Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study
Abstract
:1. Introduction
- (a)
- The electron transfer is often affected by the presence of oxygen and/or surface oxides or other carbon-oxygen species such as carbonyl groups or carboxylates/carboxylic acids (depending upon pH). Examples, including studies involving highly oriented pyrolytic graphite (HOPG), indicated that a greater quantity of edges in the electrode generally increased the apparent heterogeneous electron transfer, HET rate measured in terms of the rate constant, k0 [15]. Smaller Graphene flakes also seemed to increase k0 [16] In addition, a greater surface oxygen concentration in one study involving nanohorns also produced higher k0 values [17]
- (b)
- (c)
- The hexacyanoferrate II/III redox couple tends to adsorb on many electrode surfaces [20]. With continuous voltammetry the current for ferrocyanide oxidation decreases due to the occurrence of adsorption, prior to Prussian Blue formation [21] Another report described how adsorption of hexacyanoferrate was detected at a Pt ultramicroelectrode [22].
2. Hexacyanoferrate II/III Redox Probes
3. Discussion
3.1. The Influence of Functional Groups and Microstructural Features on Carbon Electrodes Electron Transfer Properties
3.2. An Alternative Classification System
3.3. The Effect of Surface Films on Glassy Carbon Elecrtodes
3.4. Boron-Doped Diamond Electrodes
3.5. Graphene Electrodes
3.6. Highly Oriented Pyrolytic Graphite Electrodes
3.7. Gold Electrodes
3.8. The Role of Spectator Cations
3.9. The Potential of Zero Charge
3.10. Surface Modulation
3.11. Treated Boron-Doped Diamond
3.12. Spectroscopic Studies and Adsorption
3.13. Outer Sphere and Ion Pairing
3.14. The Effect of Hydrophilicity and Hydrophobicity
3.15. Assessment of Electrochemically Active Surface Area
3.16. ISET and OSET Terminology
3.17. Inner and Outer Sphere Reorganisation Energies
3.18. Future Perspectives
4. Conclusions and Recommendations
- (a)
- The ISET/OSET terminology originally referred to specific ligand exchange reactions for octahedral transition metal complexes systems in homogeneous solution-based reactions. In this situation, the solvent can play a significant role through the solvent reorganisation energy term, λ in the Marcus–Hush ET treatment. The use of the terms inner sphere and outer sphere when referring to this reorganisation energy only adds to the confusion. In the original inorganic chemistry literature, there is no mention of adsorption or reference to an electrode surface chemistry, i.e., HET kinetics, although Marcus and Hush later extended it to include an electrode surface as a reactant. At present, in the electrochemical literature, its use has even been extended to organic compounds.
- (b)
- The terminology is redundant, as the terms “surface-sensitive” and “surface-insensitive” can adequately differentiate between simple ET processes and ET processes that are coupled with chemical kinetic reactions, typically displaying slow electron transfer and possibly involving adsorption processes. This gives a better description of the location of the electron transfer reactions and the role of the electrode surface in the ET process.
- (c)
- As a result, it is suggested that serious consideration be given to the use of the term “surface-sensitive” when considering the hexacyanoferrate II/III species in order to better describe inner sphere behaviour. The hexacyanoferrate II/III anion is one such example of this type of surface-sensitive redox system, whereas the Ru(NH3)2+/3+ cation species can be considered as an example of a surface-insensitive redox couple probe.
- (d)
- Although hexacyanoferrate II/III is useful as a redox couple or probe, the experimenter must appreciate the influence of such surface interactions, double-layer structural alterations due to the presence of cations and/or anions and other effects (e.g., solvent effects influencing the outer sphere reorganisation energy and other Marcus–Hush parameters).
- (e)
- Considerable care needs to be taken when assessing EASA (ECSA) using the hexacyanoferrate II/III redox probe molecules and it is probably, therefore, better to use other redox couples such as Ru(NH3)63+ or Fc0/+ depending upon the solvent and probe solubility.
- (f)
- Added redundant terminology introduces confusion, particularly to novice electrochemists. Although hexacyanoferrate II/III is, under certain conditions most probably an outer sphere anion (OSET) reactant, more often it behaves as an inner sphere anion (ISET) reactant, especially in the case of carbon-based electrode materials.
- (g)
- Consequently, consideration should also be given to the use of the term multi-sphere electron transfer (MSET) redox probe, specifically for the hexacyanoferrate II/III redox couple. This may denote either OSET or ISET characteristics, depending upon both electrode structure and surface/interfacial chemistry proceeding at the electrode/electrolyte boundary.
- (h)
- There is a need for an unequivocal method for the classification of redox probes such as the hexacyanoferrate II/III system. At present, this does not appear to be the case and there is a distinct lack of a clearly defined categorisation methodology for redox couples. Although fast ET processes are generally thought to undergo OSET, while slow ones typically suggest ISET, this is not always the case especially where adsorption or intermediate species are involved.
- (i)
- For this reason, it is recommended that more than one type of redox probe be employed. When carrying out electrochemical studies, especially those involving carbon electrode surfaces. In aqueous electrolytes hexacyanoferrate II/III and Ru(NH3)6Cl3 are quite often used in order to distinguish between different ET processes usually representing ISET and OSET processes, respectively, on carbon-based electrode surfaces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, A Comprehensive Text, 5th ed.; Wiley-Interscience Publishers: Hoboken, NJ, USA, 1988; p. 1306. [Google Scholar]
- Lappin, G. Redox Mechanisms in Inorganic Chemistry; Ellis Horwood: New York, NY, USA, 1994; Chapters 1–3. [Google Scholar]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods, Fundamentals and Applications, 3rd ed.; Wiley: New York, NY, USA, 2022; Chapters 3,7,15,17. [Google Scholar]
