Modelling Prospects of Bio-Electrochemical Immunosensing Platforms
Abstract
:1. Introduction
2. Principle of an Electrochemical Immunosensor
3. Designing of Diagnostic/Sensor Platform
3.1. Nanomaterials-Based Modified Platform
3.2. Functional Model of Bonding between the Protein and the Underlying Electrode Surface
4. Applications of Real-Time Electrochemical Screening of Protein of Interest: Market Study
5. Conclusions, Discussion, and Future Outlook
Funding
Conflicts of Interest
References
- Gandhi, M.; Khairunnisa, A. Electrochemical Profiling of Plants. Electrochem 2022, 3, 434–450. [Google Scholar] [CrossRef]
- Kubota, L.T.; da Silva, J.A.F.; Sena, M.M.; Alves, W.A. Tools and Trends in Bioanalytical Chemistry; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Goldfarb, J.L.; Dou, G.; Salari, M.; Grinstaff, M.W. Biomass-Based Fuels and Activated Carbon Electrode Materials: An Integrated Approach to Green Energy Systems. ACS Sustain. Chem. Eng. 2017, 5, 3046–3054. [Google Scholar] [CrossRef]
- Wu, H.; Gong, Y.; Yu, Y.; Huang, K.; Wang, L. Superior “green” electrode materials for secondary batteries: Through the footprint family indicators to analyze their environmental friendliness. Environ. Sci. Pollut. Res. 2019, 26, 36538–36557. [Google Scholar] [CrossRef] [PubMed]
- Min, J.K.; Jung, Y.; Ahn, J.; Lee, J.G.; Lee, J.; Ko, S.H. Recent Advances in Biodegradable Green Electronic Materials and Sensor Applications. Adv. Mater. 2023, 35, 2211273. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Ouyang, L.; Chen, H.; Zhang, G.; Zhe, J. Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles. Biosensors 2023, 13, 474. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Rajagopal, D.; Parthasarathy, S.; Raja, S.; Huang, S.T.; Senthil Kumar, A. In Situ Immobilized Sesamol-Quinone/Carbon Nanoblack-Based Electrochemical Redox Platform for Efficient Bioelectrocatalytic and Immunosensor Applications. ACS Omega 2018, 3, 10823–10835. [Google Scholar] [CrossRef] [PubMed]
- Vishnu, N.; Gandhi, M.; Rajagopal, D.; Kumar, A.S. Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples. Anal. Methods 2017, 9, 2265–2274. [Google Scholar] [CrossRef]
- Gandhi, M.; Vishnu, N.; Katari, N.K. Nanomaterial-Modified Pencil Graphite Electrode as a Multiplexed Low-Cost Point of Care Device. In Smart Nanodevices for Point-of-Care Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Haseeb, A. Monoplex and multiplex immunoassays: Approval, advancements, and alternatives. Comp. Clin. Pathol. 2022, 31, 333–345. [Google Scholar]
- Yeonjeong, H.; Ijung, K. Recent Developments in Innovative Magnetic Nanoparticles-Based Immunoassays: From Improvement of Conventional Immunoassays to Diagnosis of COVID-19. BioChip J. 2022, 16, 351–365. [Google Scholar]
- Fowler, J.M.; Danny, K.Y.W.; Halsall, H.B.; Heineman, W.R. Recent developments in electrochemical immunoassays and immunosensors. In Electrochemical Sensors, Biosensors and their Biomedical Applications; Academic Press: Cambridge, MA, USA, 2008; pp. 115–143. [Google Scholar]
- Guidi, A.; Laricchia-Robbio, L.; Gianfaldoni, D.; Revoltella, R.; Bono, D.G. A Comparison of a conventional immunoassay (ELISA) with a surface plasmon resonance-based biosensor for IGF-1 detection in cows’ milk. Biosens. Bioelectron. 2001, 16, 971–977. [Google Scholar] [CrossRef]
