Second Edition of the German–Austrian S3 Guideline “Infarction-Related Cardiogenic Shock: Diagnosis, Monitoring and Treatment”
1. Introduction
Guideline 2010 | GoR | LOE | Guideline 2019 | GoR | LOE |
---|---|---|---|---|---|
IABP with primary fibrinolysis: In patients with primary fibrinolysis, IABP should be carried out adjunctively. | ⇑ | 3/4 | IABP with primary PCI: Routine use of IABPs in patients with cardiogenic shock due to pump failure complicating MI is not recommended. | ⇓ | 1++ |
IABP with primary PCI: In patients with primary PCI, IABP may be considered, but the evidence is unclear. | ⇔ | 3/4 | IABP with CABG, fibrinolysis or transfer: No recommendation can be made for patients undergoing revascularization with CABG or fibrinolysis and patients who have to be transferred. | ||
Patient Transfer: In patients who have to be transferred to an intervention center, IABP should be used. | ⇑ | 3/4 | Mechanical complications of MI: IABP may be used for hemodynamic stabilization in patients with mechanical complications of myocardial infarction, including ventricular septal and papillary muscle rupture. | ⇔ | EO |
Temporary mechanical support system --- | Temporary mechanical support system: Short-term mechanical circulatory support can be considered in select patients with MI and cardiogenic shock that cannot be quickly stabilized with conservative management if realistic. | ⇔ | EO | ||
Culprit-lesion-only PCI vs. multivessel PCI In selected patients with coronary multivessel disease, complete revascularization during the index primary percutaneous coronary intervention (PCI) apart from the infarct-related artery (IRA) can be performed. | ⇔ | 3/4 | Culprit-lesion-only PCI vs. multivessel PCI In patients with coronary multivessel disease and more than one significant stenosis, Culpit-Lesion-only-lesion during the index PCI is preferred. | ⇑⇑ | 1++ |
Vascular access for PCI --- | Vascular access for PCI It is possible to use the transradial as well as the transfemoral access in patients with cardiogenic shock. It is recommended to choose the operator’s standard access in patients without acute coronary syndromes and cardiogenic shock. | ⇔ | EO | ||
Supplementation of Glutamine In patients with ICS, glutamine supplementation is recommended in those patients who have to receive parenteral nutrition for more than 5 days without significant enteral nutrition. | Supplementation of Glutamine No glutamine supplementation is recommended—neither with enteral nor with parenteral nutrition. | ⇓ | EO |
1.1. Medical Societies Involved in Guideline Development
- Deutsche Gesellschaft für Kardiologie—Herz und Kreislaufforschung e.V. (DGK) (German Cardiac Society) (lead society);
- Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin (DGIIN) (German Society of Medical Intensive Care and Emergency Medicine);
- Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG) (German Society for Thoracic and Cardiovascular Surgery);
- Österreichische Gesellschaft für Internistische und Allgemeine Intensivmedizin und Notfallmedizin (ÖGIAIM) (Austrian Society of Internal and General Intensive Care and Emergency Medicine);
- Deutsche Interdisziplinäre Vereinigung für Intensivmedizin (DIVI) (German Interdisciplinary Association of Intensive Care and Emergency Medicine);
- Österreichische Kardiologische Gesellschaft (ÖKG) (Austrian Society of Cardiology);
- Deutsche Gesellschaft für Anästhesie und Intensivmedizin (DGAI) (German Society of Anaesthesiology and Intensive Care Medicine);
- Deutsche Gesellschaft für Prävention und Rehabilitation (DGPR) (German Society for Prevention and Rehabilitation of Cardiovascular Disease).
1.2. Contents of the German–Austrian S3 Guideline “Infarction-Related Cardiogenic Shock: Diagnosis, Monitoring, and Treatment”
- Introduction;
- Method;
- Synopsis: diagnosis, monitoring and treatment of infarction-related cardiogenic shock;
- Definition, diagnosis and monitoring;
- Earliest possible coronary revascularization;
- Cardiovascular support;
- Treatment of complications of infarction-related cardiogenic shock;
- Supportive therapy for multiorgan dysfunction syndrome (MODS);
- Nutrition and insulin therapy, red cell substitution and prophylaxis, considerations regarding limitation of treatment;
- Aftercare and rehabilitation;
- Recommendations “Gemeinsam Klug Entscheiden”;
- Need for research.