- Zanello, P. Inorganic Chemistry, Theory, Practice and Application; RSC: Cambridge, UK, 2003; pp. 7–12+62. [Google Scholar]
- Compton, R.G.; Banks, C.E. Understanding Voltammetry; World Scientific Publications: Singapore, 2007; pp. 66–76. [Google Scholar]
- Schmickler, W.; Santos, E. Interfacial Electrochemistry, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; Chapter 9. [Google Scholar]
- Gileadi, E. Physical Electrochemistry; Fundamentals, Techniques and Applications, 2nd ed.; Wiley: New York, NY, USA, 2018; pp. 68–72. [Google Scholar]
- Weaver, M.J.; Anson, F.C. Simple criteria for distinguishing between inner and outer sphere electrode reaction mechanisms. J. Am. Chem. Soc. 1975, 97, 4403–4405. [Google Scholar] [CrossRef]
- Weaver, M.J.; Anson, F.C. Distinguishing between Inner- and Outer-Sphere Electrode Reactions. Reactivity Patterns for Some Chromium(III)-Chromium(II) Electron-Transfer Reactions at Mercury Electrodes. Inorg. Chem. 1976, 15, 1871–1881. [Google Scholar] [CrossRef]
- García-Miranda Ferrari, A.; Foster, C.W.; Kelly, P.J.; Brownson, D.A.C.; Banks, C.E. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosens 2018, 8, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotouhi, L.; Fatollahzadeh, M.; Heravi, M.M. Electrochemical Behavior and Voltammetric Determination of Sulfaguanidine at a Glassy Carbon Electrode Modified With a Multi-Walled Carbon Nanotube. Int. J. Electrochem. Sci. 2012, 7, 3919–3928. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, Y. Cyclic voltammetry measurements of electroactive surface area of porous nickel: Peak current and peak charge methods and diffusion layer effect. Mats. Chem. Phys. 2019, 233, 60–67. [Google Scholar] [CrossRef]
- Ngamchuea, K.; Eloul, S.; Tschulik, K.; Compton, R.G. Planar diffusion to macro disc electrodes—What electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively? J. Solid State Electrochem. 2014, 18, 3251–3257. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced carbon electrodes materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef]
- Huang, L.; Cao, Y.; Diao, D. Nanosized graphene sheets induced high electrochemical activity in pure carbon film. Electrochim. Acta 2018, 262, 173–181. [Google Scholar] [CrossRef]
- Slate, A.J.; Brownson, D.A.C.; Abo Dena, A.S.; Smith, G.C.; Whitehead, K.A.; Banks, C.E. Exploring the electrochemical performance of graphite and graphene paste electrodes composed of varying lateral flake sizes. Phys. Chem. Chem. Phys. 2018, 20, 20010. [Google Scholar] [CrossRef] [Green Version]
- Ambolikar, A.S.; Guin, S.K.; Neogy, S. An insight into the outer- and inner-sphere electrochemistry of oxygenated single-walled carbon nanohorns (o-SWCNHs). New J. Chem. 2019, 43, 18210. [Google Scholar] [CrossRef]
- Xiong, L.; Batchelor-McAuley, C.; Ward, K.R.; Downing, C.; Hartshorne, R.S.; Lawrence, N.S.; Compton, R.G. Voltammetry at graphite electrodes: The oxidation of hexacyanoferrate (II) (ferrocyanide) does not exhibit pure outer-sphere electron transfer kinetics and is sensitive to pre-exposure of the electrode to organic solvents. J. Electroanal. Chem. 2011, 661, 144–149. [Google Scholar] [CrossRef]
- Griffiths, K.; Dale, C.; Hedley, J.; Kowal, M.D.; Kaner, R.B.; Keegan, N. Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale 2014, 6, 13613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mampallil, D.; Mathwig, K.; Kang, S.; Lemay, S.G. Reversible Adsorption of Outer-Sphere Redox Molecules at Pt Electrodes. J. Phys. Chem. Lett 2014, 5, 636–640. [Google Scholar] [CrossRef]
- Kitamura, F.; Nanbu, N.; Ohsaka, T.; Tokuda, K. A kinetic and in situ infrared spectroscopic study of the [Fe(CN)6]3−/[Fe(CN)6]4− couple on platinum single crystal electrodes. J. Electroanal. Chem. 1998, 456, 113–120. [Google Scholar] [CrossRef]
- Chen, J.; Aoki, K. Overestimation of heterogeneous rate constants of hexacyanoferrate at nanometer-sized ultramicroelectrodes. Electrochem. Comm. 2002, 4, 24–29. [Google Scholar] [CrossRef]
- Hui, J.; Zhou, X.; Bhargava, R.; Chinderle, A.; Zhang, J.; Rodríguez-López, J. Kinetic Modulation of Outer-Sphere Electron Transfer Reactions on Graphene Electrode with a Sub-surface Metal Substrate. Electrochim. Acta 2016, 211, 1016–1023. [Google Scholar] [CrossRef]
- Duo, I.; Fujishima, A.; Comninellis, C. Electron transfer kinetics on composite diamond (sp3)–graphite (sp2) electrodes. Electrochem. Comm. 2003, 5, 695–700. [Google Scholar] [CrossRef]
- Torres, L.M.; Gil, A.F.; Galicia, L.; Gonzalez, I. Understanding the Difference between Inner sphere and Outer sphere Mechanisms. J. Chem. Ed. 1996, 73, 808–810. [Google Scholar] [CrossRef]
- Tanimoto, S.; Ichimura, A. Discrimination of Inner- and Outer-Sphere Electrode Reactions by Cyclic Voltammetry Experiments. J. Chem. Ed. 2013, 90, 778–781. [Google Scholar] [CrossRef]
- De Carvalho, R.C. Synthesis and Novel Applications of Cerium Dioxide. Ph.D. Thesis, Technological University Dublin, Dublin Ireland, 2019. [Google Scholar]
- Fanjul-Bolado, P.; Hernández-Santos, D.; José Lamas-Ardisana, P.; Martín-Pernía, A.; Agustín Costa-García, A. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim. Acta 2008, 53, 3635–3642. [Google Scholar] [CrossRef]
- Morrin, A.; Killard, A.; Smyth, M.R. Electrochemical characterisation of commercial and home made screen printed carbon electrodes. Anal. Lett. 2003, 36, 2021–2039. [Google Scholar] [CrossRef] [Green Version]
- Kadara, R.O.; Jenkinson, N.; Banks, C.E. Characterisation of commercially available electrochemical sensing platforms. Sens. Actuators B Chem. 2009, 138, 556–562. [Google Scholar] [CrossRef]
- Hamal, K.; May, J.; Zhu, H.; Dalbec, F.; Echeverria, E.; McIlroy, D.; Aston, E.; Cheng, I.F. Electrochemical Aspects of a Nitrogen-Doped Pseudo-Graphitic Carbon Material: Resistance to Electrode Fouling by Air-Aging and Dopamine Electro-Oxidation. J. Carbon Res. 2020, 6, 68. [Google Scholar] [CrossRef]
- Bard, A.J.; Parsons, R.; Jordan, J. (Eds.) Standard Potentials in Aqueous Solutions; IUPAC Marcel Dekker: New York, NY, USA, 1985; p. 408. [Google Scholar]
- Lide, D. (Ed.) CRC Handbook of Chemistry and Physics, 88th ed.; CRC Press: Boca Raton, NJ, USA, 2007–2008; pp. 11–12.
