Electrochemical Synthesis and Application of Ge-Sn-O Nanostructures as Anodes of Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Electrochemical Characterization
2.3. Material Characterization
3. Results
Electrochemical Studies of a Sample
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Mahmud, S.; Rahman, M.; Kamruzzaman, M.; Ali, M.O.; Emon, M.S.A.; Khatun, H.; Ali, M.R. Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results Eng. 2022, 15, 100472. [Google Scholar] [CrossRef]
- Hu, Z.L.; Zhang, S.; Zhang, C.J.; Cui, G.L. High performance germanium-based anode materials. Coordin. Chem. Rev. 2016, 326, 34–85. [Google Scholar] [CrossRef]
- Ye, J.; Chen, Z.; Hao, Q.; Xu, C.; Hou, J. One-step mild fabrication of porous core shelled Si-TiO2 nanocomposite as high-performance anode for Li-ion batteries. J. Colloid Interface Sci. 2019, 536, 171–179. [Google Scholar] [CrossRef]
- Hao, Q.; Hou, J.; Ye, J.; Yang, H.; Du, J.; Xu, C. Hierarchical macroporous Si/Sn composite: Easy preparation and optimized performances towards lithium storage. Electrochim. Acta 2019, 306, 427–436. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.; Li, X.; Xie, W.; Wang, Q.; Liu, Q.; Fu, Y.; He, D. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 2017, 13, 1702000. [Google Scholar] [CrossRef]
- Wu, S.; Han, C.; Iocozzia, J.; Lu, M.; Ge, R.; Xu, R.; Lin, Z. Germanium-Based Nanomaterials for Rechargeable Batteries. Angew. Chem. Int. Ed. 2016, 55, 7898–7923. [Google Scholar] [CrossRef]
- Chou, C.-Y.; Hwang, G.S. On the origin of the significant difference in lithiation behavior between silicon and germanium. J. Power Sour. 2014, 263, 252–258. [Google Scholar] [CrossRef]
- Graetz, J.; Ahn, C.C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 2004, 151, A698–A702. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, H.; Zhou, T.; Zhang, W.; Liu, H.; Guo, Z. Unique structural design and strategies for germanium-based anode materials toward enhanced lithium storage. Adv. Energy Mater. 2017, 7, 1700488. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, T.; Mullane, E.; Geaney, H.; Osia, M.; O’Dwyer, C.; Ryan, K.M. High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett. 2014, 14, 716–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Regan, C.; Biswas, S.; Petkov, N.; Holmes, J.D. Size-controlled growth of germanium nanowires from ternary eutectic alloy catalysts. J. Mater. Chem. C 2014, 2, 4597–4605. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.; Kolesnik, M.; Krstic, V.; Holmes, J.D. Germanium Nanowire Synthesis from Fluorothiolate-Capped Gold Nanoparticles in Supercritical Carbon Dioxide. Chem. Mater. 2010, 22, 5235. [Google Scholar] [CrossRef]
- Wu, M.; Vanhoutte, G.; Brooks, N.R.; Binnemans, K.; Fransaer, J. Electrodeposition of germanium at elevated temperatures and pressures from ionic liquids. Phys. Chem. Chem. Phys. 2015, 17, 12080–12089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlaic, C.A.; Ivanov, S.; Peipmann, R.; Eisenhardt, A.; Himmerlich, M.; Krischok, S.; Bund, A. Electrochemical lithiation of thin silicon-based layers potentiostatically deposited from ionic liquid. Electrochim. Acta 2015, 168, 403–413. [Google Scholar] [CrossRef]
- Al-Salman, R.; Mallet, J.; Molinari, M.; Fricoteaux, P.; Martineau, F.; Troyon, M.; Zein, S.; Abedin, E.; Endres, F. Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid. Phys. Chem. Chem. Phys. 2008, 10, 6233. [Google Scholar] [CrossRef]
- Li, X.; Meng, G.; Xu, Q.; Kong, M.; Zhu, X.; Chu, Z.; Li, A.-P. Controlled Synthesis of Germanium Nanowires and Nanotubes with Variable Morphologies and Sizes. Nano Lett. 2011, 11, 1704–1709. [Google Scholar] [CrossRef]
