Electrodeposition of Silicon Fibers from KI–KF–KCl–K2SiF6 Melt and Their Electrochemical Performance during Lithiation/Delithiation
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miao, J. Review on Electrode Degradation at Fast Charging of Li-Ion and Li Metal Batteries from a Kinetic Perspective. Electrochem 2023, 4, 156–180. [Google Scholar] [CrossRef]
- Wang, F.; Li, P.; Li, W.; Wang, D. Electrochemical Synthesis of Multidimensional Nanostructured Silicon as a Negative Electrode Material for Lithium-Ion Battery. ACS Nano 2022, 16, 7689–7700. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Yang, W.; Jin, C.; Shi, B.; Xu, G.; Yue, Z.; Li, Y.; Sun, F.; Zhou, L. Preparation of Porous Silicon by Ag-assisted Chemical Etching in Non-Filling Type Carbon Shell for High Performance Lithium-Ion Batteries. Solid State Sci. 2023, 145, 107329. [Google Scholar] [CrossRef]
- Stokes, K.; Flynn, G.; Geaney, H.; Bree, G.; Ryan, K.M. Axial Si–Ge Heterostructure Nanowires as Lithium-Ion Battery Anodes. Nano Lett. 2018, 18, 5569–5575. [Google Scholar] [CrossRef] [PubMed]
- Kulova, T.L. New Electrode Materials for Lithium-Ion Batteries (Review). Rus. J. Electrochem. 2013, 49, 1–25. [Google Scholar] [CrossRef]
- Hata, M.; Tanaka, T.; Kato, D.; Kim, J.; Yonezawa, S. Preparation of LiNiO2 Using Fluorine-modified NiO and Its Charge-discharge Properties. Electrochemistry 2021, 89, 223–229. [Google Scholar] [CrossRef]
- Purwanto, A.; Muzayanha, S.U.; Yudha, C.S.; Widiyandari, H.; Jumari, A.; Dyartanti, E.R.; Nizam, M.; Putra, M.I. High Performance of Salt-Modified–LTO Anode in LiFePO4 Battery. Appl. Sci. 2020, 10, 7135. [Google Scholar] [CrossRef]
- Saddique, J.; Wu, M.; Ali, W.; Xu, X.; Jiang, Z.-G.; Tong, L.; Zheng, H.; Hu, W. Opportunities and Challenges of Nano Si/C Composites in Lithium Ion Battery: A Mini Review. J. Alloys Comp. 2024, 978, 173507. [Google Scholar] [CrossRef]
- Galashev, A.Y. Molecular Dynamic Study of the Applicability of Silicene Lithium Ion Battery Anodes: A Review. Electrochem. Mat. Techn. 2023, 2, 20232012. [Google Scholar] [CrossRef]
- Li, P.; Hwang, J.; Sun, Y. Nano/microstructured Silicon–Graphite Composite Anode for High-energy-density Li-Ion Battery. ACS Nano 2019, 13, 2624–2633. [Google Scholar] [CrossRef] [PubMed]
- Salah, M.; Hall, C.; Murphy, P.; Francis, C.; Kerr, R.; Stoehr, B.; Rudd, S.; Fabretto, M. Doped and Reactive Silicon Thin Film Anodes for Lithium Ion Batteries: A review. J. Power Sources 2021, 506, 230194. [Google Scholar] [CrossRef]
- Graetz, J.; Ahn, C.C.; Yazami, R.; Fultz, B. Highly Reversible Lithium Storage in Nanostructured Silicon. Electrochem. Solid-State Lett. 2003, 6, A194–A197. [Google Scholar] [CrossRef]
- Iaboni, D.S.M.; Obrovac, M.N. Li15Si4 Formation in Silicon Thin Film Negative Electrodes. J. Electrochem. Soc. 2016, 163, A255–A261. [Google Scholar] [CrossRef]
- Trofimov, A.A.; Leonova, A.M.; Leonova, N.M.; Gevel, T.A. Electrodeposition of Silicon from Molten KCl–K2SiF6 for Lithium-Ion Batteries. J. Electrochem. Soc. 2022, 169, 020537. [Google Scholar] [CrossRef]