1.3. Objective and Target Group of This Guideline
1.4. Data Acquisition and Evaluation of Recommendations and Evidence
Level of Evidence | Description | |
---|---|---|
1 | ++ | High-quality meta-analyses, systematic reviews of randomized controlled trials (RCTs) or RCTs with a very low risk of bias |
+ | Well-conducted meta-analyses, systematic reviews or RCTs with a low risk of bias | |
2 | ++ | High-quality systematic reviews of case–control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal |
+ | Well-conducted case–control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal | |
3 | Analytic studies without a concurrent comparison group, e.g., before-and-after studies, interrupted time series. Non-analytic studies, e.g., case reports, case series | |
4 | Expert opinion (EO), e.g., editorial commentaries, guidelines without a clear methodology |
GoR | Description |
---|---|
↑↑ | Strongly recommended: “shall” (usually based on studies with evidence level 1++ or 1+) |
↑ | Recommended: “should” (usually based on studies with evidence level 2++ or 2+) |
↔ | No recommendation: “may” (no confirmed study results exist that demonstrate either a beneficial or a harmful effect) |
↓ | Rejected: “should not” (negative recommendation) |
↓↓ | Strongly rejected: “shall not” (strong negative recommendation) |
2. Guideline Recommendations
2.1. Diagnosis and Monitoring
2.1.1. Early Diagnosis of Cardiogenic Shock
- Systemic hypoperfusion
- Oligo-/anuria < 30 mL/hour;
- Cyanotic extremities;
- Signs of cerebral hypoperfusion with somnolence and confusion.
- Blood pressure < 90 mmHg for more than 30 min;
- Systemic hypotension;
- Administration of catecholamines to stabilize the patient;
- Use of intra-aortic counterpulsation;
- Cardiac index < 2.2 L/min/m2;
- Pulmonary capillary wedge pressure of >15 mmHg.
2.1.2. Initial Monitoring
2.1.3. Advanced Hemodynamic Monitoring: Is Blood Pressure Monitoring Appropriate?
GoR | LOE | |
---|---|---|
A transthoracic or transesophageal echocardiography should be performed in patients with ICS as soon as possible after hospital arrival without a delay of coronary angiography. | ⇑⇑ | EO |
In all patients with persistent ICS, measurement of cardiac output should be performed as soon as possible for guidance of hemodynamic therapy. | ⇑⇑ | EO |
2.2. Revascularization
2.2.1. Timing
2.2.2. Type of Revascularization
2.2.3. PCI Strategy
Culprit Lesion or Total Strategy
Drug-Eluting Stents vs. Bare Metal Stents
Vascular Access for PCI
GoR | LOE | |
---|---|---|
Emergency PCI of the culprit lesion is indicated for patients with cardiogenic shock due to STEMI or NSTE-ACS, independent of time delay of symptom onset if coronary anatomy is amenable to PCI. | ⇑⇑ | 1+ * |
In patients presenting with ICS, prompt intervention with primary PCI within 90 min of first medical contact should be performed. * DGIIN: 90 min only for patients with cardiogenic shock due to a STEMI | ⇑ | EO |
In patients with complex coronary anatomy, emergency surgical or interventional revascularization should be performed as decided by the interdisciplinary Heart Team. Emergency CABG is recommended for patients with cardiogenic shock if the coronary anatomy is not amenable to PCI. | ⇑⇑ | 1+ |
In patients with complex coronary anatomy and mechanical complications of MI, emergency surgical or interventional therapy is indicated, as decided by the interdisciplinary Heart Team. | ⇑⇑ | EO |
For primary revascularization, coronary stenting with drug-eluting stents is the technique of choice in patients with iCS. | ⇑ | EO |
It is possible to use the transradial as well as the transfemoral access in patients with cardiogenic shock. It is recommended to choose the operator’s standard access in patients without acute coronary syndromes and cardiogenic shock. | ⇑ | EO |
Fibrinolysis should be performed in patients with ICS if early coronary angiography and revascularization cannot be performed within 6 h. Coronary angiography should be performed as soon as possible. | ⇑ | EO |
2.3. Drug Therapy in Cardiogenic Shock
GOR | LOE | |
---|---|---|
Dobutamine should be given as an inotropic drug. | ⇑ | EO |
Norepinephrine should be given as vasopressor of first choice. | ⇑ | EO |
In cases of catecholamine-refractory cardiogenic shock, levosimendan can be used. | ⇔ | EO |
In cases of catecholamine-refractory cardiogenic shock, phosphodiesterase-III inhibitors can be used. | ⇔ | EO |
In cases of catecholamine-refractory cardiogenic shock, levosimendan can be used; levosimendan should be used over phosphodiesterase-III inhibitors. | ||
Epinephrine can be administered if hemodynamic stabilization cannot be achieved with the use of dobutamine and norepinephrine. | ⇔ | EO |
Dopamine shall not be given in CS. | ⇓⇓ | 1++ |
2.4. Mechanical Circulatory Support (MCS)
2.4.1. IABP
GoR | LOE | |
---|---|---|
Routine use of IABPs in patients with cardiogenic shock due to ACS is not recommended. | ⇓ | 1++ |
