Thin Film Deposition of MoP, a Topological Semimetal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. DFT Studies
3.2. Crystallographic Properties
3.3. Transport Properties
3.4. Magnetoresitance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiu, C.K.; Teo, J.C.Y.; Schnyder, A.P.; Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 2016, 88, 035005. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Felser, C. Topological Materials: Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 2017, 8, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Vafek, O.; Vishwanath, A. Dirac Fermions in Solids: From High-Tc Cuprates and Graphene to Topological Insulators and Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 2014, 5, 83–112. [Google Scholar] [CrossRef] [Green Version]
- Lv, B.Q.; Feng, Z.L.; Xu, Q.N.; Gao, X.; Ma, J.Z.; Kong, L.Y.; Richard, P.; Huang, Y.B.; Strocov, V.N.; Fang, C.; et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 2017, 546, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Han, H.J.; Kumar, S.; Ji, X.; Hart, J.L.; Jin, G.; Hynek, D.J.; Sam, Q.P.; Hasse, V.; Felser, C.; Cahill, D.G.; et al. Topological Metal MoP Nanowire for Interconnect. arXiv 2022, arXiv:2208.02784. [Google Scholar] [CrossRef]
- Weng, H.; Fang, C.; Fang, Z.; Bernevig, B.A.; Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Phys. Rev. X 2015, 5, 011029. [Google Scholar] [CrossRef] [Green Version]
- Saleheen, A.I.U.; Chapai, R.; Xing, L.; Nepal, R.; Gong, D.; Gui, X.; Xie, W.; Young, D.P.; Plummer, E.W.; Jin, R. Evidence for topological semimetallicity in a chain-compound TaSe3. Npj Quantum Mater. 2020, 5, 53. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Dubuis, G.; Butler, T.; Medhekar, N.V.; Granville, S. Berry curvature origin of the thickness-dependent anomalous Hall effect in a ferromagnetic Weyl semimetal. Npj Quantum Mater. 2021, 6, 17. [Google Scholar] [CrossRef]
- Kumar, N.; Sun, Y.; Nicklas, M.; Watzman, S.J.; Young, O.; Leermakers, I.; Hornung, J.; Klotz, J.; Gooth, J.; Manna, K.; et al. Extremely high conductivity observed in the triple point topological metal MoP. Nat. Commun. 2019, 10, 2475. [Google Scholar] [CrossRef] [Green Version]
- Gall, D.; Cha, J.J.; Chen, Z.; Han, H.J.; Hinkle, C.; Robinson, J.A.; Sundararaman, R.; Torsi, R. Materials for interconnects. MRS Bull. 2021, 46, 959–966. [Google Scholar] [CrossRef]
- Liu, P.; Williams, J.R.; Cha, J.J. Topological nanomaterials. Nat. Rev. Mater. 2019, 4, 479–496. [Google Scholar] [CrossRef]
- Gupta, T. The Copper Damascene Process and Chemical Mechanical Polishing. In Copper Interconnect Technology; Springer: New York, NY, USA, 2009; pp. 267–300. [Google Scholar] [CrossRef]
- Cha, J. Structure-Transport Properties of Topological Nanowires. Microsc. Microanal. 2021, 27, 920–921. [Google Scholar] [CrossRef]
- Cao, F.; Zheng, S.; Liang, J.; Li, Z.; Wei, B.; Ding, Y.; Wang, Z.; Zeng, M.; Xu, N.; Fu, L. Growth of 2D MoP single crystals on liquid metals by chemical vapor deposition. Sci. China Mater. 2021, 64, 1182–1188. [Google Scholar] [CrossRef]
