Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Reagents
2.2. Synthesis of W-Doped Bi2OxSey
2.3. Material Characterization
2.4. Fabrication of Working Electrode
2.5. Electrochemical Sensing Characteristics
3. Results and Discussion
3.1. Structural, Morphological and Optical Characterization
3.2. Electrochemical Sensing Performance
3.2.1. CV Analyses
3.2.2. DPV Analyses
3.3. Real Sample Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, J.; Jiang, X. A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Anal. Chem. 2013, 85, 8095–8101. [Google Scholar] [CrossRef] [PubMed]
- Campanella, L.; Favero, G.; Giancola, D.; Tomassetti, M. Determination of Hydrogen Peroxide in Disinfectant Solutions Using a Biosensor with Two Antagonist Enzymes. J. Pharm. Biomed. Anal. 2003, 32, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Martindale, J.L.; Liu, Y.; Holbrook, N.J. The Cellular Response to Oxidative Stress: Influences of Mitogen-Activated Protein Kinase Signalling Pathways on Cell Survival. Biochem. J. 1998, 333, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Lyublinskaya, O.; Antunes, F. Measuring Intracellular Concentration of Hydrogen Peroxide with the Use of Genetically Encoded H2O2 Biosensor HyPer. Redox Biol. 2019, 24, 101200. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Migliorini, F.L.; Christinelli, W.A.; Correa, D.S. Detection of Hydrogen Peroxide (H2O2) Using a Colorimetric Sensor Based on Cellulose Nanowhiskers and Silver Nanoparticles. Carbohydr. Polym. 2019, 212, 235–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.K.; Zhu, Y.; Jiang, H. Highly Sensitive Graphene-Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H2O2 Detection. Anal. Chem. 2014, 86, 9459–9465. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, P.; Ganesan, V.; Koch, B.; Rastogi, P.K.; Yadav, D.K.; Sonkar, P.K. Palladium Nanoparticles Supported on Mesoporous Silica Microspheres for Enzyme-Free Amperometric Detection of H2O2 released from Living Cells. Sens. Actuators B Chem. 2018, 276, 517–525. [Google Scholar] [CrossRef]
- Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen Peroxide Poisoning. Toxicol. Rev. 2004, 23, 51–57. [Google Scholar] [CrossRef]
- Imlay, J.A.; Linn, S. Mutagenesis and Stress Responses Induced in Escherichia Coli by Hydrogen Peroxide. J. Bacteriol. 1987, 169, 2967–2976. [Google Scholar] [CrossRef]
- Thatikayala, D.; Ponnamma, D.; Sadasivuni, K.; Cabibihan, J.-J.; Al-Ali, A.; Malik, R.; Min, B. Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors 2020, 10, 151. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Wu, C.T.; Sridhar, V.; Ponnusamy, V.K.; Chattopadhyay, S. Bi2Te3-Au Nanocomposite Schottky Junction with Peroxidase Activity for Glucose Sensing. ACS Appl. Nano Mater. 2022, 5, 15563–15573. [Google Scholar] [CrossRef]
- McCurdy, W.H., Jr.; Bell, H.F. Titrimetric Determination of Hydrogen Peroxide in Alkaline Solution. Talanta 1966, 13, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Watabe, S.; Morikawa, M.; Kodama, H.; Okada, R.; Miura, T. Detection of H2O2 by Fluorescence Correlation Spectroscopy. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 526, pp. 135–143. ISBN 978-0-12-405883-5. [Google Scholar]