- Samper, I.C.; McMahon, C.J.; Schenkel, M.S.; Clark, K.M.; Khamcharoen, W.; Anderson, L.B.R.; Terry, J.S.; Gallichotte, E.N.; Ebel, G.D.; Geiss, B.J.; et al. Electrochemical Immunoassay for the Detection of SARS-CoV-2 Nucleocapsid Protein in Nasopharyngeal Samples. Anal. Chem. 2022, 94, 4712–4719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Chai, F.; Li, Q.; Wang, D.; Liu, L.; Tang, B.Z.; Jiang, X. Ultrasensitive point-of-care biochemical sensor based on metal-AIEgen frameworks. Sci. Adv. 2022, 8, eabo1874. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Song, X. An Electrochemical-Based Point-of-Care Testing Methodology for Uric Acid Measurement. J. Anal. Methods Chem. 2022, 2022, 8555842. [Google Scholar] [CrossRef] [PubMed]
- Macovei, D.G.; Irimes, M.B.; Hosu, O.; Cristea, C.; Tertis, M. Point-of-care electrochemical testing of biomarkers involved in infammatory and infammatory-associated medical conditions. Anal. Bioanal. Chem. 2023, 415, 1033–1063. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ju, H. Clinical Immunoassays and Immunosensing. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 3, pp. 143–167. [Google Scholar]
- Ozer, T.; Geiss, B.J.; Henry, C.S. Review—Chemical and Biological Sensors for Viral Detection. J. Electrochem. Soc. 2020, 167, 037523. [Google Scholar] [CrossRef] [PubMed]
- Siqi Zhao, S.; Huang, J.; Li, D.; Yang, L. Aptamer-based chemiluminescent optical fiber immunosensor with enhanced signal amplification for ultrasensitive detection of tumor biomarkers. Biosens. Bioelectron. 2022, 214, 114505. [Google Scholar]
- Osaki, S.; Saito, M.; Nagai, H.; Tamiya, E. Surface Modification of Screen-Printed Carbon Electrode through Oxygen Plasma to Enhance Biosensor Sensitivity. Biosensors 2024, 14, 165. [Google Scholar] [CrossRef]
- Limthin, D.; Leepheng, P.; Tunhoo, B.; Onlaor, K.; Klamchuen, A.; Phromyothina, D.; Thiwawong, T. Preparation of surface-modified electrode of copper(II) oxide mixed with the molecularly imprinted polymer for enhancement of melamine detection with photochemical technique. RSC Adv. 2023, 13, 14729. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, T.; Zhong, Y.; Li, R.; Deng, W.; Xiao, X.; Xu, Y.; Zhang, J.; Hu, X.; Wang, Y. A review of nanomaterials for biosensing applications. J. Mater. Chem. B 2024, 12, 1168–1193. [Google Scholar] [CrossRef]
- Azad, U.P.; Chandra, P. Handbook of Nanobioelectrochemistry-Application in Devices and Biomolecular Sensing; Springer: Berlin/Heidelberg, Germany, 2023; ISBN 978-981-19-9437-1. [Google Scholar]
- Kumar, S.; Wang, Z.; Zhang, W.; Liu, X.; Li, M.; Li, G.; Zhang, B.; Singh, Z. Optically Active Nanomaterials and Its Biosensing Applications—A Review. Biosensors 2023, 13, 85. [Google Scholar] [CrossRef]
- Murjani, B.O.; Kadu, P.S.; Bansod, M.; Vaidya, S.S.; Yadav, M.D. Carbon nanotubes in biomedical applications: Current status, promises, and challenges. Carbon Lett. 2022, 32, 1207–1226. [Google Scholar] [CrossRef]
- Sun, A.L.; Chen, G.R.; Sheng, Q.L.; Zheng, J.B. Sensitive label-free electrochemical immunoassay based on a redox matrix of gold nanoparticles/Azure I/multi-wall carbon nanotubes composite. Biochem. Eng. J. 2011, 57, 1–6. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Tharmalingam, N.; Varaprasad, K.; Mylonakis, E.; Yallapu, M.M. Biocidal and biocompatible hybrid nanomaterials from biomolecule chitosan, alginate and ZnO. Carbohydr. Polym. 2021, 274, 118646. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.H.S.; Pakpour-Tabrizi, A.C.; Jackman, R.B. A detailed EIS study of boron doped diamond electrodes decorated with gold nanoparticles for high sensitivity mercury detection. Sci. Rep. 2021, 11, 9505. [Google Scholar] [CrossRef] [PubMed]