- Al-Salman, R.; Sommer, H.; Brezesinski, T.; Janek, J. Template-Free Electrochemical Synthesis of High Aspect Ratio Sn Nanowires in Ionic Liquids: A General Route to Large-Area Metal and Semimetal Nanowire Arrays. Chem. Mater. 2015, 27, 3830–3837. [Google Scholar] [CrossRef]
- Liang, X.; Kim, Y.; Gebergziabiher, D.; Stickney, J. Aqueous Electrodeposition of Ge Monolayers. Langmuir 2010, 26, 2877–2884. [Google Scholar] [CrossRef]
- Gavrilin, I.M.; Kudryashova, Y.O.; Kuz’mina, A.A.; Kulova, T.L.; Skundin, A.M.; Emets, V.V.; Volkov, R.L.; Dronov, A.A.; Borgardt, N.I.; Gavrilov, S.A. High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanal. Chem. 2021, 888, 115209. [Google Scholar] [CrossRef]
- Gu, J.; Collins, S.M.; Carim, A.I.; Hao, X.; Bartlett, B.M.; Maldonado, S. Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage. Nano Lett. 2012, 2, 4617–4623. [Google Scholar] [CrossRef] [PubMed]
- Mahenderkar, N.K.; Liu, Y.-C.; Koza, J.A.; Switzer, J.A. Electrodeposited germanium nanowires. ACS Nano 2014, 8, 9524–9530. [Google Scholar] [CrossRef] [PubMed]
- DeMuth, J.; Fahrenkrug, E.; Maldonado, S. Controlling nucleation and crystal growth of Ge in a liquid metal solvent. Cryst. Growth Des. 2016, 16, 7130–7138. [Google Scholar] [CrossRef]
- Schmidt, V.; Gösele, U. How Nanowires. Grow. Science 2007, 316, 698–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carim, A.I.; Collins, S.M.; Foley, J.M.; Maldonado, S. Benchtop electrochemical liquid-liquid-solid growth of nanostructured crystalline germanium. J. Am. Chem. Soc. 2011, 133, 13292–13295. [Google Scholar] [CrossRef]
- Ma, L.; Gu, J.; Fahrenkrug, E.; Maldonado, S. Electrochemical liquid-liquid-solid deposition of crystalline Ge nanowires as a function of Ga nanodroplet size. J. Electrochem. Soc. 2014, 161, D3044–D3050. [Google Scholar] [CrossRef]
- Acharya, S.; Ma, L.; Maldonado, S. Critical factors in the growth of hyperdoped germanium microwires by ec-LLS. ACS Appl. Nano Mater. 2018, 1, 5553–5561. [Google Scholar] [CrossRef]
- DeMuth, J.; Ma, L.; Lancaster, M.; Acharya, S.; Cheek, Q.; Maldonado, S. Eutectic-bismuth indium as a growth solvent for the electrochemical liquid-liquid-solid deposition of germanium microwires and coiled nanowires. Cryst. Growth Des. 2018, 18, 677–685. [Google Scholar] [CrossRef]
- Gromov, D.G.; Gavrilov, S.A. Heterogeneous Melting in Low-Dimensional Systems and Accompanying Surface Effects. In Thermodynamics—Physical Chemistry of Aqueous Systems, 1st ed.; Moreno Pirajàn, J.C., Ed.; INTECH Open Access Publisher: London, UK, 2011; Volume Chapter 7, pp. 157–190. [Google Scholar]
- Gavrilin, I.M.; Gromov, D.G.; Dronov, A.A.; Dubkov, S.V.; Volkov, R.L.; Trifonov, A.Y.; Borgardt, N.I.; Gavrilov, S.A. Effect of electrolyte temperature on the cathodic deposition of Ge nanowires on In and Sn particles in aqueous solutions. Semiconductors 2017, 51, 1067–1071. [Google Scholar] [CrossRef]
- Moulder, J.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division; Perkin-Elmer Corporation: Winona, MN, USA, 1992; 261p. [Google Scholar]
- Prabhakaran, K.; Ogino, T. Oxidation of Ge (100) and Ge (111) surfaces: An UPS and XPS study. Surf. Sci. 1995, 325, 263–271. [Google Scholar] [CrossRef]
- Yang, L.C.; Gao, Q.S.; Li, L.; Tang, Y.; Wu, Y.P. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Comm. 2010, 12, 418–421. [Google Scholar] [CrossRef]
- Lee, S.W.; Ryu, I.; Nix, W.D.; Cui, Y. Fracture of crystalline germanium during electrochemical lithium insertion. Extreme Mech. Lett. 2015, 2, 15–19. [Google Scholar] [CrossRef]