- Alexander, J.J.; Gray, H.B. Electronic Structures of Hexacyanometalate Complexes. J. Am. Chem. Soc. 1968, 90, 4260–4271. [Google Scholar] [CrossRef]
- Engel, N.; Bokarev, S.I.; Suljoti, E.; Garcia-Diez, R.; Lange, K.M.; Atak, K.; Golnak, R.; Kothe, A.; Dantz, M.; Kühn, O.; et al. Chemical Bonding in Aqueous Ferrocyanide: Experimental and Theoretical X-ray Spectroscopic Study. J. Phys. Chem. B 2014, 118, 1555–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunnus, K.; Zhang, W.; Delcey, M.G.; Pinjari, R.V.; Miedema, P.S.; Schreck, S.; Quevedo, W.; Schroder, H.; Fohlisch, A.; Gaffney, K.J.; et al. Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives. J. Phys. Chem. B 2016, 120, 7182–7194. [Google Scholar] [CrossRef] [Green Version]
- Compton, R.G.; Batchelor-McCauley, C.; Dickinson, E.J.F. Understanding Voltammetry: Problems and Solutions; Imperial College Press: London, UK, 2012; p. 157. [Google Scholar]
- McKay, K.M.; McKay, R.A.; Henderson, W. Introduction to Modern Inorganic Chemistry, 6th ed.; Nelson Thornes: Cheltenham, UK, 2002; p. 280. [Google Scholar]
- Guo, M.; Kallman, E.; Sørensen, L.K.; Delcey, M.G.; Pinjari, R.V.; Lundberg, M. Molecular orbital simulations of metal 1s2p resonant inelastic X-ray scattering. J. Phys. Chem. A 2016, 120, 5848–5855. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, W.R.; Hromadova, M.; Tsirlina, G.A.; Nazmutdinov, R.R. The role of charge distribution in the reactant and product in double layer effects for simple heterogeneous redox reactions. J. Electroanal. Chem. 2001, 498, 93–104. [Google Scholar] [CrossRef]
- Prampolini, G.; Yu, P.; Pizzanelli, S.; Yang, F.; Zhao, J.; Wang, J. Structure and dynamics of ferrocyanide and ferricyanide anions in water and heavy water: An insight by MD simulations and 2D ir spectroscopy. J. Phys. Chem. B 2014, 118, 14899–14912. [Google Scholar] [CrossRef]
- Moldenhaeur, J.; Meier, M.; Paul, D.W. Rapid and direct detection of diffusion coefficients using microelectrode arrays. J. Electrochem. Soc. 2016, 163, H672–H678. [Google Scholar] [CrossRef]
- Lundgren, C.A.; Murray, R.W. Observations on the Composition of Prussian Blue Films and Their Electrochemistry. Inorg. Chem. 1988, 27, 933–939. [Google Scholar] [CrossRef]
- McCreery, R.L.; McDermott, M.T. Comment on electrochemical kinetics at ordered graphite electrodes. Anal. Chem. 2012, 84, 2602–2605. [Google Scholar] [CrossRef] [PubMed]
- Schwarzová-Pecková, K.; Vosáhlová, J.; Barek, J.; Šloufová, I.; Pavlova, E.; Petrák, V.; Zavázalová, J. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim. Acta 2017, 243, 170–182. [Google Scholar] [CrossRef]
- Fang, C.S.; Oh, K.H.; Oh, A.; Lee, K.; Park, S.; Kim, S.; Park, J.K.; Yang, H. An ultrasensitive and incubation-free electrochemical immunosensor using a gold-nanocatalyst label mediating outer-sphere-reaction-philic and inner-sphere-reaction-philic species. Chem. Comm. 2016, 52, 5884–5887. [Google Scholar] [CrossRef]
- Gutiérrez-Portocarrero, S.; Roquero, P.; Becerril-González, M.; Zúñiga-Franco, D. Study of structural defects on reduced graphite oxide generated by different reductants. Diam. Relat. Mater. 2019, 92, 219–227. [Google Scholar] [CrossRef]
- Zhang, G.; Cuharuc, A.S.; Guell, A.G.; Unwin, P.R. Electrochemistry at highly oriented pyrolytic graphite (HOPG): Lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models. Phys. Chem. Chem. Phys. 2015, 17, 11827. [Google Scholar] [CrossRef] [Green Version]
- Duo, I.; Levy-Clement, C.; Fujishima, A.; Comninellis, C. Electron transfer kinetics on boron-doped diamond Part I: Influence of anodic treatment. J. Appd. Electrochem. 2004, 34, 935–943. [Google Scholar] [CrossRef]
- Granger, M.C.; Swain, G.M. The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes. J. Electrochem. Soc. 1999, 146, 4551–4558. [Google Scholar] [CrossRef]
- Niu, P.; Asturias-Arribas, L.; Jordà, X.; Goñi, A.R.; Roig, A.; Gich, M.; Fernández-Sánchez, C. Carbon–Silica Composites to Produce Highly Robust Thin-Film Electrochemical Microdevices. Adv. Mater. Technol. 2017, 2, 1700163–1700174. [Google Scholar] [CrossRef]
- Campanhã Vicentini, F.; Ravanini, A.E.; Figueiredo-Filho, L.C.S.; Iniesta, J.; Banks, C.E.; Fatibello-Filho, O. Imparting improvements in electrochemical sensors: Evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim. Acta 2015, 157, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Kariuki, J.K. An electrochemical and spectroscopic characterisation of pencil graphite electrodes. J. Electrochem. Soc. 2012, 159, H747–H751. [Google Scholar] [CrossRef]
- King, D.; Friend, J.; Kariuki, J.K. Measuring vitamin C content of commercial orange juice using a pencil lead electrode. J. Chem. Ed. 2010, 87, 507–509. [Google Scholar] [CrossRef]
- Ji, X.; Banks, C.E.; Crossley, A.; Compton, R.G. Oxygenated Edge Plane Sites Slow the Electron Transfer of the Ferro-/Ferricyanide Redox Couple at Graphite Electrodes. Chem. Phys. Chem. 2006, 7, 1337–1344. [Google Scholar] [CrossRef]
- Grimaldi, A.; Heijo, G.; Mendez, E. A Multiple Evaluation Approach of Commercially Available Screen-Printed Nanostructured Carbon Electrodes. Electroanalysis 2014, 26, 1684–1693. [Google Scholar] [CrossRef]
- Wilke, N.; Baruzzi, A.M. Comparative analysis of the charge transfer processes of the [Ru(NH3)6]3+/[Ru(NH3)6]2+ and [Fe(CN)6 ]3−/[Fe(CN)6]4− redox couples on glassy carbon electrodes modified by different lipid layers. J. Electroanal. Chem. 2002, 537, 67–77. [Google Scholar] [CrossRef]