- Şen, F.B.; Bener, M.; Bekdeşer, B.; Apak, R. Redox-Based Colorimetric Sensing of H2O2 after Removal of Antioxidants with ABTS Radical Oxidation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119266. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Hashimoto, K.; Kumazawa, S.; Nakayama, T. Determination of Hydrogen Peroxide by High-Performance Liquid Chromatography with a Cation-Exchange Resin Gel Column and Electrochemical Detector. Anal. Sci. 1999, 15, 481–483. [Google Scholar] [CrossRef]
- Chitara, B.; Limbu, T.B.; Orlando, J.D.; Vinodgopal, K.; Yan, F. 2-D Bi2O2Se Nanosheets for Nonenzymatic Electrochemical Detection of H2O2. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Shringi, A.K.; Kumar, R.; Dennis, N.F.; Yan, F. Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2. Chemosensors 2024, 12, 17. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, S.; Ju, P.; Su, H.; Ai, S. Flower-like Bi2Se3 Nanostructures: Synthesis and Their Application for the Direct Electrochemistry of Hemoglobin and H2O2 Detection. Electrochim. Acta 2012, 64, 171–176. [Google Scholar] [CrossRef]
- Othmani, A.; Derbali, M.; Kalfat, R.; Touati, F.; Dhaouadi, H. A Novel 1D/2D Bi2S3/g-C3N4 Core–Shell Nanocomposite as a Highly Performing H2O2 Non-Enzymatic Electrochemical Sensor. J. Mater. Res. Technol. 2021, 15, 5762–5775. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review. J. Mater. Sci. 2019, 54, 12319–12357. [Google Scholar] [CrossRef]
- Zou, X.; Wang, R.; Sun, Y.; Wang, C. Two-Dimensional Bi2O2Se Nanosheets for Sensitive and Fast-Response High-Temperature Photodetectors. J. Mater. 2023, 9, 1024–1031. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, W.; Tan, C.; Luo, M.; Zhou, W.; Yao, N.; Wang, H.; Zhang, L.; Xu, T.; Tong, T.; et al. Broadband Bi2O2Se Photodetectors from Infrared to Terahertz. Adv. Funct. Mater. 2021, 31, 2009554. [Google Scholar] [CrossRef]
- Bae, J.K.; Cho, H.H.; Shin, H.; Kim, Y.; Ko, H.; Lee, S.J.; Megersa, D.D.; Gudena, G.T.; Chae, S.; Cho, I.S.; et al. One-Step Synthesis of Bi2O2Se Microstructures for Trace Oxygen Gas Sensor Application. Sens. Actuators B Chem. 2023, 394, 134398. [Google Scholar] [CrossRef]
- Huang, C.; Yu, H. Two-Dimensional Bi2O2Se with High Mobility for High-Performance Polymer Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 19643–19654. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Liu, B.; Chen, T.C.; Li, L.J.; Lai, C.S. Bi2O2Se-Based Integrated Multifunctional Optoelectronics. Nanoscale Adv. 2022, 4, 3832–3844. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Han, A.; Zhang, C.; He, X.; Zhang, J.; Zheng, D.; Cheng, L.; Li, L.J.; Miao, G.X.; Zhang, X.X. Mobility-Fluctuation-Controlled Linear Positive Magnetoresistance in 2D Semiconductor Bi2O2Se Nanoplates. ACS Nano 2020, 14, 11319–11326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Hu, C.; Kang, X.; Wang, S.; Xi, Y.; Liu, H. Synthesis and Thermoelectric Properties of Bi2O2Se Nanosheets. Mater. Res. Bull. 2013, 48, 3968–3972. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Zhai, K.; Nie, A.; Xiang, J.; Mu, C.; Wen, F.; Wang, B.; Shu, Y.; Xue, T.; et al. An Ultrasensitive Plasmonic Sensor Based on 2D Ferroelectric Bi2O2Se. Small 2023, 19, 2303026. [Google Scholar] [CrossRef]
- Kang, M.; Chai, H.J.; Jeong, H.B.; Park, C.; Jung, I.Y.; Park, E.; Çiçek, M.M.; Lee, I.; Bae, B.S.; Durgun, E.; et al. Low-Temperature and High-Quality Growth of Bi2O2Se Layered Semiconductors via Cracking Metal-Organic Chemical Vapor Deposition. ACS Nano 2021, 15, 8715–8723. [Google Scholar] [CrossRef]
