Nano-Archives in Soils—What Microbial DNA Molecules Can Report About the History of Places
Abstract
:1. Introduction
2. Strategy of Sample Treatment and Extraction of Information
3. Hints on Specific Formerly Human Activities from Observing Special Bacterial Types
4. Application Examples
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Torsvik, V.; Sorheim, R.; Gokskoyr, J. Total bacterial diversity in soil and sediment—A review. J. Ind. Microbiol. 1996, 17, 170–178. [Google Scholar] [CrossRef]
- Bartelt-Ryser, J.; Joshi, J.; Schmid, B.; Brandl, H.; Balser, T. Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect. Plant Evol. Evol. Syst. 2005, 7, 27–49. [Google Scholar] [CrossRef]
- Romanowicz, K.J.; Freedman, Z.B.; Upchurch, R.A.; Argiroff, W.A.; Zak, D.R. Active microorganisms in forest soils differ from total community yet are shaped by the same environmental factors: The influence of pH and soil moisture. FEMS Microbiol. Ecol. 2016, 92, 149. [Google Scholar] [CrossRef]
- Mesa, V.; Gallego, J.L.R.; Gonzáles-Gil, R.; Lauga, B.; Sánchez, J.; Méndez-Garcia, C.; Peláez, A.I. Bacterial, archaeal, and eukaryotic diversity across distinct microhabits in an acid mine drainage. Front. Microbiol. 2018, 8, 1756. [Google Scholar]
- Hedrich, S.; Schippers, A. Distribution of acidophilic microorganisms in natural and man-made acidic environments. Curr. Issues Mol. Biol. 2021, 40, 25–47. [Google Scholar] [CrossRef]
- Schmid, M.W.; VanMoorsel, S.J.; Hahkl, T.; DeLuca, E.; DeDeyn, G.B.; Wagg, C.; Niklaus, P.A.; Schmid, B. Effects of plant community history, soil legacy and plant diversity on soil microbial communities. J. Ecol. 2021, 109, 3007–3023. [Google Scholar] [CrossRef]
- Dergacheva, M. Ecological function of soil humus. Eurasian Soil Sci. 2001, 34, 100–105. [Google Scholar]
- Gonze, D.; Coyte, K.; Lahti, L.; Faust, K. Microbial communities as dynamical system. Curr. Opin. Microbiol. 2018, 44, 41–49. [Google Scholar] [CrossRef]
- Marfennia, O.E.; Ivanova, A.E.; Sacharov, D.S. The mycological properties of medieval cultur layers as a form of ‘soil biological memory’ about urbanization. J. Soils Sediments 2008, 8, 340–348. [Google Scholar] [CrossRef]
- Ogle, K.; Barber, J.J.; Baron-Gafford, G.A.; Benthley, L.P.; Young, J.; Huxman, T.E.; Loik, M.E.; Tissue, D.T. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 2015, 18, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Wegner, C.E.; Liesack, W. Unexpected dominance of elusive acidobacteria in early industrial soft coal slags. Front. Microbiol. 2017, 8, 1023. [Google Scholar] [CrossRef] [PubMed]
- Singer, D.; Herndon, E.; Zemanek, L.; Kortney, C.; Sander, T.; Senko, J.; Perdrial, N. Biogeochemical controls on the potential for long-term contaminated leaching from soils developing on historical coal mine spoil. Soil Syst. 2021, 5, 3. [Google Scholar] [CrossRef]
- Khalighi, M.; Gonze, D.; Faust, K.; Sommeria-Klein, G.; Lathi, L. Quantifiying the impact of ecological memory on the dynamics of interacting communities. PLoS Comput. Biol. 2022, 18, e1009396. [Google Scholar] [CrossRef] [PubMed]
- Zvyaintsev, D.G.; Dobrovolskaya, T.G.; Babeya, I.P.; Zenova, G.M.; Lysak, L.V.; Marfennia, O.Y. Role of microorganisms in the biogeocenotic functions of soil. Eurasian Soil Sci. 1992, 24, 30–46. [Google Scholar]
- Canarini, A.; Schmidt, H.; Fuchslueger, L.; Martin, V.; Herbold, C.W.; Zezula, D.; Gundler, P.; Hasibeder, R.; Jecmenia, M.; Bahn, M.; et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat. Commun. 2021, 12, 5308. [Google Scholar] [CrossRef]
