Enhanced Performance with Nano-Porous Silicon in TiFeSi2/C Composite Anode for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Cell Preparation
2.3. Electrochemical Tests
2.4. Material Characterization
3. Results and Discussions
3.1. Phase Characterization with XRD
3.2. Microstructure Characterization with SEM
3.3. Performance Evaluation of Initial Cycles
3.4. Rate Capability Performance
3.5. Cyclability Performance Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, T.; Yao, Z.; Xia, X.; Wang, X.; Gu, C.; Tu, J. Rationally Designed Silicon Nanostructures as Anode Material for Lithium-Ion Batteries. Adv. Eng. Mater. 2018, 20, 1700591. [Google Scholar] [CrossRef]
- Bamisile, O.; Obiora, S.; Huang, Q.; Okonkwo, E.C.; Olagoke, O.; Shokanbi, A.; Kumar, R. Towards a sustainable and cleaner environment in China: Dynamic analysis of vehicle-to-grid, batteries and hydro storage for optimal RE integration. Sustain. Energy Technol. Assess. 2020, 42, 100872. [Google Scholar] [CrossRef]
- Takyi-Aninakwa, P.; Wang, S.; Liu, G.; Bage, A.N.; Bobobee, E.D.; Appiah, E.; Huang, Q. Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data. Appl. Energy 2024, 363, 123056. [Google Scholar] [CrossRef]
- Blömeke, S.; Scheller, C.; Cerdas, F.; Thies, C.; Hachenberger, R.; Gonter, M.; Herrmann, C.; Spengler, T.S. Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries. J. Clean. Prod. 2022, 377, 134344. [Google Scholar] [CrossRef]
- Avvaru, V.S.; Fernandez, I.J.; Feng, W.; Hinder, S.J.; Rodríguez, M.C.; Etacheri, V. Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries. Carbon 2021, 171, 869–881. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, J. Wadsley–Roth Crystallographic Shear Structure Niobium-Based Oxides: Promising Anode Materials for High-Safety Lithium-Ion Batteries. Adv. Sci. 2021, 8, e2004855. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, H.; Jiang, J.; Yang, D.; Du, N.; He, X.; Ren, J.; He, P.; Pang, C.; Xiao, C. Structure and conductivity enhanced treble-shelled porous silicon as an anode for high-performance lithium-ion batteries. RSC Adv. 2019, 9, 35392–35400. [Google Scholar] [CrossRef]
- Moser, S.; Kenel, C.; Wehner, L.A.; Spolenak, R.; Dunand, D.C. 3D ink-printed, sintered porous silicon scaffolds for battery applications. J. Power Sources 2021, 507, 230298. [Google Scholar] [CrossRef]
- Gross, S.J.; Hsieh, M.T.; Mumm, D.R.; Valdevit, L.; Mohraz, A. Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design. Extrem. Mech. Lett. 2022, 54, 101746. [Google Scholar] [CrossRef]
- Wang, P.; Yan, D.; Wang, C.; Ding, H.; Dong, H.; Wang, J.; Wu, S.; Cui, X.; Li, C.; Zhao, D.; et al. Study of the formation and evolution of solid electrolyte interface via in-situ electrochemical impedance spectroscopy. Appl. Surf. Sci. 2022, 596, 153572. [Google Scholar] [CrossRef]
- Kang, N.; Yang, H.W.; Kang, W.S.; Kim, S.J. An In-depth analysis of the electrochemical processing parameters for monolithic solid electrolyte interphase (SEI) formation at Ti-SiOx@C anode for high performance Lithium-ion batteries. Chem. Eng. J. 2022, 432, 134282. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.; Mu, G.; Ma, C.; Mu, D.; Wu, F. Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 2022, 64, 615–650. [Google Scholar] [CrossRef]
