Strategies for the Management of Cardiorenal Syndrome in the Acute Hospital Setting
Abstract
:1. Introduction
2. Discussion
2.1. Monitoring Hemodynamics
2.2. Diuretics
2.3. Management of Diuretic Resistance
2.4. Inotropes
2.5. Pharmacological Therapy in CRS
2.6. Management of Electrolyte Abnormalities
2.7. Implantable Devices and Mechanical Circulatory Support
2.8. Treatment of Associated Conditions
2.9. Palliative Care
3. Future Directions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cortesi, C.; Ibrahim, M.; Rivera, F.C.; Hernandez, G.A. Cardiorenal syndrome, hemodynamics, and noninvasive evaluation. Clin. Med. Insights Ther. 2017, 9. [Google Scholar] [CrossRef]
- Ergle, K.; Parto, P.; Krim, S.R. Percutaneous Ventricular Assist Devices: A Novel Approach in the Management of Patients with Acute Cardiogenic Shock. Ochsner J. 2016, 16, 243–249. [Google Scholar] [PubMed]
- Wan, S.H.; Stevens, S.R.; Borlaug, B.A.; Anstrom, K.J.; Deswal, A.; Felker, G.M.; Givertz, M.M.; Bart, B.A.; Tang, W.H.; Redfield, M.M.; et al. Differential Response to Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure with Reduced or Preserved Ejection Fraction: Results from the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure). Circ. Heart Fail. 2016, 9, e002593. [Google Scholar] [CrossRef] [PubMed]
- Yogasundaram, H.; Chappell, M.C.; Braam, B.; Oudit, G.Y. Cardiorenal Syndrome and Heart Failure—Challenges and Opportunities. Can. J. Cardiol. 2019, 35, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Girerd, N.; Zannad, F. When to use either spironolactone, eplerenone or finerenone in the spectrum of cardiorenal diseases. Nephrol. Dial. Transplant. 2024, 39, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Lin, M.-H.; Chen, C.-L.; Lai, Y.-C.; Chen, C.-Y.; Lin, Y.-C.; Hung, C.-C. Comprehensive comparison of the effect of inotropes on cardiorenal syndrome in patients with advanced heart failure: A network meta-analysis of randomized controlled trials. J. Clin. Med. 2021, 10, 4120. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Hatamizadeh, P.; Fonarow, G.C.; Budoff, M.J.; Darabian, S.; Kovesdy, C.P.; Kalantar-Zadeh, K. Cardiorenal syndrome: Pathophysiology and potential targets for clinical management. Nat. Rev. Nephrol. 2013, 9, 99–111. [Google Scholar] [CrossRef]
- Haase, M.; Müller, C.; Damman, K.; Murray, P.T.; Kellum, J.A.; Ronco, C.; McCullough, P.A. Pathogenesis of cardiorenal syndrome type 1 in acute decompensated heart failure: Workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 2013, 182, 99–116. [Google Scholar] [CrossRef]
- Grodin, J.L.; Stevens, S.R.; De Las Fuentes, L.; Kiernan, M.; Birati, E.Y.; Gupta, D.; Bart, B.A.; Felker, G.M.; Chen, H.H.; Butler, J.; et al. Intensification of Medication Therapy for Cardiorenal Syndrome in Acute Decompensated Heart Failure. J. Card. Fail. 2016, 22, 26–32. [Google Scholar] [CrossRef]
- Gnanaraj, J.; Radhakrishnan, J. Cardio-renal syndrome. F1000Research 2016, 5, 2123. [Google Scholar] [CrossRef]
- Cowie, B.; Kluger, R.; Rex, S.; Missant, C. Noninvasive estimation of left atrial pressure with transesophageal echocardiography. Ann. Card. Anaesth. 2015, 18, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Nohria, A.; Hasselblad, V.; Stebbins, A.; Pauly, D.F.; Fonarow, G.C.; Shah, M.; Yancy, C.W.; Califf, R.M.; Stevenson, L.W.; Hill, J.A. Cardiorenal interactions: Insights from the ESCAPE trial. J. Am. Coll. Cardiol. 2008, 51, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Kim, S. Pathophysiology of Cardiorenal Syndrome and Use of Diuretics and Ultrafiltration as volume control. Korean Circ. J. 2021, 51, 656. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Abrahams, Z.; Skouri, H.N.; Francis, G.S.; Taylor, D.O.; Starling, R.C.; Paganini, E.; Tang, W.H. Elevated intra-abdominal pressure in acute decompensated heart failure: A potential contributor to worsening renal function? J. Am. Coll. Cardiol. 2008, 51, 300–306. [Google Scholar] [CrossRef]