- Matvieiev, O.; Šelešovská, R.; Marton, M.; Hatala, M.; Metelka, R.; Weis, M.; Vojs, M. Effect of different modification by gold nanoparticles on the electrochemical performance of screen-printed sensors with boron-doped diamond electrode. Sci. Rep. 2023, 13, 21525. [Google Scholar] [CrossRef] [PubMed]
- Minenkov, A.; Hollweger, S.; Duchoslav, J.; Erdene-Ochir, O.; Weise, M.; Ermilova, E.; Hertwig, A.; Schiek, M. Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy. ACS Appl. Mater. Interfaces 2024, 16, 9517–9531. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, Z.; Luo, S.; Li, M.; Xie, L.; Fan, Q.; Zeng, T.; Zhang, Y.; Zhang, M.; Wang, S.; et al. A sandwich amperometric immunosensor for the detection of fowl adenovirus group I based on bimetallic Pt/Ag nanoparticle-functionalized multiwalled carbon nanotubes. Sci. Rep. 2024, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Brazaca, L.C.; Imamura, A.H.; Gomes, N.O.; Almeida, M.B.; Scheidt, D.T.; Raymundo-Pereira, P.A.; Oliveira, O.N., Jr.; Janegitz, B.C.; Scheidt, D.T.; Machado, S.A.S.; et al. Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2. Anal. Bioanal. Chem. 2022, 414, 5507–5517. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Akter, R.; Oh, J.; Lee, D.G.; Ahn, C.G.; Choi, J.S.; Rahman, M.A. Novel electrochemical PMI marker biosensor based on quantum dot dissolution using a double-label strategy. Sci. Rep. 2022, 12, 8815. [Google Scholar] [CrossRef]
- Ishii, K.; Ogata, G.; Yamamoto, T.; Sun, S.; Shiigi, H.; Einaga, Y. Designing Molecularly Imprinted Polymer-Modified Boron-Doped Diamond Electrodes for Highly Selective Electrochemical Drug Sensor. ACS Sens. 2024, 9, 1611–1619. [Google Scholar] [CrossRef]
- Nirmala, A.; Sonar, G.P.; Bhardwaj, P.; Chakravorty, A. Materials Horizons: From Nature to Nanomaterials Handbook of Porous Carbon Materials; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Gandhi, M.; Amreen, K. Emerging Trends in Nanomaterial-Based Biomedical Aspects. Electrochem 2023, 4, 365–388. [Google Scholar] [CrossRef]
- Kumar, A.S.; Gandhi, M.; Saikrithika, S.; Dinesh, B.; Shafeeq, S.; Ganesh, V. Localized formation of highly surface-active gold nanoparticle on intrinsic Nickel containing carbon black and its scanning electrochemical microscopy interrogation and electrocatalytic oxidation of hydrazine. Electrochim. Acta 2023, 443, 141937. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wu, D.; Ma, H.; Pang, X.; Fan, D.; Wei, Q.; Du, B. Ultrasensitive Label-free Electrochemical Immunosensor based on Multifunctionalized Graphene Nanocomposites for the Detection of Alpha Fetoprotein. Sci. Rep. 2017, 7, 42361. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Indiramma, J.; Jayaprakash, N.S.; Kumar, A.S. An efficient electrochemical sandwich ELISA for urinary human serum albumin-biomarker based on highly redox-active thionine surface-confined MWCNT/PEDOT.PSS platform. J. Electroanal. Chem. 2022, 906, 116018. [Google Scholar] [CrossRef]
- Stefan, R.-I.; van Staden, J.F.; Aboul-Enein, H.Y. Immunosensors in clinical analysis. Fresenius J. Anal. Chem. 2000, 366, 659–668. [Google Scholar] [CrossRef]
- Morgan, C.L.; Newman, D.J.; Price, C.P. Immunosensors: Technology and opportunities in laboratory medicine. Clin. Chem. 1996, 42, 193–209. [Google Scholar] [CrossRef]
- Cao, Q.; Liang, B.; Tu, T.; Wei, J.; Fang, L.; Ye, X. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019, 9, 5674–5681. [Google Scholar] [CrossRef]
- Bilbao, E.; Garate, O.; Campos, T.R.; Roberti, M.; Mass, M.; Lozano, A.; Longinotti, G.; Monsalve, L.; Ybarra, G. Electrochemical Sweat Sensors. Chemosensors 2023, 11, 244. [Google Scholar] [CrossRef]