- Streeter, I.; Wildgoose, G.G.; Shao, L.; Compton, R.G. Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sens. Actuators B Chem. 2008, 133, 462–466. [Google Scholar] [CrossRef]
- Figueiredo-Filho, L.C.S.; Brownson, D.A.C.; Gomez-Mingot, M.; Iniesta, J.; Fatibello-Filho, O.; Banks, C.E. Exploring the electrochemical performance of graphitic paste electrodes: Graphene vs. graphite. Analyst 2013, 138, 6354. [Google Scholar] [CrossRef]
- Nayak, P.; Kurra, N.; Xia, C.; Alshareef, H.N. Highly Efficient Laser Scribed Graphene Electrodes for On-Chip Electrochemical Sensing Applications. Adv. Electron. Mater. 2016, 2, 1600185. [Google Scholar] [CrossRef]
- Kadara, R.O.; Jenkinson, N.; Li, B.; Church, K.H.; Banks, C.E. Manufacturing electrochemical platforms: Direct-write dispensing versus screen printing. Electrochem. Comm. 2008, 10, 1517–1519. [Google Scholar] [CrossRef]
- Ferro, S.; De Battisti, A. Electron transfer reactions at conductive diamond electrodes. Electrochim. Acta 2002, 47, 1641–1649. [Google Scholar] [CrossRef]
- Brownson, D.A.C.; Munro, L.J.; Kampouris, D.K.; Banks, C.E. Electrochemistry of Graphene; not such a beneficial electrode material? RSC Adv. 2011, 1, 978–988. [Google Scholar] [CrossRef]
- Van den Beld, W.T.E.; Odijk, M.; Vervuurt, R.H.J.; Weber, J.W.; Bol, A.A.; van den Berg, A.; Eijkel, J.C.T. In Situ Raman Spectroscopy to Elucidate the Influence of Adsorption in Graphene Electrochemistry. Sci. Reps. 2017, 7, 45080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, H.; McEvoy, N.; Keeley, G.P.; Callaghan, S.D.; McGuinness, C.; Duesberg, G.S. Nitrogen-doped pyrolytic carbon films as highly electrochemically active electrodes. Phys. Chem. Chem. Phys. 2013, 15, 18688. [Google Scholar] [CrossRef] [Green Version]
- Keeley, G.P.; McEvoy, N.; Kumar, S.; Peltekis, N.; Mausser, M.; Duesberg, G.S. Thin film pyrolytic carbon electrodes: A new class of carbon electrode for electroanalytical sensing applications. Electrochem. Comm. 2010, 12, 1034–1036. [Google Scholar] [CrossRef]
- Kampouris, D.K.; Banks, C.E. Exploring the physicoelectrochemical properties of graphene. Chem. Commun. 2010, 46, 8986–8988. [Google Scholar] [CrossRef]
- Metters, J.P.; Banks, C.E. Nanosensors for Chemical and Biological Applications. Sensing with Nanotubes, Nanowires and Nanoparticles; Woodhead Publishing Ltd.: London, UK, 2014. [Google Scholar]
- Randviir, E.P.; Brownson, D.A.C.; Gomez-Mingot, M.; Kampouris, D.K.; Iniesta, J.; Banks, C.E. Electrochemistry of Q-Graphene. Nanoscale 2012, 4, 6470–6480. [Google Scholar] [CrossRef]
- Keeley, G.P.; McEvoy, N.; Nolan, H.; Hozinger, M.; Cosnier, S.; Duesberg, G.S. Electroanalytical Sensing Properties of Pristine and Functionalized Multilayer Graphene. Chem. Mater. 2014, 26, 1807–1812. [Google Scholar] [CrossRef]
- Brownson, D.A.C.; Varey, S.A.; Hussain, F.; Haigh, S.J.; Banks, C.E. Electrochemical properties of CVD grown pristine graphene; monolayer vs. quasi graphene. Nanoscale 2014, 6, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Lounasvuori, M.M.; Rosillo-Lopez, M.; Salzmann, C.G.; Caruna, D.J.; Holt, K.B. Electrochemical characterisation of graphene nanoflakes with functional edges. Faraday Discuss. 2014, 172, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Prado Tavares, P.H.C.; Sanches Barbeira, P.J. Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes. J. Appl. Electrochem. 2008, 38, 827–832. [Google Scholar] [CrossRef]
- Feeney, R.; Kounaves, S.P. Determination of heterogeneous electron transfer rate constants at microfabricated iridium electrodes. Electrochem. Comm. 1999, 1, 453–458. [Google Scholar] [CrossRef]
- Bond, A.M.; Mashkina, E.A.; Simonov, A.N. Critical Review of the Methods Available for Quantitative Evaluation of Electrode Kinetics at Stationary Macrodisk Electrodes. In Developments in Electrochemistry Science Inspired by Martin Fleischmann; Pletcher, D., Tian, Z.-Q., Williams, D.E., Eds.; John Wiley and Sons: Chichester, UK, 2014; Chapter 2. [Google Scholar] [CrossRef]
- Sanchez-Amaya, M.; Bárcena-Soto, M.; Antaño-Lópe, R.; Rodríguez-Lópe, A.Z.; Angel Barragan, J.; Gutierrez-Becerra, A.; Roxana Larios-Durán, E. Effect of Wide Ranges of Polarization and Concentration on the Behavior of Ferricyanide/Ferrocyanide Systems Studied Through Electrochemical Measurements. Int. J. Electrochem. Sci. 2022, 17, 22016. [Google Scholar] [CrossRef]
- Huang, B.; Myint, K.H.; Wang, Y.; Zhang, Y.; Rao, R.R.; Sun, J.; Muy, S.; Katayama, Y.; Garcia, J.C.; Fraggedakis, D.; et al. Cation-dependent Interfacial Structures and Kinetics for Outer Sphere Electron Transfer Reactions. J. Phys. Chem. C 2021, 125, 4397. [Google Scholar] [CrossRef]
- Dumitrescu, I.; Unwin, P.R.; Macpherson, J.V. Electrochemistry at carbon nanotubes: Perspective and issues. Chem. Commun. 2009, 6886–6901. [Google Scholar] [CrossRef]
- Cassidy, J.; Howard, E.; Ronane, M.A.; O’Gorman, J. A Note on the Electrochemistry of Ferrocene Carboxylate. Electrochem. Comm. 1999, 1/2, 69–71. [Google Scholar] [CrossRef]
- Albery, J. Electrode Kinetics; Clarendon Press: Oxford, UK, 1976; p. 117. [Google Scholar]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Lavagnini, I.; Auliochia, R.; Magno, F. An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 2004, 16, 505–506. [Google Scholar] [CrossRef]
- Swaddle, T.W. Homogeneous versus Heterogeneous Self-Exchange Electron Transfer Reactions of Metal Complexes: Insights from Pressure Effects. Chem. Rev. 2005, 105, 2573–2608. [Google Scholar] [CrossRef]