- Uysal, M.; Cetinkaya, T.; Alp, A.; Akbulut, H. Production of Sn/MWCNT nano-composite anodes by pulse electrodeposition for Li-ion batteries. Appl. Surf. Sci. 2014, 290, 6–12. [Google Scholar] [CrossRef]
- Gao, S.; Wang, N.; Li, S.; Li, D.; Cui, Z.; Yue, G.; Zhao, Y.A. Multi-Wall Sn/SnO2 @Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 2465–2472. [Google Scholar] [CrossRef]
- Kulova, T.L.; Gavrilin, I.M.; Kudryashova, Y.O.; Skundin, A.M.; Gavrilov, S.A. Cyclability enhancement and decreasing the irreversible capacity of anodes based on germanium nanowires for lithium-ion batteries. Mendeleev Commun. 2021, 31, 842–843. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Y.; Zhang, Y.; Qin, C.; Yu, H.; Bakenov, Z.; Wang, Z. Sn modified nanoporous Ge for improved lithium storage performance. J. Colloid Interface Sci. 2021, 602, 563–572. [Google Scholar] [CrossRef]
- Zakharov, A.N.; Gavrilin, I.M. Electrochemical formation of germanium nanostructures using low-melting-point metal particles. In Proceedings of The Sixth Asian School-Conference on Physics and Technology of Nanostructured Materials, Vladivostok, Russia, 22–29 April 2022. [Google Scholar]
- Khabazian, S.; Sanjabi, S.; Del Campo, F.J.; Martìn, E.F.; Tonti, D. Single-step electrochemical liquid-liquid-solid-assisted growth of Ge-Sn nanostructures as a long-life anode material with boosted areal capacity. ACS Appl. Energy Mater. 2022, 5, 5589–5602. [Google Scholar] [CrossRef]
- Bahmani, E.; Zakeri, A.; Aghdam, A.S.R. Microstructural analysis and surface studies on Ag-Ge alloy coatings prepared by electrodeposition technique. J. Mater. Sci. 2021, 56, 6427–6447. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, Y.; Mibus, M.; Zangari, G. The Induced Electrochemical Codeposition of Cu-Ge Alloy Films. J. Electrochem. Soc. 2017, 164, D354–D361. [Google Scholar] [CrossRef]
Etching Time, min | C | O | Ge | Sn | K |
---|---|---|---|---|---|
- | 16 | 52 | 20 | 11 | 1 |
2 | - | 38 | 40 | 22 | - |
Etching Time | Spectrum Parameters | Ge 2p3 | Sn 3d | |||
---|---|---|---|---|---|---|
1 Ge0 | 2 GeO | 3 GeO2 | 1 Sn0 | 2 SnO2 | ||
- | Eb, eV | 1217.3 | 1218.8 | 1220.3 | 485.0 | 487.0 |
% | 5 | 13 | 82 | 15 | 85 | |
2 | Eb, eV | 1217.3 | 1219.5 | - | 485.0 | 486.8 |
% | 50 | 50 | - | 60 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilin, I.M.; Kudryashova, Y.O.; Murtazin, M.M.; Tsiniaikin, I.I.; Pavlikov, A.V.; Kulova, T.L.; Skundin, A.M. Electrochemical Synthesis and Application of Ge-Sn-O Nanostructures as Anodes of Lithium-Ion Batteries. Appl. Nano 2023, 4, 178-190. https://doi.org/10.3390/applnano4020010
Gavrilin IM, Kudryashova YO, Murtazin MM, Tsiniaikin II, Pavlikov AV, Kulova TL, Skundin AM. Electrochemical Synthesis and Application of Ge-Sn-O Nanostructures as Anodes of Lithium-Ion Batteries. Applied Nano. 2023; 4(2):178-190. https://doi.org/10.3390/applnano4020010
Chicago/Turabian StyleGavrilin, Ilya M., Yulia O. Kudryashova, Maksim M. Murtazin, Ilia I. Tsiniaikin, Alexander V. Pavlikov, Tatiana L. Kulova, and Alexander M. Skundin. 2023. "Electrochemical Synthesis and Application of Ge-Sn-O Nanostructures as Anodes of Lithium-Ion Batteries" Applied Nano 4, no. 2: 178-190. https://doi.org/10.3390/applnano4020010
APA StyleGavrilin, I. M., Kudryashova, Y. O., Murtazin, M. M., Tsiniaikin, I. I., Pavlikov, A. V., Kulova, T. L., & Skundin, A. M. (2023). Electrochemical Synthesis and Application of Ge-Sn-O Nanostructures as Anodes of Lithium-Ion Batteries. Applied Nano, 4(2), 178-190. https://doi.org/10.3390/applnano4020010