- Alfonta, L.; Willner, I.; Throckmorton, D.J.; Singh, A.K. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Anal. Chem. 2001, 73, 5287–5295. [Google Scholar] [CrossRef]
- Martin, C.R.; Mitchell, D.T. Nanomaterials in analytical chemistry. Anal. Chem. 1998, 70, 322–327. [Google Scholar] [CrossRef]
- Sánchez, M.; Almeida, J.; Vidriales, B.; López-Berges, M.; García-Marcos, M.; Moro, M.; Corrales, A.; Calmuntia, M.; Miguel, J.S.; Orfao, A. Incidence of phenotypic aberrations in series of 467 patients with B chronic lymphoproliferative disorders: Basis for the design of specific four-color stainings to be used for minimal residual disease investigation. Leukemia 2002, 16, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Joos, T.O.; Schrenk, M.; Höpfl, P.; Kröger, K.; Chowdhury, U.; Stoll, D.; Dürr, M.; Herick, K.; Rupp, S.; Sohn, K.; et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 2000, 21, 2641–2650. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Lee, S.Y. Micro total analysis system (μ-TAS) in biotechnology. Appl. Microbiol. Biotechnol. 2004, 64, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Hui, X.; Sharifuzzaman, M.; Sharma, S.; Xuan, X.; Zhang, S.; Ko, S.G.; Yoon, S.H.; Park, J.Y. High-performance flexible electrochemical heavy metal sensor based on layer-by-layer assembly of Ti3C2Tx/MWNTs nanocomposites for noninvasive detection of copper and zinc ions in human biofluids. ACS Appl. Mater. Interfaces 2020, 12, 48928–48937. [Google Scholar] [CrossRef]
- Kiinig, B.; Grgtzel, M. Development of a Piezoelectric Immunosensor for the Detection of Human Erythrocytes; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1993; Volume 276. [Google Scholar]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef]
- Redondo-Gómez, C.; Parreira, P.; Martins, M.C.L.; Azevedo, S.H. Peptide-based self-assembled monolayers (SAMs): What peptides can do for SAMs and vice versa. Chem. Soc. Rev. 2024, 53, 3714–3773. [Google Scholar] [CrossRef]
- Abdulkarim, H.; Siaj, M. Label-free multiplex electrochemical immunosensor for early diagnosis of lysosomal storage disorders. Sci. Rep. 2022, 12, 9334. [Google Scholar] [CrossRef]
- Shoute, L.C.T.; Abdelrasoul, G.N.; Ma, Y.; Duarte, P.A.; Edwards, C.; Zhuo, R.; Zeng, J.; Feng, Y.; Charlton, C.L.; Kanji, J.N.; et al. Label-free impedimetric immunosensor for point-of-care detection of COVID-19 antibodies. Microsyst. Nanoeng. 2023, 9, 3. [Google Scholar] [CrossRef]
- Gandhi, M.; Rajagopal, D.; Senthil Kumar, A. Molecularly wiring of Cytochrome c with carboxylic acid functionalized hydroquinone on MWCNT surface and its bioelectrocatalytic reduction of H2O2 relevance to biomimetic electron-transport and redox signalling. Electrochim. Acta 2021, 368, 137596. [Google Scholar] [CrossRef]
- Alshanski, I.; Shitrit, A.; Sukhran, Y.; Unverzagt, C.; Hurevich, M.; Yitzchaik, S. Effect of Interfacial Properties on Impedimetric Biosensing of the Sialylation Process with a Biantennary N-Glycan-Based Monolayer. Langmuir 2022, 38, 849–855. [Google Scholar] [CrossRef]
- Pantarotto, D.; Partidos, C.D.; Graff, R.; Hoebeke, J.; Briand, J.-P.; Prato, M.; Bianco, A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 2003, 125, 6160–6164. [Google Scholar] [CrossRef]
- Fung, Y.S.; Wong, Y.Y. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Anal. Chem. 2001, 73, 5302–5309. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Yang, Y.; Deng, T.; Shen, G.; Yu, R. A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles and plasma-polymerized film. Anal. Biochem. 2004, 324, 219–226. [Google Scholar] [CrossRef]