- Rooney, M.B.; Coomber, D.C.; Bond, A.M. Achievement of Near-Reversible Behavior for the [Fe(CN)6]3−/4− Redox Couple Using Cyclic Voltammetry at Glassy Carbon, Gold, and Platinum Macrodisk Electrodes in the Absence of Added Supporting Electrolyte. Anal. Chem. 2000, 72, 3486–3491. [Google Scholar] [CrossRef]
- Simonov, A.N.; Morris, G.P.; Mashkina, E.A.; Bethwaite, B.; Gillow, K.; Baker, R.; Gavaghan, D.J.; Bond, A.M. Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit. Anal. Chem. 2014, 86, 8408–8417. [Google Scholar] [CrossRef]
- Fletcher, S.; Varley, T.S. Beyond the Butler–Volmer equation. Curved Tafel slopes from steady-state current–voltage curves. Phys. Chem. Chem. Phys. 2011, 13, 5359–5364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, G.P.; Simanov, A.N.; Mashkina, E.A.; Bordas, R.; Gillow, K.; Baker, R.E.; Gavaghan, D.J.; Bond, A.M. A comparison of fully automated methods of data analysis and computer assisted heuristic methods in an electrode kinetic study of pathologically variable [Fe(CN)6]]3−/4− process by AC voltammetry. Anal. Chem. 2013, 85, 11780–11787. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.; Simonov, A.N.; Zhang, J.; Bond, A.M.; Gavaghan, D. Separating the Effects of Experimental Noise from Inherent Systemility in Voltammetry: The [Fe(CN)6]3−/4− Process. Anal. Chem. 2019, 91, 1944–1953. [Google Scholar] [CrossRef] [Green Version]
- Gundry, L.; Kennedy, G.; Keith, J.; Robinson, M.; Gavaghan, D.; Bond, A.M.; Zhang, J. A Comparison of Bayesian Inference Strategies for Parameterisation of Large Amplitude AC Voltammetry Derived from Total Current and Fourier Transformed Versions. ChemElectroChem 2021, 8, 2238–2258. [Google Scholar] [CrossRef]
- Gavaghan, D.J.; Cooper, J.; Daly, A.C.; Gill, C.; Gillow, K.; Robinson, M.; Simonov, A.N.; Zhang, J.; Bond, A.M. Use of Bayesian Inference for Parameter Recovery in DC and AC Voltammetry. ChemElectroChem 2018, 5, 917–935. [Google Scholar] [CrossRef] [Green Version]
- Intan, N.N.; Pfaendtner, J. Composition of Oxygen Functional Groups on Graphite Surfaces. J. Phys. Chem. C 2022, 126, 10653–10667. [Google Scholar] [CrossRef]
- McDermott, C.A.; Kneten, K.R.; McCreery, R.L. Electron Transfer Kinetics of Aquated Fe3+/2+, Eu3+/2+ and V3+/2+ at Carbon Electrodes: Inner Sphere Catalysis by Surface Oxides. J. Electrochem. Soc. 1993, 140, 2593–2599. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Compton, R.G. Oxygen Reduction Reaction at Single Entity Multiwalled Carbon Nanotubes. J. Phys. Chem. Letts. 2022, 13, 3748–3753. [Google Scholar] [CrossRef]
- Banks, C.E.; Ji, X.; Crossley, A.; Compton, R.G. Understanding the Electrochemical Reactivity of Bamboo Multiwalled Carbon Nanotubes: The Presence of Oxygenated Species at Tube Ends May not Increase Electron Transfer Kinetics. Electroanalysis 2006, 18, 2137–2140. [Google Scholar] [CrossRef]
- Chou, A.; Böcking, T.; Singh, N.K.; Gooding, J.J. Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chem. Commun. 2005, 842–844. [Google Scholar] [CrossRef]
- Lai, S.C.; Patel, A.N.; McKelvey, K.; Unwin, P.R. Definitive Evidence for Fast Electron Transfer at Pristine Basal Plane Graphite from High-Resolution Electrochemical Imaging. Angew. Chem. Int. Ed. 2012, 51, 5405–5408. [Google Scholar] [CrossRef] [PubMed]
- Velický, M.; Toth, P.S.; Woods, C.; Novoselov, K.S.; Dryfe, R.A.W. Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. J. Phys. Chem. C 2019, 123, 11677–11685. [Google Scholar] [CrossRef]
- Banks, C.E.; Davies, T.J.; Wildgoose, G.G.; Compton, R.G. Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge-Plane Sites and Tube Ends Are the Reactive Sites. Chem. Commun. 2005, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Rice, R.J.; McCreery, R.L. Quantitative Relationship between Electron Transfer Rate and Surface Microstructure of Laser-Modified Graphite Electrodes. Anal. Chem. 1989, 61, 1637–1641. [Google Scholar] [CrossRef]
- Unwin, P.R.; Guell, A.G.; Zhang, G. Nanoscale Electrochemistry of sp2 Carbon Materials: From Graphite and Graphene to Carbon Nanotubes. Acc. Chem. Res. 2016, 49, 2041–2048. [Google Scholar] [CrossRef] [Green Version]
- Premkumar, J.; Khoo, S.B. Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes. J. Electroanal. Chem. 2005, 576, 105–112. [Google Scholar] [CrossRef]
- Noel, M.; Anantharaman, P.N. Voltammetric Studies on a Glassy Carbon Electrode Part II Factors Influencing the Simple Electron-transfer Reactions–the K3[Fe(CN)6] – K4 [Fe(CN)6] System. Analyst 1985, 110, 1095–1103. [Google Scholar] [CrossRef]
- Lee, S.J.; Theerthagiri, J.; Nithyadharseni, P.; Arunachalam, P.; Balaji, D.; Kumar, A.M.; Madhavan, J.; Mittal, V.; Choi, M.Y. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renew. Sustain. Energy Rev. 2021, 143, 110849. [Google Scholar] [CrossRef]
- Brownson, D.A.C.; Banks, C.E. The Handbook of Graphene Electrochemistry; Springer: Berlin/Heidelberg, Germany, 2014; Chapters 1,3. [Google Scholar]
- Brownson, D.A.C.; Kampouris, D.K.; Banks, C.E. Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 2012, 41, 6944–6976. [Google Scholar] [CrossRef]
- Punckt, C.; Pope, M.A.; Liu, J.; Lin, Y.; Aksay, I.A. Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization. Electroanalysis 2010, 22, 2834–2841. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Guo, D.; Yu, P.; Li, D.; Ye, J.; Mao, L. Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem. Comms. 2009, 11, 1892–1895. [Google Scholar] [CrossRef]