- Tao, H.; Wang, T.; Li, D.; Xing, J.; Li, G. Preparation, Properties, and Applications of Bi2O2Se Thin Films: A Review. J. Semicond. 2023, 44, 031001. [Google Scholar] [CrossRef]
- Luo, P.; Zhuge, F.; Wang, F.; Lian, L.; Liu, K.; Zhang, J.; Zhai, T. PbSe Quantum Dots Sensitized High-Mobility Bi2O2Se Nanosheets for High-Performance and Broadband Photodetection beyond 2 Μm. ACS Nano 2019, 13, 9028–9037. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. High Electron Mobility and Quantum Oscillations in Non-Encapsulated Ultrathin Semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Samanta, M.; Vasdev, A.; Dolui, K.; Ghatak, J.; Das, T.; Sheet, G.; Biswas, K. Ultrathin Free-Standing Nanosheets of Bi2O2Se: Room Temperature Ferroelectricity in Self-Assembled Charged Layered Heterostructure. Nano Lett. 2019, 19, 5703–5709. [Google Scholar] [CrossRef] [PubMed]
- Walimbe, P.D.; Kumar, R.; Shringi, A.K.; Keelson, O.; Ouma, H.A.; Yan, F. Electrochemical Detection of H2O2 Using Bi2O3/Bi2O2Se Nanocomposites. Nanomaterials 2024, 14, 1592. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.; Dutta, S.; Roy, A.; Sahoo, R.; Pal, T. Redox Mediated Synthesis of Hierarchical Bi2O3/MnO2 Nanoflowers: A Non-Enzymatic Hydrogen Peroxide Electrochemical Sensor. Dalton Trans. 2016, 45, 4780–4790. [Google Scholar] [CrossRef]
- Periasamy, A.P.; Yang, S.; Chen, S.-M. Preparation and Characterization of Bismuth Oxide Nanoparticles-Multiwalled Carbon Nanotube Composite for the Development of Horseradish Peroxidase Based H2O2 Biosensor. Talanta 2011, 87, 15–23. [Google Scholar] [CrossRef]
Sample | Sensitivity (CV) (µA µM−1 cm−2) | Sensitivity (DPV) (µA µM−1 cm−2) (−0.73 V) | |
---|---|---|---|
Reduction Peak (−0.7 V) | Oxidation Peak (~0 V) | ||
Bi2OxSey | −161 | 83 | 57 |
2 mol% W-Bi2OxSey | −56 | 16 | −1.4 |
4 mol% W-Bi2OxSey | −27 | 3.1 | −28 |
Sensing Material | CV/DPV Peak | Sensitivity | Detection Range | Limit of Detection (LoD) | pH | Reference |
---|---|---|---|---|---|---|
Bi2O3/MnO2 | 0.8 V | 0.914 µA µM−1 cm−2 | 0.2–290 μM | 0.05 μM | 7.2 | [35] |
NF/HRP/Bi2O3–WCNT/GCE | −0.3 V | 26.54 μA mM−1 cm−2 | 8.34–28.88 mM | - | 7 | [36] |
Bi2Se3–Hb–Nf/GCE | −0.3 V | - | 2.0–100 μM | 0.63 μM | 7 | [18] |
Bi2S3/g-C3N4 | 0.26 V | 1011 µA µM−1 cm2 | 0.5–950 μM | 0.078 μM | 12 | [19] |
BOSe-6 h | −0.7 V | 75.7 µA µM−1 cm−2 | 0–15 μM | - | 7.4 | [34] |
Bi2O2Se nanosheets | −0.68 V | 100 µA µM−1 cm−2 | 50–500 μM | 7.4 | [16] | |
Bi2OxSey | 0 V | 83 µA µM−1 cm−2 | 0–15 μM | - | 7.4 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walimbe, P.D.; Kumar, R.; Shringi, A.K.; Keelson, O.; Ouma, H.A.; Yan, F. Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping. Electrochem 2024, 5, 455-469. https://doi.org/10.3390/electrochem5040030
Walimbe PD, Kumar R, Shringi AK, Keelson O, Ouma HA, Yan F. Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping. Electrochem. 2024; 5(4):455-469. https://doi.org/10.3390/electrochem5040030
Chicago/Turabian StyleWalimbe, Pooja D., Rajeev Kumar, Amit Kumar Shringi, Obed Keelson, Hazel Achieng Ouma, and Fei Yan. 2024. "Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping" Electrochem 5, no. 4: 455-469. https://doi.org/10.3390/electrochem5040030
APA StyleWalimbe, P. D., Kumar, R., Shringi, A. K., Keelson, O., Ouma, H. A., & Yan, F. (2024). Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping. Electrochem, 5(4), 455-469. https://doi.org/10.3390/electrochem5040030