IABP may be used for hemodynamic stabilization in patients with mechanical complications of myocardial infarction, including ventricular septal rupture and papillary muscle rupture. | ⇔ | EO |
No recommendation can be made for patients undergoing revascularization with CABG or fibrinolysis and patients who have to be transferred. | Statement | |
In ICS patients who cannot be stabilized over time, a temporary mechanical assist device (TMCS) device “may” be implanted if a realistic treatment goal is pursued and the following requirements are met: implantation without delaying revascularization; documented realistic treatment goal, evaluated by the cardiac care team; link to/collaboration with a cardiac center to ensure early destination therapy; implantation before irreversible organ damage has occurred; enrollment in a TMCS registry of a medical society. | ⇔ | EO |
2.4.2. Other Mechanical Circulatory Support Systems
Alternatives to the IABP
- MCS is implanted before the occurrence of irreversible end-organ damage;
- MCS implantation does not delay emergency revascularization;
- There is a clear patient-specific therapeutic goal as evaluated and documented by the Heart Team;
- There is a structured cooperation with a heart-failure center for early destination therapy;
- Patients are enrolled in a registry for MCS of the participating medical societies.
2.5. Mechanical Complications of MI
GoR | LOE | |
---|---|---|
ICS patients with shock due to mechanical MI complications shall be treated by a cardiac care team consisting of a cardiac surgeon and a cardiologist with experience in intensive care medicine | ⇑⇑ | EO |
Patients with a ventricular septal rupture should undergo urgent surgery or percutaneous intervention. | ⇑ | EO |
Patients with significant mitral regurgitation should undergo urgent surgery. | ⇑⇑ | EO |
2.5.1. Ventricular Septal Rupture (VSR)
2.5.2. Papillary Muscle Rupture
2.6. Specific Critical Care
2.6.1. Oxygen Supplementation
2.6.2. Mechanical Ventilation
2.6.3. Acute Kidney Injury
2.6.4. Transfusion Strategy
2.6.5. Nutrition
2.6.6. Glutamine Supplementation
2.6.7. Glucose Control
GoR | LOE | |
---|---|---|
In patients with uncontrolled ICS, enteral nutrition “should not“ be administered before control of the shock is achieved by administration of fluid and vasopressors/inotropes. | ⇓ | EO |
In both enteral and parenteral nutrition therapy, supplementation of glutamine “should“ be avoided. | ⇓ | EO |
In patients < 65 years with ICS, packed red blood cells “should“ be transfused: – If Hb concentration is below 7.0 g × dL−1/4.3 mmol × L−1; – If hematocrit is below 25%. Target values in patients < 65 years “should” be as follows: – Hb concentration of 7.0–9.0 g × dL−1/4.3–5.6 mmol × L−1; – Hematocrit of ≥25%. In older (age ≥ 65 years) patients, a hematocrit decrease to levels below 30% “should” be avoided. | ⇑ | EO |
ICS patients “shall” receive stress ulcer prophylaxis. | ⇑⇑ | EO |
Intubation and invasive ventilation “should” be given preference to non-invasive ventilation in patients with ICS. | ⇑ | EO |
After hemodynamic stabilization, ventilation “should” be performed according to the criteria of lung-protective ventilation (peak pressure/maximum plateau pressure = 30 mbar, VT 6–8 mL × kg−1 predictive BW*4, PEEP 5–15 mbar), if cardiac function permits. | ⇑ | EO |
Since hemodynamic instability is the primary concern in patients with cardiogenic shock, the ventilation pattern “shall” be selected in such a way that adequate oxygenation (SaO2 94–98%) is achieved with the least possible negative hemodynamic impact and without delaying revascularization. | ⇑⇑ | EO |
Funding
Conflicts of Interest
References
- Nguyen, H.L.; Yarzebski, J.; Lessard, D.; Gore, J.M.; McManus, D.D.; Goldberg, R.J. Ten-Year (2001–2011) Trends in the Incidence Rates and Short-Term Outcomes of Early versus Late Onset Cardiogenic Shock after Hospitalization for Acute Myocardial Infarction. J. Am. Heart Assoc. 2017, 6, e005566. [Google Scholar] [CrossRef]
- Werdan, K.; Ruß, M.; Buerke, M.; Engelmann, L.; Ferrari, M.; Friedrich, I.; Geppert, A.; Graf, J.; Hindricks, G.; Janssens, U.; et al. Deutsch-österreichische S3-Leitlinie „Infarktbedingter kardiogener Schock—Diagnose, Monitoring und Therapie“. Kardiologe 2011, 5, 166–224. [Google Scholar]
- Prondzinsky, R.; Lemm, H.; Swyter, M.; Wegener, N.; Unverzagt, S.; Carter, J.M.; Russ, M.; Schlitt, A.; Buerke, U.; Christoph, A.; et al. Intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: The prospective, randomized IABP SHOCK Trial for attenuation of multiorgan dysfunction syndrome. Crit. Care Med. 2010, 38, 152–160. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2018, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- AWMF-RN 019/013; Deutsch-österreichische S3-Leitlinie “Infarkt-bedingter kardiogener Schock–Diagnose, Monitoring und Therapie”. Deutschen Gesellschaft für Kardiologie: Düsseldorf, Germany, 2020.