- Shang, N.G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S.S.; Marchetto, H. Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Adv. Funct. Mater. 2008, 18, 3506–3514. [Google Scholar] [CrossRef]
- Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater. 2009, 19, 2782–2789. [Google Scholar] [CrossRef]
- Lounasvuori, M.M.; Rosillo-Lopez, M.; Salzmann, C.; Caruana, D.J.; Holt, K.B. The influence of acidic edge groups on the electrochemical performance of graphene nanoflakes. J. Electroanal. Chem. 2015, 753, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.N.; Guille Collignon, M.; O’Connell, M.A.; Hung, W.O.Y.; McKelvey, K.; Macpherson, J.V.; Unwin, P.R. A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite. J. Am. Chem. Soc. 2012, 134, 20117–20130. [Google Scholar] [CrossRef] [PubMed]
- Beriet, C.; Pletcher, D. A microelectrode study of the mechanism and kinetics of the ferro/ferricyanide couple in aqueous media: The influence of the electrolyte and its concentration. J. Electroanal. Chem. 1993, 361, 93–101. [Google Scholar] [CrossRef]
- Kůta, J.; Yeager, E. The influence of cations on the electrode kinetics of ferricyanide-ferrocyanide system on the rotating gold electrode. J. Electroanal. Chem. Interfacial. Electrochem. 1975, 59, 110–112. [Google Scholar] [CrossRef]
- Bindra, P.; Gerischer, H.; Peter, L.M. The dependence of the rate of the Fe(CN)63−/Fe(CN)64− couple on ionic strength in concentrated solutions. J. Electroanal. Chem. Interfacial. Electrochem. 1974, 57, 435–438. [Google Scholar] [CrossRef]
- Campbell, S.A.; Peter, L.M. The effect of [K+] on the heterogeneous rate constant for the [Fe(CN)6]3−/[Fe(CN)6]4− redox couple investigated by a.c. impedance spectroscope. J. Electroanal. Chem. 1994, 364, 257–260. [Google Scholar] [CrossRef]
- Kawiak, J.; Kulesza, P.J.; Galus, Z. A search for conditions permitting model behavior of the Fe(CN)63−/4− system. J. Electroanal. Chem. Interfacial. Electrochem 1987, 226, 305–314. [Google Scholar] [CrossRef]
- Goldstein, E.L.; Van de Mark, M.R. Electrode cleaning and anion effects on ks for K3Fe(CN)6 couple. Electrochim. Acta 1982, 27, 1079–1085. [Google Scholar] [CrossRef]
- Kim, D.Y.; Wang, J.; Yang, J.; Kim, H.W.; Swain, G.M. Electrolyte and Temperature Effects on the Electron Transfer Kinetics of Fe(CN)6−3/−4 at Boron-Doped Diamond Thin Film Electrodes. J. Phys. Chem. C 2011, 115, 10026–10032. [Google Scholar] [CrossRef]
- McLean, J.D.; Timnick, A. Frumkin Double-Layer Corrections Applied to the Heterogeneous Rate Constants for Cd(ll) Evaluated by Alternating Current Polarography. Anal. Chem. 1967, 39, 1669–1671. [Google Scholar] [CrossRef]
- Schrattenecker, J.D.; Heer, R.; Melnik, E.; Maier, T.; Fafilek, G.; Hainberger, R. Hexaammineruthenium (II)/(III) as alternative redox-probe to Hexacyanoferrate (II)/(III) for stable impedimetric biosensing with gold electrodes. Biosens. Bioelect. 2019, 127, 25–30. [Google Scholar] [CrossRef]
- Lazar, J.; Schnelting, C.; Slavcheva, E.; Schnakenberg, U. Hampering of the Stability of Gold Electrodes by Ferri-/Ferrocyanide Redox Couple Electrolytes during Electrochemical Impedance Spectroscopy. Anal. Chem. 2016, 88, 682–687. [Google Scholar] [CrossRef]
- Dijksma, M.; Boukamp, B.A.; Kamp, B.; van Bennekom, W.P. Effect of Hexacyanoferrate(II/III) on Self-Assembled Monolayers of Thioctic Acid and 11-Mercaptoundecanoic Acid on Gold. Langmuir 2002, 18, 3105–3112. [Google Scholar] [CrossRef]
- Hua, X.; Xia, H.-L.; Long, Y.-T. Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: Where does the gold go? Chem. Sci. 2019, 10, 6215–6219. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, M.; Graves, P.R.; Robinson, J. The raman spectroscopy of the ferricyanide/ferrocyanide system at gold, β-palladium hydride and platinum electrodes. J. Electroanal. Chem. Interf. Electrochem. 1985, 182, 87–98. [Google Scholar] [CrossRef]
- Korzeniewski, C.; Severson, V.M.W.; Schmidt, P.P.; Pons, S.; Fleischmann, M. Theoretical Analysis of the Vibrational Spectra of Ferricyanide and Ferrocyanide Adsorbed on Metal Electrodes. J. Phys. Chem. 1987, 91, 5568–5573. [Google Scholar] [CrossRef]
- Kulesza, P.; Jędral, T.; Galus, Z. The electrode kinetics of the Fe(CN)63−/Fe(CN)64− system on the platinum rotating electrode in the presence of different anions. J. Electroanal. Chem. Interf. Electrochem. 1980, 108, 141–149. [Google Scholar] [CrossRef]
- Dourado, A.H.B. Review Electric Double Layer: The Good, the Bad, and the Beauty. Electrochem 2022, 3, 789–808. [Google Scholar] [CrossRef]
- Jenkins, H.D.B.; Thakur, K.P. Reappraisal of Thermochemical Radii for Complex Ions. J. Chem. Ed. 1979, 56, 576–577. [Google Scholar] [CrossRef]
- Kneten, K.R.; McCreery, R.L. Effects of redox system structure on electron transfer kinetics at ordered graphite and glassy carbon electrodes. Anal. Chem. 1992, 64, 2518–2524. [Google Scholar]
- Pumera, M. Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochem. Comm. 2013, 36, 14–18. [Google Scholar] [CrossRef]
- Tan, C.; Rodríguez-López, J.; Parks, J.J.; Ritzert, N.L.; Ralph, D.C.; Abruna, H.D. Reactivity of Monolayer Chemical Vapor Deposited Graphene Imperfections Studied Using Scanning Electrochemical Microscopy. ACS Nano 2012, 6, 3070–3079. [Google Scholar] [CrossRef]
- McDermott, M.T.; Kneten, K.; McCreery, R. Anthraquino-nedisulfonate Adsorption, Electron-Transfer Kinetics, and Capacitance on Ordered Graphite Electrodes: The Important Role of Surface Defects. J. Phys. Chem. 1992, 96, 3124–3130. [Google Scholar] [CrossRef]