- Margesin, R.; Siles, J.A.; Cajthaml, T.; Ohlinger, B.; Kistler, E. Microbiology meets archaeology: Soil microbial communities reveal different human activities at archaic Monte Iato (Sixth century BC). Microb. Ecol. 2017, 73, 925–938. [Google Scholar] [CrossRef]
- Thavamani, P.; Samkumar, R.A.; Satheesh, V.; Subashchandrabose, S.R.; Ramadass, K.; Naidu, R.; Venkateswarlu, K.; Megharaj, M. Microbes from mined sites: Harnessing their potential for reclamation of derelicted mine sites. Environ. Pollut. 2017, 230, 495–505. [Google Scholar] [CrossRef]
- Barns, S.M.; Cain, E.C.; Sommerville, L.; Kuske, C.R. Acidobacteria phylum sequences in uranium contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl. Environ. Microbiol. 2007, 73, 3113–3116. [Google Scholar] [CrossRef]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Roselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 9, 635–645. [Google Scholar] [CrossRef]
- Nan, L.L.; Guon, Q.N.; Zhan, Z.B. Diversity of bacterium communities in saline-alkali soil in arid regions of Northwest China. BMC Microbiol. 2022, 22, 11. [Google Scholar] [CrossRef]
- Kayiranga, A.; Isabwe, A.; Yao, H.F.; Shangguan, H.Y.; Coulibaly, J.L.K.; Breed, M.; Sun, X. Distribution patterns of soil bacteria, fungi, and protists emerge from distinct assembly processes across subcommunities. Ecol. Evol. 2024, 14, e11672. [Google Scholar] [CrossRef]
- Trevors, J.T. Genome size in bacteria. Ant. Van Leeuwenhoek Int. J. General Mol. Microbiol. 1996, 69, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.G.; Hendrickson, H. Genome evolution in bacteria: Order beneath chaos. Curr. Opin. Microbiol. 2005, 8, 572–578. [Google Scholar] [CrossRef]
- Polyanskaya, L.M.; Yumakov, D.D.; Tyugay, Z.N.; Stepanov, A.L. Fungi and Bacteria in the Dark-Humus Forest Soil. Eurasian Soil Sc. 2020, 53, 1255–1259. [Google Scholar] [CrossRef]
- Metzger, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, L.; Günther, P.M.; Böhme, M.; Cao, J. Three Soil Bacterial Communities from an Archaeological Excavation Site of an Ancient Coal Mine near Bennstedt (Germany) Characterized by 16S r-RNA Sequencing. Environments 2022, 9, 115. [Google Scholar] [CrossRef]
- Wiedemeier, S.; Eichler, M.; Römer, R.; Grodrian, A.; Lemke, K.; Nagel, K.; Klages, C.-P.; Gastrock, G. Parametric studies on droplet generation reproducibility for applications with biological relevant fluids. Eng. Life Sci. 2017, 17, 1271–1280. [Google Scholar]
- Seemann, R.; Brinkmann, M.; Pfohl, T.; Herminghaus, S. Droplet-based microfluidics. Rep. Progress Phys. 2012, 75, 016601. [Google Scholar] [CrossRef]
- Prasetija, N.; Schneider, S.; Xie, T.; Cao, J. Droplet-Based Microfluidic Photobioreactor as a Growth Optimization Tool for Cyanobacteria and Microalgae. Environments 2024, 11, 255. [Google Scholar] [CrossRef]
- Saupe, M.; Wiedemeier, S.; Gastrock, G.; Römer, R.; Lemke, K. Flexible Toolbox of High-Precision Microfluidic Modules for Versatile Droplet-Based Applications. Micromachines 2024, 15, 250. [Google Scholar] [CrossRef]
- Cao, J.; Richter, F.; Kastl, M.; Erdmann, J.; Burgold, C.; Dittrich, D.; Schneider, S.; Köhler, J.M.; Groß, G.A. Droplet-Based Screening for the Investigation of Microbial Nonlinear Dose–Response Characteristics System, Background and Examples. Micromachines 2020, 11, 577. [Google Scholar] [CrossRef] [PubMed]
- Kocincova, A.; Nagl, S.; Arain, S.; Krause, C. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol. Bioneng. 2008, 100, 430–438. [Google Scholar] [CrossRef] [PubMed]
