Influence of Pulsed Reverse Electrodeposition on Mechanical Properties of Ni–W Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ni–W Alloy Electrodeposition
2.2. Characterization
2.3. Fabrication of Micro-Pillar and Micro-Compression Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oriňáková, R.; Turoňová, A.; Kladeková, D.; Gálová, M.; Smith, R.M. Recent Developments in the Electrodeposition of Nickel and Some Nickel-Based Alloys. J. Appl. Electrochem. 2006, 36, 957–972. [Google Scholar] [CrossRef]
- Saini, A.; Singh, G.; Mehta, S.; Singh, H.; Dixit, S. A Review on Mechanical Behaviour of Electrodeposited Ni-Composite Coatings. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 17, 2247–2258. [Google Scholar] [CrossRef]
- Rai, P.K.; Gupta, A. Investigation of Surface Characteristics and Effect of Electrodeposition Parameters on Nickel-Based Composite Coating. Mater. Today Proc. 2021, 44, 1079–1085. [Google Scholar] [CrossRef]
- Mahidashti, Z.; Aliofkhazraei, M.; Lotfi, N. Review of Nickel-Based Electrodeposited Tribo-Coatings. Trans. Indian Inst. Met. 2018, 71, 257–295. [Google Scholar] [CrossRef]
- Lelevic, A.; Walsh, F.C. Electrodeposition of NiP Alloy Coatings: A Review. Surf. Coat. Technol. 2019, 369, 198–220. [Google Scholar] [CrossRef]
- Ünal, E.; Yaşar, A.; Karahan, İ.H. A Review of Electrodeposited Composite Coatings with Ni–B Alloy Matrix. Mater. Res. Express 2019, 6, 092004. [Google Scholar] [CrossRef]
- Allahyarzadeh, M.H.; Aliofkhazraei, M.; Rezvanian, A.R.; Torabinejad, V.; Sabour Rouhaghdam, A.R. Ni-W Electrodeposited Coatings: Characterization, Properties and Applications. Surf. Coat. Technol. 2016, 307, 978–1010. [Google Scholar] [CrossRef]
- Karimzadeh, A.; Aliofkhazraei, M.; Walsh, F.C. A Review of Electrodeposited Ni-Co Alloy and Composite Coatings: Microstructure, Properties and Applications. Surf. Coat. Technol. 2019, 372, 463–498. [Google Scholar] [CrossRef]
- Jones, A.R.; Hamann, J.; Lund, A.; Schuh, C. Nanocrystalline Ni-W Alloy Coating for Engineering Applications. Plat. Surf. Finish. 2010, 97, 52–60. [Google Scholar]
- Wasekar, N.P.; Sundararajan, G. Sliding Wear Behavior of Electrodeposited Ni–W Alloy and Hard Chrome Coatings. Wear 2015, 342–343, 340–348. [Google Scholar] [CrossRef]
- Kumar, K.A.; Kalaignan, G.P.; Muralidharan, V.S. Pulse Electrodeposition and Characterization of Nano Ni–W Alloy Deposits. Appl. Surf. Sci. 2012, 259, 231–237. [Google Scholar] [CrossRef]
- Larson, C.; Farr, J.P.G. Current Research and Potential Applications for Pulsed Current Electrodeposition–A Review. Trans. IMF 2012, 90, 20–29. [Google Scholar] [CrossRef]
- Slavcheva, E.; Mokwa, W.; Schnakenberg, U. Electrodeposition and Properties of NiW Films for MEMS Application. Electrochim. Acta 2005, 50, 5573–5580. [Google Scholar] [CrossRef]
- Xiao, F.; Hangarter, C.; Yoo, B.; Rheem, Y.; Lee, K.-H.; Myung, N.V. Recent Progress in Electrodeposition of Thermoelectric Thin Films and Nanostructures. Electrochim. Acta 2008, 53, 8103–8117. [Google Scholar] [CrossRef]