- Standl, T.; Annecke, T.; Cascorbi, I.; Heller, A.R.; Sabashnikov, A.; Teske, W. Nomenklatur, Definition und Differenzierung der Schockformen. Dtsch. Arztebl. Int. 2018, 115, 757–768. [Google Scholar] [PubMed]
- Vincent, J.-L.; De Backer, D. Circulatory Shock (Review Article). N. Engl. J. Med. 2013, 369, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Fincke, R.; Hochman, J.S.; Lowe, A.M.; Menon, V.; Slater, J.N.; Webb, J.G.; LeJemtel, T.H.; Cotter, G. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J. Am. Coll. Cardiol. 2004, 44, 340–348. [Google Scholar] [CrossRef]
- Binanay, C.; Califf, R.M.; Hasselblad, V.; O’Connor, C.M.; Shah, M.R.; Sopko, G.; Stevenson, L.W.; Francis, G.S.; Leier, C.V.; Miller, L.W.; et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: The ESCAPE trial. JAMA 2005, 294, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- Garan, A.R.; Kanwar, M.; Thayer, K.L.; Whitehead, E.; Zweck, E.; Hernandez-Montfort, J.; Mahr, C.; Haywood, J.L.; Harwani, N.M.; Wencker, D.; et al. Complete Hemodynamic Profiling with Pulmonary Artery Catheters in Cardiogenic Shock Is Associated with Lower In-Hospital Mortality. JACC Heart Fail. 2020, 8, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Sionis, A.; Rivas-Lasarte, M.; Mebazaa, A.; Tarvasmäki, T.; Sans-Roselló, J.; Tolppanen, H.; Varpula, M.; Jurkko, R.; Banaszewski, M.; Silva-Cardoso, J.; et al. Current Use and Impact on 30-Day Mortality of Pulmonary Artery Catheter in Cardiogenic Shock Patients: Results from the CardShock Study. J. Intensive Care Med. 2020, 35, 1426–1433. [Google Scholar] [CrossRef]
- Uchino, S.; Bellomo, R.; Morimatsu, H.; Sugihara, M.; French, C.; Stephens, D.; Wendon, J.; Honore, P.; Mulder, J.; Turner, A. Pulmonary artery catheter versus pulse contour analysis: A prospective epidemiological study. Crit. Care 2006, 10, R174. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Buller, C.E.; Jacobs, A.K.; Slater, J.N.; Col, J.; et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef]
- Hochman, J.S.; Sleeper, L.A.; White, H.D.; Dzavik, V.; Wong, S.C.; Menon, V.; Webb, J.G.; Steingart, R.; Picard, M.H.; Menegus, M.A.; et al. One-year survival following early revascularization for cardiogenic shock. JAMA 2001, 285, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Urban, P.; Stauffer, J.C.; Bleed, D.; Khatchatrian, N.; Amann, W.; Bertel, O.; van den Brand, M.J.B.M.; Danchin, N.; Kaufmann, U.; Meier, B.; et al. A randomized evaluation of early revascularization to treat shock complicating acute myocardial infarction: The (Swiss) Multicenter trial of Angioplasty for Shock—(S)MASH. Eur. Heart J. 1999, 20, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Scholz, K.H.; Maier, S.K.; Maier, L.S.; Lengenfelder, B.; Jacobshagen, C.; Jung, J.; Fleischmann, C.; Werner, G.S.; Olbrich, H.G.; Ott, R.; et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: Results from the German prospective, multicentre FITT-STEMI trial. Eur. Heart J. 2018, 39, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Wijns, W.; Naber, C.K. Reperfusion delay in patients with high-risk ST-segment elevation myocardial infarction: Every minute counts, much more than suspected. Eur. Heart J. 2018, 39, 1075–1077. [Google Scholar] [CrossRef]
- Sanborn, T.A.; Sleeper, L.A.; Webb, J.G.; French, J.K.; Bergman, G.; Parikh, M.; Wong, S.C.; Boland, J.; Pfisterer, M.; Slater, J.N.; et al. Correlates of one-year survival in patients with cardiogenic shock complicating acute myocardial infarction: Angiographic findings from the SHOCK trial. J. Am. Coll. Cardiol. 2003, 42, 1373–1379. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- White, H.D.; Assmann, S.F.; Sanborn, T.A.; Jacobs, A.K.; Webb, J.G.; Sleeper, L.A.; Wong, C.K.; Stewart, J.T.; Aylward, P.E.; Wong, S.C.; et al. Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: Results from the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) trial. Circulation 2005, 112, 1992–2001. [Google Scholar]
