarak Fatihah, N.; Ahmad, A. From seaweeds to biopolymeric electrolytes for third generation solar cells: An intriguing approach. Electrochim. Acta 2015, 151, 306. [Google Scholar]
- Rudhziah, S.; Ahmad, A.; Ahmad, I.; Mohamed, N.S. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell. Electrochim. Acta 2015, 175, 162. [Google Scholar] [CrossRef]
- Samsi, N.S.; Effendi, N.F.S.; Zakaria, R.; Ali, A.M.M. Efficiency enhancement of dye-sensitized solar cell utilizing copper indium sulphide/zinc sulphide quantum dot plasticized cellulose acetate polymer electrolyte. Mater. Res. Express 2017, 4, 44005. [Google Scholar] [CrossRef]
- Yogananda, K.C.; Ramasamy, E.; Vasantha Kumar, S.; Rangappa, D. Synthesis, characterization, and dye-sensitized solar cell fabrication using potato starch–and potato starch nanocrystal–based gel electrolytes. Ionics 2019, 25, 6035. [Google Scholar] [CrossRef]
- Wang, X.; Feng, W.; Wang, W.; Wang, W.; Zhao, L.; Li, Y. Sodium carboxymethyl starch-based highly conductive gel electrolyte for quasi-solid-state quantum dot-sensitized solar cells. Res. Chem. Intermed. 2018, 44, 1161. [Google Scholar] [CrossRef]
- Hanif, M.B.; Motola, M.; Qayyum, S.; Rauf, S.; Khalid, A.; Li, C.; Li, X. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion. Chem. Eng. J. 2022, 428, 132603. [Google Scholar] [CrossRef]
- Rauf, S.; Hanif, M.; Wali, M.; Tayyab, Z.; Zhu, B.; Mushtaq, N.; Yang, Y.; Khan, K.; Lund, P.; Martin, M.; et al. Highly active interfacial sites in SFT-SnO2 heterojunction electrolyte for enhanced fuel cell performance via engineered energy bands: Envisioned theoretically and experimentally. Energy Environ. Mater. 2023, e12606. [Google Scholar] [CrossRef]
- Hanif, M.B.; Rauf, S.; Mosiałek, M.; Khan, K.; Kavaliukė, V.; Kežionis, A.; Šalkus, T.; Gurgul, J.; Medvedev, D.; Zimowska, M.; et al. Mo-doped BaCe0·9Y0·1O3-δ proton-conducting electrolyte at intermediate temperature SOFCs. Part I: Microstructure and electrochemical properties. Int. J. Hydrogen Energy, 2023; in press. [Google Scholar] [CrossRef]
- Mohanapriya, S.; Rambabu, G.; Bhat, G.D.; Raj, V. Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells. Arab. J. Chem. 2020, 13, 2024. [Google Scholar] [CrossRef]
- Pasini Cabello, S.D.; Mollá, S.; Ochoa, N.A.; Marchese, J.; Giménez, G.; Compan, V. New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. J. Power Sources 2014, 265, 345. [Google Scholar] [CrossRef]
- Tiwari, T.; Srivastava, N. Exploring the Possibility of Starch-Based Electrolyte Membrane in MFC Application. Macromol. Symp. 2019, 388, 1900041. [Google Scholar] [CrossRef]
- Tiwari, T.; Kumar, M.; Yadav, M.; Srivastava, N. Study of Arrowroot Starch-Based Polymer Electrolytes and Its Application in MFC. Starch Stärke 2019, 71, 1800313. [Google Scholar] [CrossRef]
Electrolyte Composition | Conductivity (10−3) (Scm−1) | Window Stability (V) | Activation Energy (eV) | References |
---|---|---|---|---|
K-C+LiNO3 | 5.51 | 3.1 | - | Mobarak et al. [49] |
K-C+LiBr | 3.43 | 3.5 | 0.08 | Arockia Mary et al. [50] |
K-C+NH4Br | 0.38 | - | - | Zainuddin et al. [51] |
i-C+LiCl | 5.33 | - | 0.19 | Chitra et al. [52] |
i-C+LiClO4 i-C+LiClO4+SN | 0.35 3.33 | 2.36 3.10 | 0.22 0.10 | Chitra et al. [53] |
i-C+NH4Br | 1.08 | 2.1 | 0.18 | Karthikeyan et al. [54] |
i-C+NH4NO3 | 1.43 | 2.46 | 0.14 | Moniha et al. [55] |
i-C+NH4SCN | 3.56 | 3.19 | 0.21 | Moniha et al. [56] |
i-C+Mg(NO3)2 | 0.61 | - | 0.175 | Shanmugapriya et al. [57] |
i-C+Mg(ClO4)2 | 2.18 | - | 0.055 | Shanmugapriya et al. [58] |