- Hu, T.; Tai, G.; Wu, Z.; Wang, R.; Hou, C.; Sheng, L. Ultrathin molybdenum phosphide films as high-efficiency electrocatalysts for hydrogen evolution reaction. Mater. Res. Express 2018, 6, 016418. [Google Scholar] [CrossRef]
- Wang, W.; Qi, J.; Zhai, L.; Ma, C.; Ke, C.; Zhai, W.; Wu, Z.; Bao, K.; Yao, Y.; Li, S.; et al. Preparation of 2D Molybdenum Phosphide via Surface-Confined Atomic Substitution. Adv. Mater. 2022, 34, 2203220. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Hynek, D.; Wu, Z.; Wang, L.; Liu, P.; Pondick, J.V.; Yazdani, S.; Woods, J.M.; Yarali, M.; Xie, Y.; et al. Synthesis and resistivity of topological metal MoP nanostructures. APL Mater. 2020, 8, 011103. [Google Scholar] [CrossRef]
- Suntola, T. Atomic layer epitaxy. Mater. Sci. Rep. 1989, 4, 261–312. [Google Scholar] [CrossRef]
- Plachinda, P.; Hopkins, M.; Rouvimov, S.; Solanki, R. Topological Insulator Bi2Se3 Films on Silicon Substrates. J. Electron. Mater. 2020, 49, 2191–2196. [Google Scholar] [CrossRef]
- Saiki, K.; Ueno, K.; Shimada, T.; Koma, A. Application of Van der Waals epitaxy to highly heterogeneous systems. J. Cryst. Growth 1989, 95, 603–606. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Dhandapani, B.; Oyama, S.T. Molybdenum Phosphide: A Novel Catalyst for Hydrodenitrogenation. Chem. Lett. 1998, 27, 207–208. [Google Scholar] [CrossRef]
- Phillips, D.C.; Sawhill, S.J.; Self, R.; Bussell, M.E. Synthesis, Characterization, and Hydrodesulfurization Properties of Silica-Supported Molybdenum Phosphide Catalysts. J. Catal. 2002, 207, 266–273. [Google Scholar] [CrossRef]
- Shirotani, I.; Kaneko, I.; Takaya, M.; Sekine, C.; Yagi, T. Superconductivity of molybdenum phosphides prepared at high pressure. Phys. B Condens. Matter 2000, 281–282, 1024–1025. [Google Scholar] [CrossRef]
- Zatsepin, D.A.; Green, R.J.; Hunt, A.; Kurmaev, E.Z.; Gavrilov, N.V.; Moewes, A. Structural ordering in a silica glass matrix under Mn ion implantation. J. Phys. Condens. Matter 2012, 24, 185402. [Google Scholar] [CrossRef]
- Kumar, N.; Guin, S.N.; Manna, K.; Shekhar, C.; Felser, C. Topological Quantum Materials from the Viewpoint of Chemistry. Chem. Rev. 2021, 121, 2780–2815. [Google Scholar] [CrossRef]
- Alekseev, P.S.; Dmitriev, A.P.; Gornyi, I.V.; Kachorovskii, V.Y.; Narozhny, B.N.; Schütt, M.; Titov, M. Magnetoresistance of compensated semimetals in confined geometries. Phys. Rev. B 2017, 95, 165410. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Browning, R.; Plachinda, P.; Solanki, R. Thin Film Deposition of MoP, a Topological Semimetal. Appl. Nano 2023, 4, 38-44. https://doi.org/10.3390/applnano4010003
Browning R, Plachinda P, Solanki R. Thin Film Deposition of MoP, a Topological Semimetal. Applied Nano. 2023; 4(1):38-44. https://doi.org/10.3390/applnano4010003
Chicago/Turabian StyleBrowning, Robert, Paul Plachinda, and Raj Solanki. 2023. "Thin Film Deposition of MoP, a Topological Semimetal" Applied Nano 4, no. 1: 38-44. https://doi.org/10.3390/applnano4010003
APA StyleBrowning, R., Plachinda, P., & Solanki, R. (2023). Thin Film Deposition of MoP, a Topological Semimetal. Applied Nano, 4(1), 38-44. https://doi.org/10.3390/applnano4010003