- Ben-Gal, Y.; Moses, J.W.; Mehran, R.; Lansky, A.J.; Weisz, G.; Nikolsky, E.; Argenziano, M.; Williams, M.R.; Colombo, A.; Aylward, P.E.; et al. Surgical versus percutaneous revascularization for multivessel disease in patients with acute coronary syndromes: Analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. JACC Cardiovasc. Interv. 2010, 3, 1059–1067. [Google Scholar] [CrossRef]
- Grines, C.L.; Cox, D.A.; Stone, G.W.; Garcia, E.; Mattos, L.A.; Giambartolomei, A.; Brodie, B.R.; Madonna, O.; Eijgelshoven, M.; Lansky, A.J.; et al. Coronary angioplasty with or without stent implantation for acute myocardial infarction. Stent Primary Angioplasty in Myocardial Infarction Study Group. N. Engl. J. Med. 1999, 341, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, A.J.; Bucher, H.; Hengstler, P.; Harr, T.; Young, J. Primary stenting versus primary balloon angioplasty for treating acute myocardial infarction. Cochrane Database Syst. Rev. 2005, 2, CD005313. [Google Scholar] [CrossRef] [PubMed]
- Boersma, E.; Maas, A.C.; Deckers, J.W.; Simoons, M.L. Early thrombolytic treatment in acute myocardial infarction: Reappraisal of the golden hour. Lancet 1996, 348, 771. [Google Scholar] [CrossRef] [PubMed]
- de Waha, S.; Jobs, A.; Eitel, I.; Pöss, J.; Stiermaier, T.; Meyer-Saraei, R.; Fuernau, G.; Zeymer, U.; Desch, S.; Thiele, H. Multivessel versus culprit lesion only percutaneous coronary intervention in cardiogenic shock complicating acute myocardial infarction: A systematic review and meta-analysis. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Akin, I.; Sandri, M.; de Waha-Thiele, S.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Nordbeck, P.; Geisler, T.; Landmesser, U.; et al. One-Year Outcomes after PCI Strategies in Cardiogenic Shock. N. Engl. J. Med. 2018, 379, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Engstrøm, T.; Kelbæk, H.; Helqvist, S.; Høfsten, D.E.; Kløvgaard, L.; Holmvang, L.; Jørgensen, E.; Pedersen, F.; Saunamäki, K.; Clemmensen, P.; et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): An open-label, randomised controlled trial. Lancet 2015, 386, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Parise, H.; Witzenbichler, B.; Kirtane, A.; Guagliumi, G.; Peruga, J.Z.; Brodie, B.R.; Dudek, D.; Möckel, M.; Lansky, A.J.; et al. Selection criteria for drug-eluting versus bare-metal stents and the impact of routine angiographic follow-up: 2-year insights from the HORIZONS-AMI (Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction) trial. J. Am. Coll. Cardiol. 2010, 56, 1597–1604. [Google Scholar] [CrossRef]
- Sabaté, M.; Räber, L.; Heg, D.; Brugaletta, S.; Kelbaek, H.; Cequier, A.; Ostojic, M.; Iñiguez, A.; Tüller, D.; Serra, A.; et al. Comparison of newer-generation drug-eluting with bare-metal stents in patients with acute ST-segment elevation myocardial infarction: A pooled analysis of the EXAMINATION (clinical Evaluation of the Xience-V stent in Acute Myocardial INfArcTION) and COMFORTABLE-AMI (Comparison of Biolimus Eluted from an Erodible Stent Coating with Bare Metal Stents in Acute ST-Elevation Myocardial Infarction) trials. JACC Cardiovasc. Interv. 2014, 7, 55–63. [Google Scholar]