- Dong, J.; Sheng, Z.; Xue, G. Fourier Transform Surface Enhanced Raman Scattering Study of Ferricyanide on Silver. Spectros. Letts. 1995, 28, 139–151. [Google Scholar] [CrossRef]
- Datta, M.; Datta, A. In situ FTIR and XPS studies of hexacyanoferrate redox systems. J. Phys. Chem. 1990, 94, 8203–8207. [Google Scholar] [CrossRef]
- Pharr, C.M.; Griffiths, P.R. Infrared Spectroelectrochemical Analysis of Adsorbed Hexacyanoferrate Species Formed during Potential Cycling in the Ferrocyanide/Ferricyanide Redox Couple. Anal. Chem. 1997, 69, 4673–4679. [Google Scholar] [CrossRef]
- Ganesan, A.; Zimudzi, T.J.; Pothanamkandathi, V.; Gorski, C.A.; Hall, D.M. Spectroelectrochemical Examination of the Ferro-Ferricyanide Redox Reaction: Impacts of Electrode Thickness and Applied Potential. J. Electrochem. Soc. 2022, 169, 106501. [Google Scholar] [CrossRef]
- Piechota, E.J.; Meyer, G.J. Introduction to Electron Transfer: Theoretical Foundations and Pedagogical Examples. J. Chem. Educ. 2019, 96, 2450–2466. [Google Scholar] [CrossRef]
- Krejci, J.; Sajdlova, Z.; Nedela, V.; Flodrova, E.; Sejnohova, R.; Vranova, H.; Plicka, R. Effective Surface Area of Electrochemical Sensors. J. Electrochem. Soc. 2014, 161, B147–B150. [Google Scholar] [CrossRef]
- De Carvalho, R.C.; Betts, A.J.; Cassidy, J.F. Sodium diclofenac determination using CeO2 nanoparticle modified screenprinted electrodes—A study of background correction. Microchem. J. 2020, 158, 105258. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumara, P.; Mobin, S.M. A highly sensitive and selective hydroquinone, sensor based on a newly designed N-rGO/SrZrO3 composite. Nanoscale. Adv. 2020, 2, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.; Luiz, G.M.; Machado, S.A.S. Estimating the Electrochemically Active Area: Revisiting a Basic Concept in Electrochemistry. J. Braz. Chem. Soc. 2021, 32, 1912–1917. [Google Scholar] [CrossRef]
- Killedar, L.S.; Shanbhag, M.M.; Shetti, N.P.; Malode, S.J.; Veerapur, R.S.; Reddy, K.R. Novel graphene-nanoclay hybrid electrodes for electrochemical determination of theophylline. Microchem. J. 2021, 165, 106115. [Google Scholar] [CrossRef]
- Mariyappan, V.; Karuppusamy, N.; Chen, S.-M.; Raja, P.; Ramachandran, P. Electrochemical determination of quercetin using glassy carbon electrode modified with WS2/GdCoO3 nanocomposite. Microchim. Acta 2022, 189, 118. [Google Scholar] [CrossRef]
- Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Comms. 2013, 4, 2390. [Google Scholar] [CrossRef] [Green Version]
- Savéant, J.-M.; Tessier, D. Variation of the Electrochemical Transfer Coefficient with Potential. Faraday Discuss. Chem. Soc. 1982, 74, 57–72. [Google Scholar] [CrossRef]
- Watson, D.F.; Bocarsly, A.B. The effects of electronic coupling and solvent broadening on the intervalent electron transfer of a centrosymmetric mixed-valence complex. Coord. Chem. Revs. 2001, 211, 177–194. [Google Scholar] [CrossRef]
- Seri, O. Kinetic parameter determination of ferri/ferrocyanide redox reaction using differentiating polarization curve technique. Electrochim. Acta 2019, 323, 134776. [Google Scholar] [CrossRef]
- Khadke, P.; Tichter, T.; Boettcher, T.; Muench, F.; Ensinger, W.; Roth, C. A simple and effective method for the accurate extraction of kinetic parameters using differential Tafel plots. Sci. Reps. 2021, 11, 8974. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S. Tafel slopes from first principles. J. Solid State Electrochem. 2009, 13, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Savéant, J.-M. Effect of Ion Pairing on the Mechanism and Rate of Electron Transfer. Electrochemical Aspects. J. Phys. Chem. B 2001, 105, 8995–9001. [Google Scholar] [CrossRef]
- Zhen, F.; Percevault, L.; Paquin, L.; Limantion, E.; Lagrost, C.; Hapiot, P. Electron Transfer Kinetics in a Deep Eutectic Solvent. J. Phys. Chem. B 2020, 124, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, N.; Hartley, J.; Frisch, G. Voltammetric and spectroscopic study of ferrocene and hexacyanoferrate and the suitability of their redox couples as internal standards in ionic liquids. Phys. Chem. Chem. Phys. 2017, 19, 28841–28852. [Google Scholar] [CrossRef] [Green Version]
- Iamprasertkun, P.; Ejigu, A.; Dryfe, R.A.W. Understanding the electrochemistry of “water-insalt” electrolytes: Basal plane highly ordered pyrolytic graphite as a model system. Chem. Sci. 2020, 11, 6978–6989. [Google Scholar] [CrossRef]
- Peter, L.M.; Dürr, W.; Bindra, P.; Gerischer, H. The influence of alkali metal cations on the rate of the ferrocyanide/ferricyanide electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 1976, 71, 31–50. [Google Scholar] [CrossRef]
Electrode Material | Year | Assignment | Attributes k0 cm/s and ΔEp/mV | Deoxy-Genated * | Supporting Electrolyte/Scan Rate | Reference |
---|---|---|---|---|---|---|
Nanosized graphite sheets in a carbon film | 2018 | Inner | k0 = 0.026–0.09 71 < ΔEp < 145 | Yes | 1 M KCl 0.1 V/s | [15] |
Boron doped carbon electrodes (500–8000 ppm) | 2017 | Inner | k0 = 3.75 × 10−5–2.07 × 10−2 59 < ΔEp < 87 | No | 1 M KCl 0.025–0.3 V/s | [45] |
Au nanocatalyst on ITO | 2016 | Outer | --- | No | PBS pH 7.4 0.02 V/s | [46] |
Reduced graphene oxide/Nafion composite | 2019 | Outer | 28 < ΔEp < 133 | Yes | 0.1M KCl 0.1–0.4 V/s | [47] |
HOPG with droplet cell configuration | 2015 | Outer | k0 > 0.46 ± 0.03 | No | 0.1 M KCl 2–10 V/s | [48] |