- Chandramohan, D.; Konda, R.; Pujari, A.; Avula, S.; Palleti, S.K.; Jena, N.; Naik, R.; Bali, A. Acute kidney injury after robot-assisted laparoscopic prostatectomy: A meta-analysis. Int. J. Med. Robot. Comput. Assist. Surg. 2024, 20, e2630. [Google Scholar] [CrossRef] [PubMed]
- Naik, R.; Bali, A.; Shaik, B.F.; Kata, M.; Arora, H.; Chandramohan, D.; Ramachandran, R. Hepatorenal Syndrome. In Advances in Renal Diseases and Dialysis; BP International (a Part of SCIENCEDOMAIN International): London, UK, 2023; pp. 19–34. [Google Scholar]
- Chandramohan, D.; Simhadri, P.K.; Palleti, S.K. Risk Factors for Acute Kidney Injury in Surgical Patients—A Review. J. Urol. Ren. Dis. 2024, 9, 1385. [Google Scholar] [CrossRef]
- Ghionzoli, N.; Sciaccaluga, C.; Mandoli, G.E.; Vergaro, G.; Gentile, F.; D’ascenzi, F.; Mondillo, S.; Emdin, M.; Valente, S.; Cameli, M. Cardiogenic shock and acute kidney injury: The rule rather than the exception. Heart Fail. Rev. 2021, 26, 487–496. [Google Scholar] [CrossRef]
- Caetano, F.; Barra, S.; Faustino, A.; Botelho, A.; Mota, P.; Costa, M.; Leitão Marques, A. Cardiorenal syndrome in acute heart failure: A vicious cycle? Rev. Port. Cardiol. (Engl. Ed.) 2014, 33, 139–146. [Google Scholar] [CrossRef]
- Chandramohan, D.; García, J.J.C.; Kata, M.; Naik, R.; Bali, A.; Shaik, B.F.; Arora, H.; Avula, S. Acute Kidney Injury. In Advances in Renal Diseases and Dialysis; BP International (a Part of SCIENCEDOMAIN International): London, UK, 2023; pp. 2–18. [Google Scholar]
- Felker, G.M.; Ellison, D.H.; Mullens, W.; Cox, Z.L.; Testani, J.M. Diuretic therapy for patients with heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 75, 1178–1195. [Google Scholar] [CrossRef]
- Heywood, J.T. The Cardiorenal Syndrome: Lessons from the ADHERE Database and Treatment Options. Heart Fail. Rev. 2005, 9, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Aundhakar, S.C.; Mahajan, S.K.; Mane, M.B.; Lakhotia, A.N.; Mahajani, V.V. Cardiorenal syndrome: Resistant to diuretics, sensitive to ultraflitration. J. Cardiovasc. Dis. Res. 2012, 3, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Thind, G.S.; Loehrke, M.; Wilt, J.L. Acute cardiorenal syndrome: Mechanisms and clinical implications. Clevel. Clin. J. Med. 2018, 85, 231–239. [Google Scholar] [CrossRef]
- Shah, N.; Madanieh, R.; Alkan, M.; Dogar, M.U.; Kosmas, C.E.; Vittorio, T.J. A perspective on diuretic resistance in chronic congestive heart failure. Ther. Adv. Cardiovasc. Dis. 2017, 11, 271–278. [Google Scholar] [CrossRef]
- Felker, G.M.; Lee, K.L.; Bull, D.A.; Redfield, M.M.; Stevenson, L.W.; Goldsmith, S.R.; LeWinter, M.M.; Deswal, A.; Rouleau, J.L.; Ofili, E.O.; et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 2011, 364, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.; Cobo, M.; López-Sánchez, P.; García-Magallón, B.; Salazar, M.L.S.; López-Ibor, J.V.; Janeiro, D.; García, E.; Briales, P.S.; Montero, E.; et al. Multidisciplinary approach to patients with heart failure and kidney disease: Preliminary experience of an integrated cardiorenal unit. Clin. Kidney J. 2023, 16, 2100–2107. [Google Scholar] [CrossRef]
- Davis, B.R.; Piller, L.B.; Cutler, J.A.; Furberg, C.; Dunn, K.; Franklin, S.; Goff, D.; Leenen, F.; Mohiuddin, S.; Papademetriou, V.; et al. Role of diuretics in the prevention of heart failure: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Circulation 2006, 113, 2201–2210. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.L.; Kalra, P.R.; Petrie, M.C.; Mark, P.B.; Tomlinson, L.A.; Tomson, C.R. Change in renal function associated with drug treatment in heart failure: National guidance. Heart 2019, 105, 904–910. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Ruocco, G.; Ronco, C.; McCullough, P.A. Loop diuretics in acute heart failure: Beyond the decongestive relief for the kidney. Crit. Care 2015, 19, 296. [Google Scholar] [CrossRef]