- Prosini, P.P.; Rufoloni, A.; Rondino, F.; Santoni, A. Silicon Nanowires Used as the Anode of a Lithium-Ion Battery. AIP Conf. Proc. 2015, 1667, 020008. [Google Scholar] [CrossRef]
- Padamata, S.K.; Saevarsdottir, G. Silicon Electrowinning by Molten Salts Electrolysis. Front. Chem. 2023, 11, 1133990. [Google Scholar] [CrossRef]
- Dong, Y.; Slade, T.; Stolt, M.J.; Li, L.; Girard, S.N.; Mai, L.; Jin, S. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO3. Angew. Chem. 2017, 129, 14645–14649. [Google Scholar] [CrossRef]
- Pavlenko, O.B.; Ustinova, Y.A.; Zhuk, S.I.; Suzdaltsev, A.V.; Zaikov, Y.P. Silicon Electrodeposition from Low-Melting LiCl–KCl–CsCl Melts. Rus. Met. 2022, 2022, 818–824. [Google Scholar] [CrossRef]
- Zaykov, Y.P.; Zhuk, S.I.; Isakov, A.V.; Grishenkova, O.V.; Isaev, V.A. Electrochemical Nucleation and Growth of Silicon in the KF–KCl–K2SiF6 Melt. J. Solid State Electrochem. 2015, 19, 1341–1345. [Google Scholar] [CrossRef]
- Kuznetsova, S.V.; Dolmatov, V.S.; Kuznetsov, S.A. Voltammetric Study of Electroreduction of Silicon Complexes in a Chloride–Fluoride Melt. Russ. J. Electrochem. 2009, 45, 742–748. [Google Scholar] [CrossRef]
- Yasuda, K.; Kato, T.; Norikawa, Y.; Nohira, T. Silicon Electrodeposition in a Water-Soluble KF–KCl Molten Salt: Properties of Si Films on Graphite Substrates. J. Electrochem. Soc. 2021, 168, 112502. [Google Scholar] [CrossRef]
- Abdurakhimova, R.K.; Laptev, M.V.; Leonova, N.M.; Leonova, A.M.; Schmygalev, A.S.; Suzdaltsev, A.V. Electroreduction of Silicon from the NaI–KI–K2SiF6 Melt for Lithium-Ion Power Sources. Chim. Techno Acta 2022, 9, 20229424. [Google Scholar] [CrossRef]
- Laptev, M.V.; Khudorozhkova, A.O.; Isakov, A.V.; Grishenkova, O.V.; Zhuk, S.I.; Zaikov, Y.P. Electrodeposition of Aluminum-Doped Thin Silicon Films from a KF–KCl–KI–K2SiF6–AlF3 Melt. J. Serb. Chem. Soc. 2021, 86, 1075–1087. [Google Scholar] [CrossRef]
- Zhao, X.; Lehto, V.-P. Challenges and Prospects of Nanosized Silicon Anodes in Lithium-Ion Batteries. Nanotechnology 2021, 32, 042002. [Google Scholar] [CrossRef]
- Guo, J.; Dong, D.; Wang, J.; Liu, D.; Yu, X.; Zheng, Y.; Wen, Z.; Lei, W.; Deng, Y.; Wang, J.; et al. Silicon-Based Lithium Ion Battery Systems: State-of-the-art from Half and Full Cell Viewpoint. Adv. Funct. Mater. 2021, 31, 2102546. [Google Scholar] [CrossRef]
- Mu, T.; Lou, S.; Holmes, N.G.; Wang, C.; He, M.; Shen, B.; Lin, X.; Zuo, P.; Ma, Y.; Li, R.; et al. Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers. ACS Appl. Mater. Interfaces 2021, 13, 4093–4101. [Google Scholar] [CrossRef]
- Veith, G.M.; Doucet, M.; Sacci, R.L.; Vacaliuc, B.; Baldwin, J.K.; Browning, J.F. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive. Sci. Rep. 2017, 7, 6326. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Wang, X.; Wang, D.; Li, Y.; Fu, J.; Zhang, R.; Liu, Z.; Zhou, Y.; Wen, G. Designing Compatible Ceramic/Polymer Composite Solid-State Electrolyte for Stable Silicon Nanosheet Anodes. Small 2024, in press. [CrossRef]