- Jhand, A.; Atti, V.; Gwon, Y.; Dhawan, R.; Turagam, M.K.; Mamas, M.A.; Brilakis, E.S.; Kumar, A.; Katta, N.; Chatzizisis, Y.; et al. Meta-Analysis of Transradial vs. Transfemoral Access for Percutaneous Coronary Intervention in Patients with ST Elevation Myocardial Infarction. Am. J. Cardiol. 2021, 141, 23–30. [Google Scholar] [CrossRef]
- Jolly, S.S.; Yusuf, S.; Cairns, J.; Niemelä, K.; Xavier, D.; Widimsky, P.; Budaj, A.; Niemelä, M.; Valentin, V.; Lewis, B.S.; et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): A randomised, parallel group, multicentre trial. Lancet 2011, 377, 1409–1420. [Google Scholar] [CrossRef] [PubMed]
- Valgimigli, M.; MATRIX investigators. Design and rationale for the Minimizing Adverse haemorrhagic events by TRansradial access site and systemic Implementation of angioX program. Am. Heart J. 2014, 168, 838–845.e6. [Google Scholar] [CrossRef] [PubMed]
- Pancholy, S.B.; Shantha, G.P.S.; Romagnoli, E.; Kedev, S.; Bernat, I.; Rao, S.V.; Jolly, S.; Bertrand, O.F.; Patel, T.M. Impact of access site choice on outcomes of patients with cardiogenic shock undergoing percutaneous coronary intervention: A systematic review and meta-analysis. Am. Heart J. 2015, 170, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Guedeney, P.; Thiele, H.; Kerneis, M.; Barthélémy, O.; Baumann, S.; Sandri, M.; de Waha-Thiele, S.; Fuernau, G.; Rouanet, S.; Piek, J.J.; et al. Radial versus femoral artery access for percutaneous coronary artery intervention in patients with acute myocardial infarction and multivessel disease complicated by cardiogenic shock: Subanalysis from the CULPRIT-SHOCK trial. Am. Heart J. 2020, 225, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Mebazaa, A.; Parissis, J.; Porcher, R.; Gayat, E.; Nikolaou, M.; Boas, F.V.; Delgado, J.F.; Follath, F. Short-term survival by treatment among patients hospitalized with acute heart failure: The global ALARM-HF registry using propensity scoring methods. Intensive Care Med. 2011, 37, 290–301. [Google Scholar] [CrossRef]
- Fuhrmann, J.T.; Schmeisser, A.; Schulze, M.R.; Wunderlich, C.; Schoen, S.P.; Rauwolf, T.; Weinbrenner, C.; Strasser, R.H. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit. Care Med. 2008, 36, 2257–2266. [Google Scholar] [CrossRef]
- Asfar, P.; Meziani, F.; Hamel, J.F.; Grelon, F.; Megarbane, B.; Anguel, N.; Mira, J.P.; Dequin, P.F.; Gergaud, S.; Weiss, N.; et al. High versus low blood-pressure target in patients with septic shock. N. Engl. J. Med. 2014, 370, 1583–1593. [Google Scholar] [CrossRef]
- Lamontagne, F.; Richards-Belle, A.; Thomas, K.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Camsooksai, J.; Darnell, R.; Gordon, A.C.; Henry, D.; et al. Effect of Reduced Exposure to Vasopressors on 90-Day Mortality in Older Critically Ill Patients with Vasodilatory Hypotension. JAMA 2020, 323, 938–949. [Google Scholar] [CrossRef]
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.L.; et al. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef]
- Annane, D.; Vignon, P.; Renault, A.; Bollaert, P.E.; Charpentier, C.; Martin, C.; Troché, G.; Ricard, J.D.; Nitenberg, G.; Papazian, L.; et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: A randomised trial. Lancet 2007, 370, 676–684. [Google Scholar] [CrossRef]
- Levy, B.; Clere-Jehl, R.; Legras, A.; Morichau-Beauchant, T.; Leone, M.; Frederique, G.; Quenot, J.P.; Kimmoun, A.; Cariou, A.; Lassus, J.; et al. Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 173–182. [Google Scholar] [CrossRef]
- Léopold, V.; Gayat, E.; Pirracchio, R.; Spinar, J.; Parenica, J.; Tarvasmäki, T.; Lassus, J.; Harjola, V.P.; Champion, S.; Zannad, F.; et al. Epinephrine and short-term survival in cardiogenic shock: An individual data meta-analysis of 2583 patients. Intensive Care Med. 2018, 44, 847–856. [Google Scholar] [CrossRef]