- Bai, P.; Han, X.; He, Y.; Xiong, P.; Zhao, Y.; Sun, J.; Xu, Y. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. Energy Storage Mater. 2020, 25, 324–333. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, X.; Sun, J.; Ban, B.; Li, J.; Chen, J. A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries. J. Colloid Interface Sci. 2021, 588, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Nuhu, B.A.; Bamisile, O.; Adun, H.; Abu, U.O.; Cai, D. Effects of transition metals for silicon-based lithium-ion battery anodes: A comparative study in electrochemical applications. J. Alloys Compd. 2023, 933, 167737. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, J.; Zeng, K.; Jiang, M. Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. J. Mater. Chem. A 2021, 9, 3472–3481. [Google Scholar] [CrossRef]
- Ha, J.K.; Haridas, A.K.; Cho, G.B.; Ahn, H.J.; Ahn, J.H.; Cho, K.K. Nano silicon encapsulated in modified copper as an anode for high performance lithium ion battery. Appl. Surf. Sci. 2019, 481, 307–312. [Google Scholar] [CrossRef]
- Bitew, Z.; Tesemma, M.; Beyene, Y.; Amare, M. Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: Recent progress and perspectives. Sustain. Energy Fuels 2022, 6, 1014–1050. [Google Scholar] [CrossRef]
- Yoon, N.; Young, C.; Kang, D.H.; Park, H.; Lee, J.K. High-conversion reduction synthesis of porous silicon for advanced lithium battery anodes. Electrochim. Acta 2021, 391, 138967. [Google Scholar] [CrossRef]
- Denis, D.K.; uz Zaman, F.; Hou, L.; Chen, G.; Yuan, C. Spray-drying construction of nickel/cobalt/molybdenum based nano carbides embedded in porous carbon microspheres for lithium-ion batteries as anodes. Electrochim. Acta 2022, 424, 140678. [Google Scholar] [CrossRef]
- Cheng, J.; Qiao, J.; Yang, Z.; Zhu, B.; Duan, J.; Wang, D.; Huang, R.; Zhang, Y.; Zhou, Z.; Dong, P. Electrolytic preparation of porous TiSi2/Si nanocomposites and the electrochemical performances as lithium-ion battery anode. J. Alloys Compd. 2022, 890, 161732. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, D.H.; Park, C.; Kim, D.W. Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries. J. Power Sources 2018, 395, 328–335. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Z.; Wang, Y.; Tan, Q.; Zhong, Z.; Su, F. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 5859–5865. [Google Scholar] [CrossRef]
- Cao, W.; Chen, M.; Liu, Y.; Han, K.; Chen, X.; Ye, H.; Sang, S. C2H2O4 etching of AlSi alloy Powder:an efficient and mild preparation approach for high performance micro Si anode. Electrochim. Acta 2019, 320, 134615. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Ban, B.; Shi, J.; Wang, Q.; Chen, J. A simple method to fabricate size and porosity tunable Si by Al–Si alloy as lithium ion battery anode material. Electrochim. Acta 2020, 345, 136242. [Google Scholar] [CrossRef]
- Yu, H.J.; Hong, K.P.; Sung, M.S.; Lee, S.; Sheem, K.Y.; Kim, S.S. Enhanced dilation properties of silicon-silicide, Si-TiFeSi2, nanocomposite as a lithium battery anode. ECS Electrochem. Lett. 2013, 2, A10. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Liu, C.; Shang, Y.; Liu, H. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes. Chem. Eng. J. 2022, 451, 138394. [Google Scholar] [CrossRef]
- Kong, Z.; Wang, Z.; Chen, B.; Li, Y.; Li, R. Effect of Ball Milling Time on the Microstructure and Properties of High-Silicon–Aluminum Composite. Materials 2023, 16, 5763. [Google Scholar] [CrossRef]
- Luo, W.; Zou, Q.; Li, Y.; Ye, X.; Dai, L.; Zhu, W.; Yang, X.; Luo, Y. Effects of milling time on the microstructure and properties of FeCoNiMnAl magnetic high-entropy alloys. Mater. Today Commun. 2023, 34, 104777. [Google Scholar] [CrossRef]