Carboxymethyl Carrageenan (CMC)+BmImCl | 5.76 | 3 | - | Shamsudin et al. [17] |
CMC+NH4I+ Glycerol | 3.9 | - | - | Torres et al. [59] |
Electrolyte Composition | Conductivity (Scm−1) | Activation Energy (eV) | References |
---|---|---|---|
Solid polymer electrolytes | |||
PS-GA-NaI | 3.41 × 10−2 | - | Madhavi Yadav [89] |
PS-GA-NaI PS-GA-NaSCN PS-GA-NaClO4 | 7.19 × 10−6 1.22 × 10−5 1.12 × 10−4 | - | Tuhina Tiwari, [90] |
RS-LiI | 4.68 × 10−5 | 0.41 | Khanmirzaei [91] |
PS-Methylcellulose (MC)-NH4NO3 | 4.37 × 10−5 | 0.30 | Hamsan [92] |
PS-LiI PS-NH4I PS-NaI | 4.68 × 10−5 1.39 × 10−4 4.79 × 10−4 | 0.41 0.16 0.11 | Khanmirzaei [93] |
Starch-NH4NO3 | 2.83 × 10−5 | 0.41 | Ahmad Khiar Khair [94] |
CS-LiClO4 | 1.55 × 10−6 | 0.64 | Teoh [95] |
AS-NaI-GA | 6.7 × 10−4 | - | Tiwari [96] |
PS-PEG-NaI-GA | 1.8 × 10−4 | - | Tiwari [97] |
RS-NaClO4-GA | 1.59 × 10−2 | - | Yadav [98] |
RS-LiI-I2 | - | - | Yoganda [99] |
CS-Chitosan-NaI | 3.04 × 10−4 | 0.2 | Yusof [100] |
Starch-KI | 3.46 × 10−3 | - | Bementa [101] |
PVA-Starch-GA-NH4SCN | 1.31 × 10−4 | - | Kulsheresthagupta [102] |
Composite electrolytes | |||
CS-LiClO4-SiO2 | 1.23 × 10−4 | 0.25 | Teoh [103] |
CS-LiClO4-BaTiO3 | 1.84 × 10−4 | - | Teoh [104] |
Plasticized/ionic liquid added systems | |||
PS-Chitosan-LiCF3SO3-Glycerol | 1.32 × 10−3 | 0.11 | Amran [105] |
CS-LiClO4-Glycerol | 1.1 × 10−4 | - | Marcondas [106] |
SS-glycerol (LiClO4) NaCl NaClO4 Na2SO4 LiCl KCl | 9.91 × 10−4 2.55 × 10−3 1.38 × 10−3 5.23 × 10−4 3.37 × 10−3 3.80 × 10−3 | 0.39 0.21 0.26 0.38 0.23 0.11 | Pang [107] |
CS-LiI-Glycerol | 9.56 × 10−4 | 0.16 | Shukur [108] |
CS-LiClO4-Glycerol | 1.2 × 10−3 | - | B. Aziz [109] |
CS-Chitosan-NH4Cl-Glycerol | 5.11 × 10−4 | 0.19 | Shukur [110,111] |
CS-NH4Br-Glycerol | 1.8 × 10−3 | 0.11 | Shukur [112] |
CS-Chitosan-NaI-Glycerol | 1.28 × 10−3 | 0.18 | Yusof [113] |
PS-MC-NH4NO3-Glycerol | - | - | Hamsan [114] |
PS-MC-LiClO4-Glycerol | 4.25 × 10−4 | 0.165 | Yusof [115] |
CS-Chitosan-NH4I-Glycerol | - | - | Yusof [116] |
CS-Chitosan-NH4Br-EC | 1.44 × 10−3 | 0.17 | Shukur [117,118] |
RS-LiI-1-methyl-3-propylimidazolium iodide-TiO2 | 3.63 × 10−4 | 0.22 | Khan [119] |
CS-LiPF6-BmImPF6 | 1.47 × 10−4 | 0.0085 | Liew [120] |
CS-LiPF6-BmImTf | 3.21 × 10−4 | - | Liew [121] |
CS-LiPF6 | 1.03 × 10−3 | - | Ramesh [122] |
PS-Mg(C2H3O2)2-Glycerol-BmImCl | 1.12 × 10−5 | - | Shukur [123] |
PS-GO-LiCF3SO3-BmImCl | 4.80 × 10−4 | - | Azli [124] |
CS-LiTFSI-AmImCl | 4.18 × 10−4 | - | Ramesh [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandurangan, P. Recent Progression and Opportunities of Polysaccharide Assisted Bio-Electrolyte Membranes for Rechargeable Charge Storage and Conversion Devices. Electrochem 2023, 4, 212-238. https://doi.org/10.3390/electrochem4020015
Pandurangan P. Recent Progression and Opportunities of Polysaccharide Assisted Bio-Electrolyte Membranes for Rechargeable Charge Storage and Conversion Devices. Electrochem. 2023; 4(2):212-238. https://doi.org/10.3390/electrochem4020015
Chicago/Turabian StylePandurangan, Perumal. 2023. "Recent Progression and Opportunities of Polysaccharide Assisted Bio-Electrolyte Membranes for Rechargeable Charge Storage and Conversion Devices" Electrochem 4, no. 2: 212-238. https://doi.org/10.3390/electrochem4020015
APA StylePandurangan, P. (2023). Recent Progression and Opportunities of Polysaccharide Assisted Bio-Electrolyte Membranes for Rechargeable Charge Storage and Conversion Devices. Electrochem, 4(2), 212-238. https://doi.org/10.3390/electrochem4020015