- Backhaus, T.; Fach, A.; Schmucker, J.; Fiehn, E.; Garstka, D.; Stehmeier, J.; Hambrecht, R.; Wienbergen, H. Management and predictors of outcome in unselected patients with cardiogenic shock complicating acute ST-segment elevation myocardial infarction: Results from the Bremen STEMI Registry. Clin. Res. Cardiol. 2018, 107, 371–379. [Google Scholar] [CrossRef]
- Karagiannidis, C.; Brodie, D.; Strassmann, S.; Stoelben, E.; Philipp, A.; Bein, T.; Müller, T.; Windisch, W. Extracorporeal membrane oxygenation: Evolving epidemiology and mortality. Intensive Care Med. 2016, 42, 889–896. [Google Scholar] [CrossRef]
- Ouweneel, D.M.; Eriksen, E.; Seyfarth, M.; Henriques, J.P. Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump for Treating Cardiogenic Shock—Meta-Analysis. J. Am. Coll. Cardiol. 2017, 69, 358–360. [Google Scholar] [CrossRef]
- Ouweneel, D.M.; Schotborgh, J.V.; Limpens, J.; Sjauw, K.D.; Engström, A.E.; Lagrand, W.K.; Cherpanath, T.G.; Driessen, A.H.; de Mol, B.A.; Henriques, J.P. Extracorporeal life support during cardiac arrest and cardiogenic shock: A systematic review and meta-analysis. Intensive Care Med. 2016, 42, 1922–1934. [Google Scholar] [CrossRef]
- Massimi, G.; Ronco, D.; De Bonis, M.; Kowalewski, M.; Formica, F.; Russo, C.F.; Sponga, S.; Vendramin, I.; Falcetta, G.; Fischlein, T.; et al. Surgical treatment for post-infarction papillary muscle rupture: A multicentre study. Eur. J. Cardiothorac. Surg. 2021, 61, 469–476. [Google Scholar] [CrossRef]
- Allardet-Servent, J.; Sicard, G.; Metz, V.; Chiche, L. Benefits and risks of oxygen therapy during acute medical illness: Just a matter of dose! Rev. Med. Interne 2019, 40, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Khoshnood, A.; Carlsson, M.; Akbarzadeh, M.; Bhiladvala, P.; Roijer, A.; Bodetoft, S.; Höglund, P.; Zughaft, D.; Todorova, L.; Erlinge, D.; et al. The Effects of Oxygen Therapy on Myocardial Salvage in ST Elevation Myocardial Infarction Treated with Acute Percutaneous Coronary Intervention: The Supplemental Oxygen in Catheterized Coronary Emergency Reperfusion (SOCCER) Study. Cardiology 2015, 132, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Jernberg, T.; Lindahl, B.; Alfredsson, J.; Berglund, E.; Bergström, O.; Engström, A.; Erlinge, D.; Herlitz, J.; Jumatate, R.; Kellerth, T.; et al. Long-Term Effects of Oxygen Therapy on Death or Hospitalization for Heart Failure in Patients with Suspected Acute Myocardial Infarction. Circulation 2018, 138, 2754–2762. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, O.; Nguyen, T.; Bansal, S.; Prasad, A. Acute kidney injury in cardiogenic shock: A comprehensive review. Catheter. Cardiovasc. Interv. 2021, 98, E91–E105. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of Early vs. Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA 2016, 315, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, G.C.; Das, R.R.; Satapathy, A. Early versus Late Initiation of Renal Replacement Therapy: Have We Reached the Consensus? An Updated Meta-Analysis. Nephron 2021, 145, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Schefold, J.C.; von Haehling, S.; Pschowski, R.; Bender, T.; Berkmann, C.; Briegel, S.; Hasper, D.; Jörres, A. The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): A prospective randomized controlled trial. Crit. Care 2014, 18, R11. [Google Scholar] [CrossRef] [PubMed]
- Padda, J.; Khalid, K.; Hitawala, G.; Batra, N.; Pokhriyal, S.; Mohan, A.; Cooper, A.C.; Jean-Charles, G. Acute Anemia and Myocardial Infarction. Cureus 2021, 13, e17096. [Google Scholar] [CrossRef] [PubMed]