- Ru, J.; Wang, Y.; Wang, Y.; Xu, X. Microstructure, phase composition and oxidation behavior of porous Ti-Si-Mo intermetallic compounds fabricated by reactive synthesis. High Temp. Mater. Process. 2020, 39, 26–32. [Google Scholar] [CrossRef]
- Echeverrigaray, F.G.; Figueroa, C.A.; Zanatta, A.R.; Alvarez, F. Heterophase Interface and Surface Functionalization of TiOx/TiSix Metastable Nanofilms. Adv. Mater. Interfaces 2022, 9, 2200799. [Google Scholar] [CrossRef]
- Nilssen, B.E.; Kleiv, R.A. Silicon Powder Properties Produced in a Planetary Ball Mill as a Function of Grinding Time, Grinding Bead Size and Rotational Speed. Silicon 2020, 12, 2413–2423. [Google Scholar] [CrossRef]
- Tang, X.; Wang, H.; Fan, J.; Lv, L.P.; Sun, W.; Wang, Y. CNT boosted two-dimensional flaky metal-organic nanosheets for superior lithium and potassium storage. Chem. Eng. J. 2022, 430, 133023. [Google Scholar] [CrossRef]
- Legerstee, W.J.; Noort, T.; van Vliet, T.K.; Schut, H.; Kelder, E.M. Characterisation of defects in porous silicon as an anode material using positron annihilation Doppler Broadening Spectroscopy. Appl. Nanosci. 2022, 12, 3399–3408. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.W.; Sung, M.S.; Hwa, Y.; Kim, S.H.; Sohn, H.J. Si nanocrystallites embedded in hard TiFeSi2 matrix as an anode material for Li-ion batteries. J. Electroanal. Chem. 2012, 687, 84–88. [Google Scholar] [CrossRef]
- Park, H.I.; Sohn, M.; Choi, J.H.; Park, C.; Kim, J.H.; Kim, H. Microstructural Tuning of Si/TiFeSi2 Nanocomposite as Lithium Storage Materials by Mechanical Deformation. Electrochim. Acta 2016, 210, 301–307. [Google Scholar] [CrossRef]
- Du, Z.; Hatchard, T.D.; Bissonnette, P.; Dunlap, R.A.; Obrovac, M.N. Electrochemical Activity of Nano-NiSi2 in Li Cells. J. Electrochem. Soc. 2016, 163, A2456–A2460. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Dou, Y.; Cheng, N.; Cui, D.; Du, Y.; Liu, P.; Al-Mamun, M.; Zhang, S.; Zhao, H. A Yolk–Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 8824–8828. [Google Scholar] [CrossRef]
- Jia, T.; Zhong, G.; Lv, Y.; Li, N.; Liu, Y.; Yu, X.; Zou, J.; Chen, Z.; Peng, L.; Kang, F.; et al. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery. Green Energy Environ. 2023, 8, 1325–1340. [Google Scholar] [CrossRef]
- Rehnlund, D.; Wang, Z.; Nyholm, L. Lithium-Diffusion Induced Capacity Losses in Lithium-Based Batteries. Adv. Mater. 2022, 34, 2108827. [Google Scholar] [CrossRef]
- Ramasubramanian, A.; Yurkiv, V.; Foroozan, T.; Ragone, M.; Shahbazian-Yassar, R.; Mashayek, F. Stability of solid-electrolyte interphase (SEI) on the lithium metal surface in lithium metal batteries (LMBs). ACS Appl. Energy Mater. 2020, 3, 10560–10567. [Google Scholar] [CrossRef]
- Wu, B.; Chen, C.; Danilov, D.L.; Jiang, M.; Raijmakers, L.H.J.; Eichel, R.A.; Notten, P.H.L. Influence of the SEI Formation on the Stability and Lithium Diffusion in Si Electrodes. ACS Omega 2022, 7, 32740–32748. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, S.; Zhou, H.; Tang, J.; Ren, Y.; Bai, T.; Zhang, J.; Yang, J. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling. Microporous Mesoporous Mater. 2018, 268, 9–15. [Google Scholar] [CrossRef]
- Peng, J.; Ji, G.; Wang, X. Cycling performance and failure behavior of lithium-ion battery Silicon-Carbon composite electrode. J. Electroanal. Chem. 2024, 956, 118095. [Google Scholar] [CrossRef]