Graphite and graphene flakes with different flake sizes in nujol | 2018 | Inner | k0 = 6.04 × 10−5–1.93 × 10−3 105 < ΔEp < 833 | Yes | 0.1 M KCl 0.1 V/s | [16] |
Thin graphene layer on Au | 2016 | Outer | k0 = 4 × 10−4–1.4 × 10−2 | No | 0.1 M KNO3 0.1 V/s | [23] |
Single walled nanohorns | 2019 | Inner | k0 = 5.59 × 10−2 ΔEp = 71 | Yes | 0.1 M KCl 0.25–0.3 V/s | [17] |
BDD | 2004 | Outer | k0 = 2 × 10−5–4 × 10−4 930 < ΔEp < 1420 | No | 0.5 M H2SO4 0.1 V/s | [49] |
Diamond graphite composite | 2003 | Outer | 120 < ΔEp < 430 | No | 0.5 M H2SO4 0.1 V/s | [24] |
BDD | 1999 | Inner | 70 < ΔEp < 198 | Yes | 1 M KCl and 50 mM phosphate Buffer pH 7.2 0.1 V/s | [50] |
Pt ultramicro-electrodes | 2002 | --- | adsorbed hexacyanoferrate- steady state voltammetry | Yes | 0.1 M KCl 0.01 V/s | [22] |
Carbon silicon films | 2017 | Inner | k0 = 5.4 × 10−3 | No | 0.1 M KCl 0.05 V/s | [51] |
Carbon black/chitosan composite | 2015 | Inner | 63.4 < ΔEp < 452 | No | 0.1 M KCl 0.05 V/s | [52] |
Pt nanofluidic recycling cell | 2014 | Outer | Based on power spectral density data, Hexammine Ru(III) adsorbed more than hexacyano-ferrate III | No | - | [20] |
Laser scribed graphene | 2014 | Inner | k0 = 2.373 × 10−2 to 3.3 × 10−4 59 < ΔEp < 176 | No | 0 M KCl 0.01 V/s | [19] |
Pencil Graphite Electrode | 2012 | - | 75 < ΔEp < 741 | Yes | 1 M KCl 0.1 V/s | [53] |
GC, PGE, HOPG | 2010 | - | 80 < ΔEp < 220 | Yes | 0 M KCl 0.1 V/s | [54] |
BDD, GC, SPCE | 2003 | - | k0 = 1.67 × 10−5–5.5 × 10−2 | No | 1 M KCl | [29] |
HOPG with oxygenated edge planes | 2006 | Inner | Basal plane 227 < ΔEp < 596 Edge plane 89 < ΔEp < 137 | Yes | 0.1 M KCl 0.1 V/s | [55] |
Basal plane HOPG with 10–20% Edge planes | 2011 | Inner | Organic solvent affects k0 = ~0.02 (without MeCN), 4 × 10−5 (NaCl), 4 × 10−6 (KCl) 8.5 × 10−3 (CsCl) | Yes | 0.1 M salts (NaCl, KCl, CsCl) 0.1 V/s | [18] |
Nanotubes on carbon screen printed electrodes | 2014 | Inner | Graphite k0 = 5.76 × 10−3 SWCNT k0 = 10.7 × 10−3 MWCNT k0 = 7.5 × 10−3 | Yes | 0.1 M KCl 0.05–0.1 V/s | [56] |
GC Electrodes with lipid layers | 2002 | Outer | - | No | 20 mM NaNO3 and 3 mM CaCl2 0.1 V/s | [57] |
SWCNT on GC | 2008 | - | Thin layer behaviour | No | 0.1 M KCl 0.01–0.7 V/s | [58] |
Graphene paste Graphite paste | 2013 | Inner | ΔEp = 153.8 ΔEp = 393.1 | Yes | 0.1 M KCl 0.1 V/s | [59] |
Laser scribed graphene on chip | 2016 | Inner | k0 = 0.115 (LSG) k0 = 0.282 (Pt/LSG) ΔEp = 86 (LSG) ΔEp = 71 Pt LSG) | No | 0.1 M KCl 0.05–0.15V/s | [60] |
Inkjet carbon-graphite ink | 2008 | Outer | ΔEp = 136 ± 14 (Direct Write) k0 = 2.4 × 10−3 ΔEp = 153 ± 8 (Screen Printed) k0 = 1.9 × 10−3 | No | 1 M KCl 0.01–0.1 V/s | [61] |
Boron doped carbon | 2002 | Inner | ΔEp = 673–716 | No | 0 M KCl 0.1 V/s | [62] |
Graphene on Au coated Si (SECM) | 2016 | Outer | k0 = 4.0 × 10−4– 1.4 × 10−2 | No | 0.1 MKNO3 0.1 V/s | [23] |
HOPG (EPPG/BPPG) Graphene Graphite | 2011 | Inner | ΔEp = 60 (EPPG) ΔEp = 242 (BPPG) ΔEp = 192 (HOPG /graphene) ΔEp = 66 (HOPG/Graphite) | No | 1 M KCl 0.1 V/s | [63] |
Graphene | 2017 | Inner | ΔEp = 400–900 | No | 0.1 M KNO3 0.025 V/s | [64] |
N-doped Pyrolytic Carbon | 2013 | Inner | ΔEp = 71.7 k0 = 4.4 × 10−2 | Yes | 1 M KCl 0.1 V/s | [65] |
Pyrolytic Carbon | 2010 | - | ΔEp = 80 k0 = 1.3 × 10−2 | Yes | 1 M KCl 0.1 V/s | [66] |
HOPG and Graphene | 2010 | Outer | ΔEp = 67 (HOPG edge plane) ΔEp = 238 (HOPG basal plane) ΔEp = 122 (HOPG + Graphene) | No | 1 M KCl 0.1 V/s | [67] |
Diamond/graphite | 2003 | Outer | 120 < ΔEp430 | No | 0.5 M H2SO4 0.1 V/s | [24] |
SPCE | 2009 | Outer | 98 < ΔEp < 466 | No | 1 M KCl 0.1 V/s | [30] |
Screen Printed SWCNT | 2013 | Outer | k0 = 1.1 × 10−3 (SPCE) k0 = 1.4 × 10−3 (with SWCNT) | No | 0.1 M KCl 0.01–0.4 V/s | [68] |
Q-graphene | 2012 | Inner | 68 < ΔEp < 432 4.66 × 10−3 < k0 < 1.86 × 10−2 | Yes | 1 M KCl 0.05 V/s | [69] |
Multilayer graphene, BPPG, EPPG | 2014 | Inner | - | Yes | 1 M KCl 0.05 V/s | [70] |
Graphene | 2014 | Inner | 98 < ΔEp < 190 (EPPG and BPPG) ΔEp = 1148 (m-Graphene) ΔEp = 1243 (q-Graphene) | Yes | 0.1 M KCl 0.1 V/s | [71] |
BDD and amide and carboxyl Graphene nanoflakes | 2014 | - | ΔEp = 65 (BDD) 109 < ΔEp < 250 (c-GNF) ΔEp = 70 (a-GNF) | Yes | 0.01–1.0 M KCl and 0.1 M K2HPO4 0.05 V/s | [72] |
PGE | 2008 | - | ΔEp = 90–450 | Yes | 1 M KCl 0.1 V/s | [73] |
Iridium | 1999 | - | ΔEp = 74.4 k0 = 7.2 × 10−2 | No | 1 M KNO3 3.5 V/s | [74] |
Pt and GC | 2013 | Outer | ΔEp = 66 (Pt), ΔEp = 86 (GC) k0 = 4.1 × 10−2(Pt) k0 = 1.2 × 10−2 (GC) | No | 1.0 M KCl 0.2 V/s | [26] |
GC | 2014 | - | 87 < ΔEp < 172 k0 = 5 × 10−3 to 8 × 10−3 | No | 1.0 M KCl 0.89–1.0 V/s | [75] |
Pt | 2022 | - | 71 < ΔEp < 135 1 mM–100 mM Fe(CN)63−/Fe(CN)64− | No | 0.1 M K2SO4 0.01 V/s | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassidy, J.F.; de Carvalho, R.C.; Betts, A.J. Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study. Electrochem 2023, 4, 313-349. https://doi.org/10.3390/electrochem4030022
Cassidy JF, de Carvalho RC, Betts AJ. Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study. Electrochem. 2023; 4(3):313-349. https://doi.org/10.3390/electrochem4030022
Chicago/Turabian StyleCassidy, John F., Rafaela C. de Carvalho, and Anthony J. Betts. 2023. "Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study" Electrochem 4, no. 3: 313-349. https://doi.org/10.3390/electrochem4030022
APA StyleCassidy, J. F., de Carvalho, R. C., & Betts, A. J. (2023). Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study. Electrochem, 4(3), 313-349. https://doi.org/10.3390/electrochem4030022