- Emmens, J.E.; Ter Maaten, J.M.; Matsue, Y.; Figarska, S.M.; Sama, I.E.; Cotter, G.; Cleland, J.G.F.; Davison, B.A.; Felker, G.M.; Givertz, M.M.; et al. Worsening renal function in acute heart failure in the context of diuretic response. Eur. J. Heart Fail. 2022, 24, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Jackson, K.; Rao, V.S.; Tang, W.H.W.; Brisco-Bacik, M.A.; Chen, H.H.; Felker, G.M.; Hernandez, A.F.; O’Connor, C.M.; Sabbisetti, V.S.; et al. Worsening Renal Function in Patients with Acute Heart Failure Undergoing Aggressive Diuresis Is Not Associated with Tubular Injury. Circulation 2018, 137, 2016–2028. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Dauw, J.; Martens, P.; Verbrugge, F.H.; Nijst, P.; Meekers, E.; Tartaglia, K.; Chenot, F.; Moubayed, S.; Dierckx, R. Acetazolamide in acute decompensated heart failure with volume overload. N. Engl. J. Med. 2022, 387, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Mentz, R.J.; Cole, R.T.; Adams, K.F.; Egnaczyk, G.F.; Fiuzat, M.; Patel, C.B.; Echols, M.; Khouri, M.G.; Tauras, J.M.; et al. Efficacy and Safety of Tolvaptan in Patients Hospitalized with Acute Heart Failure. J. Am. Coll. Cardiol. 2017, 69, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Konstam, M.A.; Gheorghiade, M.; Burnett, J.C., Jr.; Grinfeld, L.; Maggioni, A.P.; Swedberg, K.; Udelson, J.E.; Zannad, F.; Cook, T.; Ouyang, J.; et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: The EVEREST Outcome Trial. JAMA 2007, 297, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Wesson, D.E. Dietary interventions to improve outcomes in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Seckinger, D.; Ritter, O.; Patschan, D. Risk factors and outcome variables of cardiorenal syndrome type 1 from the nephrologist’s perspective. Int. Urol. Nephrol. 2022, 54, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Kher, V.; Srisawat, N.; Noiri, E.; Benghanem Gharbi, M.; Shetty, M.S.; Yang, L.; Bagga, A.; Chakravarthi, R.; Mehta, R. Prevention and Therapy of Acute Kidney Injury in the Developing World. Kidney Int. Rep. 2017, 2, 544–558. [Google Scholar] [CrossRef]
- Gao, L.; Bian, Y.; Cao, S.; Sang, W.; Zhang, Q.; Yuan, Q.; Xu, F.; Chen, Y. Development and validation of a simple-to-use nomogram for predicting in-hospital mortality in patients with acute heart failure undergoing continuous renal replacement therapy. Front. Med. 2021, 8, 678252. [Google Scholar] [CrossRef]
- Watanabe, Y.; Inoue, T.; Nakano, S.; Okada, H. Prognosis of Patients with Acute Kidney Injury due to Type 1 Cardiorenal Syndrome Receiving Continuous Renal Replacement Therapy. Cardiorenal Med. 2023, 13, 158–166. [Google Scholar] [CrossRef]
- Bart, B.A.; Goldsmith, S.R.; Lee, K.L.; Givertz, M.M.; O’Connor, C.M.; Bull, D.A.; Redfield, M.M.; Deswal, A.; Rouleau, J.L.; LeWinter, M.M.; et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N. Engl. J. Med. 2012, 367, 2296–2304. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.R.; Negoianu, D.; Jaski, B.E.; Bart, B.A.; Heywood, J.T.; Anand, I.S.; Smelser, J.M.; Kaneshige, A.M.; Chomsky, D.B.; Adler, E.D. Aquapheresis versus intravenous diuretics and hospitalizations for heart failure. JACC Heart Fail. 2016, 4, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.R.; Guglin, M.E.; Saltzberg, M.T.; Jessup, M.L.; Bart, B.A.; Teerlink, J.R.; Jaski, B.E.; Fang, J.C.; Feller, E.D.; Haas, G.J.; et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 2007, 49, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Slessarev, M.; Salerno, F.; Ball, I.M.; McIntyre, C.W. Continuous renal replacement therapy is associated with acute cardiac stunning in critically ill patients. Hemodial. Int. 2019, 23, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Aronow, W.S. Use of inotropic agents in treatment of systolic heart failure. Int. J. Mol. Sci. 2015, 16, 29060–29068. [Google Scholar] [CrossRef] [PubMed]