- He, R.X.; Liang, R.; Peng, P.; Zhou, Y.N. Effect of the size of silver nanoparticles on SERS signal enhancement. J. Nanopart. Res. 2017, 19, 267. [Google Scholar] [CrossRef]
- Warinner, C.; Herbig, A.; Mann, A.; Yates, J.A.F.; Weiß, C.L.; Burbano, H.A.; Orlando, L.; Krause, J. A robust framework for microbial archaeology. Ann. Rev. Genom. Hum. Genet. 2017, 18, 321–356. [Google Scholar] [CrossRef]
- De Carvalho, T.S.; Jesus, E.D.; Barllow, J.; Gardner, T.A.; Soares, I.C.; Tiedje, J.M.; Moreira, F.M.D. Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology 2016, 97, 2760–2771. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Seget, Z.; Cycon, M.; Kozdrój, J. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl. Soil. Ecol. 2005, 28, 237–246. [Google Scholar] [CrossRef]
- Jayanthi, B.; Emenike, C.U.; Auta, S.H.; Agamuthu, P.; Fauziah, S.H. Characterization of induced metal responses of bacteria isolates from active non-sanitary landfill in Malaysia. Int. Biodeterior. Biodegrad. 2017, 119, 467–475. [Google Scholar] [CrossRef]
- Poyraz, N. Isolation of Novel Toluene Degrading Bacteria from Waste Water Treatment Plants and Determination of their Toluene Tolerance and other Biotechnological Potential. Pol. J. Environ. Stud. 2021, 30, 811–821. [Google Scholar] [CrossRef]
- Lin, T.C.; Shen, F.T.; Chang, S.J.; Young, C.C.; Arun, A.B.; Lin, S.Y.; Chen, T.L. Hydrocarbon degrading potential of bacteria isolated from oil-contaminated soil. J. Taiwan Inst. Chem. Eng. 2009, 40, 580–582. [Google Scholar] [CrossRef]
- Marchand, C.; St-Arnaud, M.; Hogland, W.; Bell, T.H.; Hijri, M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int. Biodeterior. Biodegrad. 2017, 116, 48–57. [Google Scholar] [CrossRef]
- Onovaye, A.M.; Ikhimiukor, O.O.; Adelowo, O.O. Response of Bacteria Isolated from Spent Engine Oil Contaminated Soil to Hydrocarbons, Metals and Antibiotics. Response of Bacteria Isolated from Spent Engine Oil Contaminated Soil to Hydrocarbons, Metals and Antibiotics. Soil Sediment Contam. 2023, 32, 954–969. [Google Scholar] [CrossRef]
- Sorenson, J.W.; Shade, A. Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philos. Trans. R. Soc. B 2020, 375, 20190255. [Google Scholar] [CrossRef]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by-omics approaches: A perspective for the environment, food quality and human safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking soil microbial diversity to modern agriculture practices: A review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Upadhyay, M.K.; Giri, B.; Yadav, P.; Moulick, D.; Sarkar, S.; Thakur, B.K.; Sahu, K.; Srivastava, A.K.; Buck, M.; et al. Sustainable water management in rice cultivation reduces arsenic contamination, increases productivity, microbial molecular response, and profitability. J. Hazard. Mater. 2024, 466, 133610. [Google Scholar] [CrossRef]
- Handali, S.; Zalaghi, R.; Aeini, M.; Parizipour, M.H.G. Microbial Degradation of Herbicides in Sugarcane Cultivation: A Study on Eradicane- and Tebuthiuron-Tolerant Bacteria. Sugar Tech 2024, 10, 1–10. [Google Scholar] [CrossRef]
- Zhang, W.W.; Wang, C.; Xue, R.; Wang, L.J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Barin, M.; Aliasgharzad, N.; Olsson, P.A.; Rasouli-Sadaghiani, M. Salinity-induced differences in soil microbial communities around the hypersaline Lake Urmia. Soil Res. 2015, 53, 494–504. [Google Scholar] [CrossRef]
- Mallory, J.; Dybo, A.; Balanovsky, O. The impact of genetic research on archaeology and linguistics in Eurasia. Russ. J. Genet. 2019, 55, 1472–1487. [Google Scholar] [CrossRef]