- Bhat, A.L.; Chang, J.K.; Su, Y.S. Investigating operating protocols to extend the lifespan of silicon anodes in Li-ion batteries. Electrochim. Acta 2024, 481, 143948. [Google Scholar] [CrossRef]
- Duan, J.; Kang, K.; Li, P.; Zhang, W.; Li, X.; Wang, J.; Liu, Y. The design and regulation of porous silicon-carbon composites for enhanced electrochemical lithium storage performance. J. Ind. Eng. Chem. 2023, 131, 410–421. [Google Scholar] [CrossRef]
- Su, J.T.; Lin, S.H.; Cheng, C.C.; Cheng, P.Y.; Lu, S.Y. Porous core-shell B-doped silicon–carbon composites as electrode materials for lithium ion capacitors. J. Power Sources 2022, 531, 231345. [Google Scholar] [CrossRef]
- Collins, J.; de Souza, J.P.; Hopstaken, M.; Ott, J.A.; Bedell, S.W.; Sadana, D.K. Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries. iScience 2020, 23, 101586. [Google Scholar] [CrossRef]
- Prasetya, A.D.; Rifai, M.; Mujamilah; Miyamoto, H. X-ray diffraction (XRD) profile analysis of pure ECAP-annealing Nickel samples. J. Phys. Conf. Ser. 2020, 1436, 012113. [Google Scholar] [CrossRef]
- Domi, Y.; Usui, H.; Sugimoto, K.; Sakaguchi, H. Effect of Silicon Crystallite Size on Its Electrochemical Performance for Lithium-Ion Batteries. Energy Technol. 2019, 7, 1800946. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, Y.; Liu, Y.; Liu, Q.; Ren, Y.; Lu, W. Capacity Fading Mechanism of Silicon Monoxide As the Anode for Lithium-Ion Batteries. ECS Meet. Abstr. 2018, MA2018-01, 460. [Google Scholar] [CrossRef]
- Wu, X.; Song, B.; Chien, P.H.; Everett, S.M.; Zhao, K.; Liu, J.; Du, Z. Structural Evolution and Transition Dynamics in Lithium Ion Battery under Fast Charging: An Operando Neutron Diffraction Investigation. Adv. Sci. 2021, 8, 2102318. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Han, K.; Chen, M.; Ye, H.; Sang, S. Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching. Electrochim. Acta 2019, 320, 134613. [Google Scholar] [CrossRef]
- Xiang, X.; Wu, J.Y.; Shi, Q.X.; Xia, Q.; Xue, Z.G.; Xie, X.L.; Ye, Y.S. Mesoporous silica nanoplates facilitating fast Li+ diffusion as effective polysulfide-trapping materials for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 9110–9119. [Google Scholar] [CrossRef]
- Shi, J.; Sheng, L.; Li, J.; Liu, G. Green synthesis of high-performance porous carbon coated silicon composite anode for lithium storage based on recycled silicon kerf waste. J. Alloys Compd. 2022, 919, 165854. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bage, A.N.; Bamisile, O.; Adun, H.; Takyi-Aninakwa, P.; Ekekeh, D.G.; Tu, Q.H. Enhanced Performance with Nano-Porous Silicon in TiFeSi2/C Composite Anode for Lithium-Ion Batteries. Electrochem 2024, 5, 560-573. https://doi.org/10.3390/electrochem5040036
Bage AN, Bamisile O, Adun H, Takyi-Aninakwa P, Ekekeh DG, Tu QH. Enhanced Performance with Nano-Porous Silicon in TiFeSi2/C Composite Anode for Lithium-Ion Batteries. Electrochem. 2024; 5(4):560-573. https://doi.org/10.3390/electrochem5040036
Chicago/Turabian StyleBage, Alhamdu Nuhu, Olusola Bamisile, Humphrey Adun, Paul Takyi-Aninakwa, Destina Godwin Ekekeh, and Qingsong Howard Tu. 2024. "Enhanced Performance with Nano-Porous Silicon in TiFeSi2/C Composite Anode for Lithium-Ion Batteries" Electrochem 5, no. 4: 560-573. https://doi.org/10.3390/electrochem5040036
APA StyleBage, A. N., Bamisile, O., Adun, H., Takyi-Aninakwa, P., Ekekeh, D. G., & Tu, Q. H. (2024). Enhanced Performance with Nano-Porous Silicon in TiFeSi2/C Composite Anode for Lithium-Ion Batteries. Electrochem, 5(4), 560-573. https://doi.org/10.3390/electrochem5040036