- Ducrocq, G.; Gonzalez-Juanatey, J.R.; Puymirat, E.; Lemesle, G.; Cachanado, M.; Durand-Zaleski, I.; Arnaiz, J.A.; Martínez-Sellés, M.; Silvain, J.; Ariza-Solé, A.; et al. Effect of a Restrictive vs. Liberal Blood Transfusion Strategy on Major Cardiovascular Events among Patients with Acute Myocardial Infarction and Anemia: The REALITY Randomized Clinical Trial. JAMA 2021, 325, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, B.; Abdalla, A.; Osman, M.; Haykal, T.; Chintalapati, S.; Cranford, J.; Sotzen, J.; Gwinn, M.; Ahmed, S.; Hassan, M.; et al. Restrictive versus liberal red blood cell transfusion for cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. J. Thromb. Thrombolysis 2019, 47, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Reignier, J.; Boisramé-Helms, J.; Brisard, L.; Lascarrou, J.B.; Ait Hssain, A.; Anguel, N.; Argaud, L.; Asehnoune, K.; Asfar, P.; Bellec, F.; et al. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2018, 391, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Andrews, P.J.; Avenell, A.; Noble, D.W.; Campbell, M.K.; Croal, B.L.; Simpson, W.G.; Vale, L.D.; Battison, C.G.; Jenkinson, D.J.; Cook, J.A. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ 2011, 342, d1542. [Google Scholar] [CrossRef]
- Heyland, D.; Muscedere, J.; Wischmeyer, P.E.; Cook, D.; Jones, G.; Albert, M.; Elke, G.; Berger, M.M.; Day, A.G. A randomized trial of glutamine and antioxidants in critically ill patients. N. Engl. J. Med. 2013, 368, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, K.; Rydén, L.; Efendic, S.; Herlitz, J.; Nicol, P.; Waldenström, A.; Wedel, H.; Welin, L. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): Effects on mortality at 1 year. J. Am. Coll. Cardiol. 1995, 26, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, K.; Rydén, L.; Wedel, H.; Birkeland, K.; Bootsma, A.; Dickstein, K.; Efendic, S.; Fisher, M.; Hamsten, A.; Herlitz, J.; et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): Effects on mortality and morbidity. Eur. Heart J. 2005, 26, 650–661. [Google Scholar] [CrossRef] [PubMed]
- van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 2001, 345, 1359–1367. [Google Scholar] [CrossRef]
- NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilarczyk, K.; Boeken, U.; Russ, M.; Briegel, J.; Buerke, M.; Geppert, A.; Janssens, U.; Kelm, M.; Michels, G.; Schlitt, A.; et al. Second Edition of the German–Austrian S3 Guideline “Infarction-Related Cardiogenic Shock: Diagnosis, Monitoring and Treatment”. Hearts 2024, 5, 142-164. https://doi.org/10.3390/hearts5010010
Pilarczyk K, Boeken U, Russ M, Briegel J, Buerke M, Geppert A, Janssens U, Kelm M, Michels G, Schlitt A, et al. Second Edition of the German–Austrian S3 Guideline “Infarction-Related Cardiogenic Shock: Diagnosis, Monitoring and Treatment”. Hearts. 2024; 5(1):142-164. https://doi.org/10.3390/hearts5010010
Chicago/Turabian StylePilarczyk, Kevin, Udo Boeken, Martin Russ, Josef Briegel, Michael Buerke, Alexander Geppert, Uwe Janssens, Malte Kelm, Guido Michels, Axel Schlitt, and et al. 2024. "Second Edition of the German–Austrian S3 Guideline “Infarction-Related Cardiogenic Shock: Diagnosis, Monitoring and Treatment”" Hearts 5, no. 1: 142-164. https://doi.org/10.3390/hearts5010010
APA StylePilarczyk, K., Boeken, U., Russ, M., Briegel, J., Buerke, M., Geppert, A., Janssens, U., Kelm, M., Michels, G., Schlitt, A., Thiele, H., Willems, S., Zeymer, U., Zwissler, B., Delle-Karth, G., Ferrari, M. W., Figulla, H. R., Heller, A., Hindricks, G., ... Thielmann, M. (2024). Second Edition of the German–Austrian S3 Guideline “Infarction-Related Cardiogenic Shock: Diagnosis, Monitoring and Treatment”. Hearts, 5(1), 142-164. https://doi.org/10.3390/hearts5010010