- Jones, M.; Brown, T. Agricultural origins: The evidence of modern and ancient DNA. Holocene 2000, 10, 769–776. [Google Scholar] [CrossRef]
- Peters, S.; Borisov, A.V.; Reinhold, S.; Korobov, D.S.; Thiemeyer, H. Microbial characteristics of soils depending on the human impact on archaeological sites in the Northern Caucasus. Quarternary Int. 2014, 324, 162–171. [Google Scholar] [CrossRef]
- Chimienti, G.; Piredda, R.; Pepe, G.; VanderWerf, I.D.; Sabbatini, L.; Crecchio, C.; Ricciuti, P.; D’Erchia, A.M.; Manzari, C.; Pesole, G. Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. Appl. Microbiol. Biotechnol. 2016, 100, 8537–8548. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.M.; Kalensee, F.; Günther, P.M.; Schüler, T.; Cao, J. The local ecological memory of soil: Majority and minority components of bacterial communities in prehistoric urns from Schöps (Germany). Int. J. Environ. Res. 2018, 12, 575–684. [Google Scholar] [CrossRef]
- Siles, J.A.; Öhlinger, B.; Cajthaml, T.; Kistler, E.; Margesin, R. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human impacted layers at Monte Iato settlement (Sicily, Italy). Sci. Rep. 2018, 8, 1903. [Google Scholar] [CrossRef] [PubMed]
- Sabin, S.; Yeh, H.-Y.; Pluskowski, A.; Clamer, C.; Mitchell, P.D.; Bos, K.I. Estimating molecular preservation of the intestinal microbiome via metagenomics analyses of latrine sediments from two medieval cities. Phil. Trans. R. Soc. B 2020, 375, 20190576. [Google Scholar] [CrossRef]
- Köhler, J.M.; Beetz, N.; Günther, P.M.; Möller, F.; Schüler, T.; Cao, J. Microbial community types and signature-like soil bacterial patterns from fortified prehistoric hills of Thuringia (Germany). Community Ecol. 2020, 21, 107–120. [Google Scholar] [CrossRef]
- Cao, J.L.; Chande, C.; Kalensee, F.; Schüler, T.; Köhler, J.M. Microfluidically supported characterization of responses of Rhodococcus erythropolis strains isolated from different soils on Cu-, Ni-, and Co-stress. Braz. J. Microbiol. 2021, 52, 1405–1415. [Google Scholar] [CrossRef]
- Voyron, S.; Tonon, C.; Guglielmone, L.; Celi, L.; Comina, C.; Ikeda, H.; Matsumoto, N.; Petrella, D.; Ryan, J.; Sato, K.; et al. Diversity and structure of soil fungal communities unveil the building history of a burial mound of ancient Japan (Tobiotsuka Kofun, Okayama Prefecture). J. Archaeol. Sci. 2022, 146, 105656. [Google Scholar] [CrossRef]
- Borisov, A.; Korobov, D.; Sergeev, A.; Kashirskaya, N. Traces of ancient agriculture in the soil around the archaeological sites (A case study from Northern Caucasus, Russia). Quarternary Int. 2022, 618, 4–13. [Google Scholar] [CrossRef]
- Köhler, J.M.; Ehrhardt, L.; Cao, J.; Möller, F.; Schüler, T.; Günther, P.M. Beta-Diversity Enhancement by archaeological structures: Bacterial communities of an historical tannery area of the city of Jena (Germany) reflected the ancient human impact. Ecologies 2023, 4, 325–343. [Google Scholar] [CrossRef]
- Nwosu, E.; Brauer, A.; Kaiser, J.; Horn, F.; Wagner, D.; Liebner, S. Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany. J. Paleolimnol. 2021, 66, 279–296. [Google Scholar] [CrossRef]
- Köhler, J.M.; Ehrhardt, L.; Günther, P.M.; Böhme, M.; Cao, J. Low Abundant Bacteria Reflect Soil Specificity—Analysis of Bacterial Communities from Archaeological Investigation of Pre-Industrial Saline Ash Deposits of Bad Dürrenberg (Germany). Environments 2024, 11, 42. [Google Scholar] [CrossRef]
- Köhler, J.M.; Ehrhardt, L.; Günther, P.M.; Cao, J.; Konecny, A. Bacterial Communities from the Antique Roman City of Carnuntum (Austria):16S r-RNA-Based Comparison of Soil Samples from Different Archaeological Horizons. Preprints 2024, 2024092333. [Google Scholar] [CrossRef]