- Erkmen, C.; Selcuk, O.; Unal, D.N.; Kurbanoglu, S.; Uslu, B. Layer-by-layer modification strategies for electrochemical detection of biomarkers. Biosens. Bioelectron. X 2022, 12, 100270. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, M.; Liu, X.; Sun, J. Layer-by-layer assembly of salt-containing polyelectrolyte complexes for the fabrication of dewetting-induced porous coatings. Langmuir 2011, 27, 1346–1352. [Google Scholar] [CrossRef]
- Lingling, S.; Ooi Kiang, T.; Baowei, M.; Lay Im, T.; Leong Huat, G.; Yik Yuen, G. A novel impedimetric immunosensor based on sol-gel derived Barium Strontium Titanate composite filnm. In Proceedings of the SENSORS, Daegu, Republic of Korea, 22–25 October 2006. [Google Scholar]
- Shaabani, N.; Chan, N.W.C.; Jemere, A.B. A molecularly imprinted sol-gel electrochemical sensor for naloxone determination. Nanomaterials 2021, 11, 631. [Google Scholar] [CrossRef]
- Naeem, N.A.; Guldin, S.; Ghoreishizadeh, S. Electrochemical Sensors for Cortisol: A Review. IEEE Sens. J. 2024, 24, 5746–5758. [Google Scholar] [CrossRef]
- Zhan, K.; Chen, L.; Li, S.; Yu, Q.; Zhao, Z.; Li, J.; Xing, Y.; Ren, H.; Wang, N.; Zhang, G. A novel metal–organic framework based electrochemical immunosensor for the rapid detection of Salmonella typhimurium detection in milk. Food Chem. 2024, 444, 138672. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, J.; Singh, R.S.; Singh, M. Design of EQCM-MIP sensing matrix for highly specific and sensitive detection of thyroglobulin. Biosens. Bioelectron. X 2022, 11, 100154. [Google Scholar] [CrossRef]
- Nugaeva, N.; Gfeller, K.Y.; Backmann, N.; Lang, H.P.; Düggelin, M.; Hegner, M. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 2005, 21, 849–856. [Google Scholar] [CrossRef]
- Shen, G.; Wang, H.; Tan, S.; Li, J.; Shen, G.; Yu, R. Detection of antisperm antibody in human serum using a piezoelectric immunosensor based on mixed self-assembled monolayers. Anal. Chim. Acta 2005, 540, 279–284. [Google Scholar] [CrossRef]
- Goulet, D.R.; Atkins, W.M. Considerations for the Design of Antibody-Based Therapeutics. J. Pharm. Sci. 2020, 109, 74–103. [Google Scholar] [CrossRef] [PubMed]
- Janata, J. Immunoelectrode. J. Am. Chem. Soc. 1957, 97, 2914–2916. [Google Scholar] [CrossRef]
- Saengdee, P.; Thanapitak, S.; Ongwattanakul, S.; Srisuwan, A.; Pankiew, A.; Thornyanadacha, N.; Chaisriratanakul, W.; Jeamsaksiri, W.; Promptmas, C. A silicon nitride ion sensitive field effect transistor-based immunosensor for determination of urinary albumin. Electrochem. Sci. Adv. 2022, 2, e2100078. [Google Scholar] [CrossRef]
- Mutlaq, S.; Albiss, B.; Al-Nabulsi, A.A.; Jaradat, Z.W.; Olaimat, A.N.; Khalifeh, M.S.; Osaili, T.; Ayyash, M.M.; Holley, R.A. Conductometric immunosensor for escherichia coli o157:H7 detection based on polyaniline/zinc oxide (pani/zno) nanocomposite. Polymers 2021, 13, 3288. [Google Scholar] [CrossRef]
- Patil, A.V.; Chuang, Y.S.; Li, C.; Wu, C.C. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. Biosensors 2023, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wang, L.; Xie, Q. Sensitive bioanalysis based on in-situ droplet anodic stripping voltammetric detection of cds quantum dots label after enhanced cathodic preconcentration. Sensors 2016, 16, 1342. [Google Scholar] [CrossRef] [PubMed]
- Precision Reports—Worldwide Market Research Report, Analysis & Consulting. Boston Research 2022. 1–157.