- Gu, L.; Han, J.; Chen, M.; Zhou, W.; Wang, X.; Xu, M.; Lin, H.; Liu, H.; Chen, H.; Chen, J.; et al. Enabling Robust Structural and Interfacial Stability of Micron-Si Anode Toward High-Performance Liquid and Solid-State Lithium-Ion Batteries. Energy Storage Mat. 2022, 52, 547–561. [Google Scholar] [CrossRef]
- Na, I.; Kim, H.; Kunze, S.; Nam, C.; Jo, S.; Choi, H.; Oh, S.; Choi, E.; Song, Y.B.; Jung, Y.S.; et al. Monolithic 100% Silicon Wafer Anode for All-Solid-State Batteries Achieving High Areal Capacity at Room Temperature. ACS Energy Lett. 2023, 8, 1936–1943. [Google Scholar] [CrossRef]
- Hossain, H.M.; Chowdhury, M.A.; Hossain, N.; Md. Islam, A.; Md. Mobarak, H.; Hasan, M.; Khan, J. Advances on Synthesis and Performance of Li-Ion Anode Batteries-a Review. Chem. Eng. J. Adv. 2024, 17, 100588. [Google Scholar] [CrossRef]
- Yudha, C.S.; Sari, E.P.; Dewi, D.K.; Paramitha, T.; Suci, W.G. Utilization of Coal Fly-Ash derived Silicon (Si) as Capacity Enhancer of Li-Ion Batteries Anode Material. E3S Web Conf. 2024, 481, 01007. [Google Scholar] [CrossRef]
- Kuang, H.; Xiao, L.; Lai, Y.; Shen, L.; Zhou, A.; Wu, J.; Zhu, Y. Effect of Si Doping and Active Carbon Surface Modifications on the Structure and Electrical Performance of Li4Ti5O12 Anode Material for Lithium-Ion Batteries. Ionics 2024, in press. [CrossRef]
- Sun, B.; Wang, S.; Zhou, S.; Liu, J.; Mao, C.; Liu, K.; Fan, H.; Xie, J.; Song, J. Biomimetics-Inspired Architecture Enables the Strength–Toughness of Ultrahigh-Loading Silicon Electrode. Adv. Funct. Mater. 2024, in press. [CrossRef]
- Kumaran, B.; Bhairuba Ikhe, A.; Pyo, M. Silicon Nanoparticles Encapsulated in Si3N4/Carbon Sheaths as an Anode Material for Lithium-Ion Batteries. Nanotechnology 2023, 34, 255401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonova, A.; Leonova, N.; Minchenko, L.; Suzdaltsev, A. Electrodeposition of Silicon Fibers from KI–KF–KCl–K2SiF6 Melt and Their Electrochemical Performance during Lithiation/Delithiation. Electrochem 2024, 5, 124-132. https://doi.org/10.3390/electrochem5010008
Leonova A, Leonova N, Minchenko L, Suzdaltsev A. Electrodeposition of Silicon Fibers from KI–KF–KCl–K2SiF6 Melt and Their Electrochemical Performance during Lithiation/Delithiation. Electrochem. 2024; 5(1):124-132. https://doi.org/10.3390/electrochem5010008
Chicago/Turabian StyleLeonova, Anastasia, Natalia Leonova, Lyudmila Minchenko, and Andrey Suzdaltsev. 2024. "Electrodeposition of Silicon Fibers from KI–KF–KCl–K2SiF6 Melt and Their Electrochemical Performance during Lithiation/Delithiation" Electrochem 5, no. 1: 124-132. https://doi.org/10.3390/electrochem5010008
APA StyleLeonova, A., Leonova, N., Minchenko, L., & Suzdaltsev, A. (2024). Electrodeposition of Silicon Fibers from KI–KF–KCl–K2SiF6 Melt and Their Electrochemical Performance during Lithiation/Delithiation. Electrochem, 5(1), 124-132. https://doi.org/10.3390/electrochem5010008