- Walsh, F.C.; Wang, S.; Zhou, N. The Electrodeposition of Composite Coatings: Diversity, Applications and Challenges. Curr. Opin. Electrochem. 2020, 20, 8–19. [Google Scholar] [CrossRef]
- Hillier, E.M.K.; Robinson, M.J. Permeation Measurements to Study Hydrogen Uptake by Steel Electroplated with Zinc–Cobalt Alloys. Corros. Sci. 2006, 48, 1019–1035. [Google Scholar] [CrossRef]
- Chandrasekar, M.S.; Pushpavanam, M. Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications. Electrochim. Acta 2008, 53, 3313–3322. [Google Scholar] [CrossRef]
- Ahmad, Y.H.; Mohamed, A.M.A. Electrodeposition of Nanostructured Nickel-Ceramic Composite Coatings: A Review. Int. J. Electrochem. Sci. 2014, 9, 1942–1963. [Google Scholar] [CrossRef]
- Hou, K.-H.; Chen, Y.-C. Preparation and Wear Resistance of Pulse Electrodeposited Ni–W/Al2O3 Composite Coatings. Appl. Surf. Sci. 2011, 257, 6340–6346. [Google Scholar] [CrossRef]
- Manika, I.; Maniks, J. Effect of Substrate Hardness and Film Structure on Indentation Depth Criteria for Film Hardness Testing. J. Phys. D Appl. Phys. 2008, 41, 074010. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Lee, C.Y.; Chen, F.J.; Lin, C.S.; Liu, T.Y. Study on the Internal Stress of Nickel Coating Electrodeposited in an Electrolyte Mixed with Supercritical Carbon Dioxide. Surf. Coat. Technol. 2012, 206, 3201–3207. [Google Scholar] [CrossRef]
- Lin, C.S.; Lee, C.Y.; Chen, F.J.; Li, W.C. Structural Evolution and Internal Stress of Nickel-Phosphorus Electrodeposits. J. Electrochem. Soc. 2005, 152, C370. [Google Scholar] [CrossRef]
- Besra, L.; Uchikoshi, T.; Suzuki, T.S.; Sakka, Y. Application of Constant Current Pulse to Suppress Bubble Incorporation and Control Deposit Morphology during Aqueous Electrophoretic Deposition (EPD). J. Eur. Ceram. Soc. 2009, 29, 1837–1845. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects. J. Vac. Sci. Technol. A 2018, 36, 020801. [Google Scholar] [CrossRef]
- Ogihara, H.; Wang, H.; Saji, T. Electrodeposition of Ni–B/SiC Composite Films with High Hardness and Wear Resistance. Appl. Surf. Sci. 2014, 296, 108–113. [Google Scholar] [CrossRef]
- Valova, E.; Armyanov, S.; Franquet, A.; Petrov, K.; Kovacheva, D.; Dille, J.; Delplancke, J.-L.; Hubin, A.; Steenhaut, O.; Vereecken, J. Comparison of the Structure and Chemical Composition of Crystalline and Amorphous Electroless Ni-W-P Coatings. J. Electrochem. Soc. 2004, 151, C385. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, C.-Y.; Kurioka, T.; Luo, X.; Yamane, D.; Mizoguchi, M.; Kudo, O.; Maeda, R.; Sone, M.; Chang, T.-F.M. Specimen Size Effect on the Strength of Nickel-Boron Alloys. Mater. Lett. 2023, 349, 134742. [Google Scholar] [CrossRef]
- Yamamoto, T.; Igawa, K.; Tang, H.; Chen, C.-Y.; Chang, T.-F.M.; Nagoshi, T.; Kudo, O.; Maeda, R.; Sone, M. Effects of Current Density on Mechanical Properties of Electroplated Nickel with High Speed Sulfamate Bath. Microelectron. Eng. 2019, 213, 18–23. [Google Scholar] [CrossRef]
- Nagoshi, T.; Chang, T.-F.M.; Tatsuo, S.; Sone, M. Mechanical Properties of Nickel Fabricated by Electroplating with Supercritical CO2 Emulsion Evaluated by Micro-Compression Test Using Non-Tapered Micro-Sized Pillar. Microelectron. Eng. 2013, 110, 270–273. [Google Scholar] [CrossRef]