- Borisov, A.V.; Demkina, T.S.; Kashirskaya, N.N.; Khomutova, T.E.; Chernysheva, E.V. Changes in the past soil-forming conditions and human activity in soil biological memory: Microbial and enzyme components. Eurasian Soil Sci. 2021, 54, 1078–1088. [Google Scholar] [CrossRef]
Sampling Area/Sampling Site | Archaeological Situation | Bacterial Communities | Interpretation | Ref. |
---|---|---|---|---|
Northern Caucasus | Bronze Age settlements | metabolic active bacteria | livestock herding | S. Peters et al., 2013 [51] |
Siponti (Italy) | medieval church | extremophiles, UV-adapted | adaptation to stone surface | G. Chimienti et al., 2016 [52] |
Monte lato, Sicily (Italy) | Iron Age settlement | different metabolic features | differentiation of archaeol. stratal | R. Margesin et al., 2017 [16] |
Schöps | Iron Age burial field | enhanced diversity inside urns | Beta-diversity enhancement | J.M. Köhler et al., 2018 [53] |
Monte lato. Sicilv | Iron Age settlement | highly diverse Proteo- and Actino- bacteria-dominated communities | differentiation of archaeol. stratal | J.A. Siles et al., 2018 [54] |
Riga, Jerusalem (Latvia, Israel) | medieval cities, latrines | human gut-related communities | intestinal flora of pre-indust. population | S. Sabin et al., 2020 [55] |
Places in Thuringia (Germany) | prehistoric ramparts | rumen-associated types | livestock in ramparts | J.M. Köhler et al., 2020 [56] |
Altenburg | medieval metal worker | highly metal-tolerant strain | selection pressure by Ni and Co | J. Cao et al., 2021 [57] |
Tobiotsuka Kufun (Japan) | Burial moud (6th–7th century) | high fungal diversity | translocated and buried top soils | S. Voyron et al., 2022 [58] |
Bennstedt | preindustrial coal prospection shaft | three different communities in coal seam, shaft and top soil | community reflecting material translocation | L. Ehrhardt et al., 2022 [26] |
North Caucasus (Russia) | ancient agriculture areas | thermophile and manure-related | animal dung | N. Borisov et al., 2022 [59] |
Jena (Inselplatz) | historical tannery area | high diverse communities with abundant sulfur- and nitrogen-related types | residues of tannery and dying activities, manure | J.M. Köhler et al., 2023 [60] |
Tiefer See (Germany) | early Bronze Age land use | cyanobacteria in lake sediments | deforestation due to human impact | E.C. Nwosu et al., 2023 [61] |
Bad Dürrenberg | ash deposit of historical Saline | high content of salt-tolerant types | communities adapted to highly salted deposits | J.M. Köhler et al., 2024 [62] |
Petronell-Carnuntum | Roman city | diverse local communities | site-specific bacteria | J.M. Köhler et al., 2024 [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhler, J.M. Nano-Archives in Soils—What Microbial DNA Molecules Can Report About the History of Places. Appl. Nano 2025, 6, 2. https://doi.org/10.3390/applnano6010002
Köhler JM. Nano-Archives in Soils—What Microbial DNA Molecules Can Report About the History of Places. Applied Nano. 2025; 6(1):2. https://doi.org/10.3390/applnano6010002
Chicago/Turabian StyleKöhler, Johann Michael. 2025. "Nano-Archives in Soils—What Microbial DNA Molecules Can Report About the History of Places" Applied Nano 6, no. 1: 2. https://doi.org/10.3390/applnano6010002
APA StyleKöhler, J. M. (2025). Nano-Archives in Soils—What Microbial DNA Molecules Can Report About the History of Places. Applied Nano, 6(1), 2. https://doi.org/10.3390/applnano6010002