- Weishampel, Z.A.; Young, J.; Fischl, M.; Fischer, R.J.; Donkor, I.O.; Riopelle, J.C.; Schulz, J.E.; Port, J.R.; Saturday, T.A.; van Doremalen, N.; et al. OraSure InteliSwabTM Rapid Antigen Test Performance with the SARS-CoV-2 Variants of Concern—Alpha, Beta, Gamma, Delta, and Omicron. Viruses 2022, 14, 543. [Google Scholar] [CrossRef]
- Pollock, N.R.; Jacobs, J.R.; Tran, K.; Cranston, A.E.; Smith, S.; O’Kane, C.Y.; Roady, T.J.; Moran, A.; Scarry, A.; Carroll, M.; et al. Performance and Implementation Evaluation of the Abbott BinaxNOW Rapid Antigen Test in a High-Throughput Drive-Through Community Testing Site in Massachusetts. J. Clin. Microbiol. 2021, 59, 83–104. [Google Scholar] [CrossRef]
- Pilarowski, G.; Lebel, P.; Sunshine, S.; Liu, J.; Crawford, E.; Marquez, C.; DeRisi, J.; Rubio, L.; Chamie, G.; Martinez, J. Performance Characteristics of a Rapid Severe Acute Respiratory Syndrome Coronavirus 2 Antigen Detection Assay at a Public Plaza Testing Site in San Francisco. J. Infect. Dis. 2021, 223, 1139–1144. [Google Scholar] [CrossRef]
- Mugweru, A.; Clark, B.L.; Pishko, M.V. Electrochemical Redundant Microsensor Arrays for Glucose Monitoring with Patterned Polymer Films. Electroanalysis 2007, 9, 453–458. [Google Scholar] [CrossRef]
- Zeng, R.; Qiu, M.; Wan, Q.; Huang, Z.; Liu, X.; Tang, D.; Knopp, D. Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Anal. Chem. 2022, 94, 15155–15161. [Google Scholar] [CrossRef] [PubMed]
- Technology That Automatically Adjusts Insulin * MiniMed TM 770G System. 2020. FDA Approves Medtronic MiniMed 780g System—World’s First Insulin Pump with Meal Detection Technology Featuring 5-minute Auto Corrections. Medtronic News. 21 April 2020. Available online: https://news.medtronic.com/2023-04-21-FDA-Approves-Medtronic-MiniMed-TM-780G-System-Worlds-First-Insulin-Pump-with-Meal-Detection-Technology-Featuring-5-Minute-Auto-Corrections (accessed on 24 April 2023).
- Liu, G.; Chai, H.; Guo, Z.; Wang, Z.; Tang, Y.; Miao, P. Hand-in-hand structured DNA monolayer for dual-mode analysis of circulating tumor DNA. Chem. Eng. J. 2022, 450, 138069. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode Systems For Continuous Monitoring In Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
S. No. | Conventional Immunoassays | Electrochemical Immunoassays | Ref. |
---|---|---|---|
1. | Various techniques are available based on different principles such as fluorescence-based, agglomeration-based, change in optical properties, enzyme immunoassays, etc. They are the gold standards. | They rely on a simple concept of changes in the current, charge transfer or resistance after highly specific antigen–antibody complex (lock and key) formation only. Any variation in the system can change the output signals, and hence the selectivity can be determined. | [10,11,12] |
2. | Sophisticated set-up required with skilled technician. Cumbersome instruments A high volume of samples is required | A CHI workstation or a simplistic potentiometer can also be used by semi-skilled personnel for the measurement. Nowadays, small potentiostats (pendrive sizes) are available on the market, which are compatible with mobile phones and tablets. Nanolitres of the sample are sufficient. | [13,14] |
3. | Low limit of detection, highly sensitive, and has a wide range of detection. Upto pico or femto molar levels too. | Moderate limit of detection, highly sensitive, and has a moderate range of detection. Upto nano and picomolar levels. | [15,16] |
4. | It cannot be extended for on-field POCT devices. | Can be extended as on-field POCT (point of care testing) devices. | [15,16,17] |
5. | Pre-sampling procedures are required. Moderate turnaround time. Increased throughput in clinic laboratories. High cost incurred. Plates and vials can be reused. | No pre-sampling is required. Faster turnaround time (~2 to 10 min). Increased throughput. Minimal cost required. Immunosensor-based electrodes are one-time usage only (for the majority of systems). | [18] |
6. | Methods involved are as follows: Optical detection; Reflectometry; Ellipsometry; Surface plasmon resonance; Chemiluminescence; Piezoelectric. | Methods involved are as follows: Potentiometry; Amperometry; Electrochemical luminescence; Microgravimetric (EQCM—Electrochemical Quartz Crystal Microbalance); Impedance; FET-based; Bio-resistors-based systems. | [13,19,20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandhi, M. Modelling Prospects of Bio-Electrochemical Immunosensing Platforms. Electrochem 2024, 5, 146-161. https://doi.org/10.3390/electrochem5020010
Gandhi M. Modelling Prospects of Bio-Electrochemical Immunosensing Platforms. Electrochem. 2024; 5(2):146-161. https://doi.org/10.3390/electrochem5020010
Chicago/Turabian StyleGandhi, Mansi. 2024. "Modelling Prospects of Bio-Electrochemical Immunosensing Platforms" Electrochem 5, no. 2: 146-161. https://doi.org/10.3390/electrochem5020010
APA StyleGandhi, M. (2024). Modelling Prospects of Bio-Electrochemical Immunosensing Platforms. Electrochem, 5(2), 146-161. https://doi.org/10.3390/electrochem5020010