- Hotta, T.; Chang, T.-F.M.; Chen, C.-Y.; Sawae, H.; Imada, Y.; Mizoguchi, M.; Kudo, O.; Maeda, R.; Sone, M. Micro-Compression Characterization and Thermal Stability of Electrolessly Plated Nickel Phosphorus Alloy. ECS J. Solid State Sci. Technol. 2021, 10, 035007. [Google Scholar] [CrossRef]
- Kumar, U.P.; Shanmugan, S.; Kennady, C.J.; Shibli, S.M.A. Anti-Corrosion and Microstructural Properties of Ni–W Alloy Coatings: Effect of 3,4-Dihydroxybenzaldehyde. Heliyon 2019, 5, E01288. [Google Scholar] [CrossRef] [PubMed]
- Sriraman, K.R.; Raman, S.G.S.; Seshadri, S.K. Corrosion Behaviour of Electrodeposited Nanocrystalline Ni–W and Ni–Fe–W Alloys. Mater. Sci. Eng. A 2007, 460–461, 39–45. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. 1939, 56, 978. [Google Scholar] [CrossRef]
- He, K.; Chen, N.; Wang, C.; Wei, L.; Chen, J. Method for Determining Crystal Grain Size by X-ray Diffraction. Cryst. Res. Technol. 2018, 53, 1700157. [Google Scholar] [CrossRef]
- Guo, J.D.; Wang, X.L.; Dai, W.B. Microstructure Evolution in Metals Induced by High Density Electric Current Pulses. Mater. Sci. Technol. 2015, 31, 1545–1554. [Google Scholar] [CrossRef]
- Rupert, T.J.; Trenkle, J.C.; Schuh, C.A. Enhanced Solid Solution Effects on the Strength of Nanocrystalline Alloys. Acta Mater. 2011, 59, 1619–1631. [Google Scholar] [CrossRef]
- Schuh, C.A.; Nieh, T.G.; Iwasaki, H. The Effect of Solid Solution W Additions on the Mechanical Properties of Nanocrystalline Ni. Acta Mater. 2003, 51, 431–443. [Google Scholar] [CrossRef]
Forward Current Density (mA/cm2) | W Content (at%) | FE (%) | Grain Size (nm) | Thickness (µm) |
---|---|---|---|---|
30 | 18.2 ± 2.0 | 50.1 | 9.0 | 39.1 |
50 | 20.1 ± 2.0 | 49.0 | 11.8 | 35.1 |
70 | 21.6 ± 2.0 | 45.7 | 13.7 | 27.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Z.; Wu, J.-Y.; Jiang, Y.; Kurioka, T.; Chen, C.-Y.; Lin, H.-E.; Luo, X.; Yamane, D.; Sone, M.; Chang, T.-F.M. Influence of Pulsed Reverse Electrodeposition on Mechanical Properties of Ni–W Alloys. Electrochem 2024, 5, 287-297. https://doi.org/10.3390/electrochem5030018
Gu Z, Wu J-Y, Jiang Y, Kurioka T, Chen C-Y, Lin H-E, Luo X, Yamane D, Sone M, Chang T-FM. Influence of Pulsed Reverse Electrodeposition on Mechanical Properties of Ni–W Alloys. Electrochem. 2024; 5(3):287-297. https://doi.org/10.3390/electrochem5030018
Chicago/Turabian StyleGu, Zeyu, Jhen-Yang Wu, Yiming Jiang, Tomoyuki Kurioka, Chun-Yi Chen, Hwai-En Lin, Xun Luo, Daisuke Yamane, Masato Sone, and Tso-Fu Mark Chang. 2024. "Influence of Pulsed Reverse Electrodeposition on Mechanical Properties of Ni–W Alloys" Electrochem 5, no. 3: 287-297. https://doi.org/10.3390/electrochem5030018
APA StyleGu, Z., Wu, J. -Y., Jiang, Y., Kurioka, T., Chen, C. -Y., Lin, H. -E., Luo, X., Yamane, D., Sone, M., & Chang, T. -F. M. (2024). Influence of Pulsed Reverse Electrodeposition on Mechanical Properties of Ni–W Alloys. Electrochem, 5(3), 287-297. https://doi.org/10.3390/electrochem5030018