- Mebazaa, A.; Parissis, J.; Porcher, R.; Gayat, E.; Nikolaou, M.; Boas, F.V.; Delgado, J.F.; Follath, F. Short-term survival by treatment among patients hospitalized with acute heart failure: The global ALARM-HF registry using propensity scoring methods. Intensive Care Med. 2011, 37, 290–301. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Dalampiras, P.; Kelepeshis, G.; Skoularigis, J.; Sitafidis, G. Hemodynamic effects of dobutamine in patients with an exacerbation of chronic systolic heart failure treated with low doses of carvedilol. Int. J. Clin. Pharmacol. Ther. 2008, 46, 136–139. [Google Scholar] [CrossRef]
- Felker, G.M.; Benza, R.L.; Chandler, A.B.; Leimberger, J.D.; Cuffe, M.S.; Califf, R.M.; Gheorghiade, M.; O’Connor, C.M. Heart failure etiology and response to milrinone in decompensated heart failure: Results from the OPTIME-CHF study. J. Am. Coll. Cardiol. 2003, 41, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Fedele, F.; Bruno, N.; Brasolin, B.; Caira, C.; D’Ambrosi, A.; Mancone, M. Levosimendan improves renal function in acute decompensated heart failure: Possible underlying mechanisms. Eur. J. Heart Fail. 2014, 16, 281–288. [Google Scholar] [CrossRef]
- Lannemyr, L.; Ricksten, S.E.; Rundqvist, B.; Andersson, B.; Bartfay, S.E.; Ljungman, C.; Dahlberg, P.; Bergh, N.; Hjalmarsson, C.; Gilljam, T.; et al. Differential Effects of Levosimendan and Dobutamine on Glomerular Filtration Rate in Patients with Heart Failure and Renal Impairment: A Randomized Double-Blind Controlled Trial. J. Am. Heart Assoc. 2018, 7, e008455. [Google Scholar] [CrossRef]
- Follath, F.; Cleland, J.G.; Just, H.; Papp, J.; Scholz, H.; Peuhkurinen, K.; Harjola, V.; Mitrovic, V.; Abdalla, M.; Sandell, E. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): A randomised double-blind trial. Lancet 2002, 360, 196–202. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Douglas, H.; Wong, C. Cardio-nephrology MDT meetings play an important role in the management of cardiorenal syndrome. Br. J. Cardiol. 2020, 27, 26. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar] [CrossRef]
- McCallum, W.; Tighiouart, H.; Ku, E.; Salem, D.; Sarnak, M.J. Acute declines in estimated glomerular filtration rate on enalapril and mortality and cardiovascular outcomes in patients with heart failure with reduced ejection fraction. Kidney Int. 2019, 96, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.S.; Vardeny, O.; Claggett, B.; McMurray, J.J.; Packer, M.; Swedberg, K.; Rouleau, J.L.; Zile, M.R.; Lefkowitz, M.; Shi, V.; et al. Reduced Risk of Hyperkalemia During Treatment of Heart Failure with Mineralocorticoid Receptor Antagonists by Use of Sacubitril/Valsartan Compared with Enalapril: A Secondary Analysis of the PARADIGM-HF Trial. JAMA Cardiol. 2017, 2, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, E.J.; Morrow, D.A.; DeVore, A.D.; Duffy, C.I.; Ambrosy, A.P.; McCague, K.; Rocha, R.; Braunwald, E. Angiotensin-Neprilysin Inhibition in Acute Decompensated Heart Failure. N. Engl. J. Med. 2019, 380, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Bristow, M.R. Treatment of chronic heart failure with β-adrenergic receptor antagonists: A convergence of receptor pharmacology and clinical cardiology. Circ. Res. 2011, 109, 1176–1194. [Google Scholar] [CrossRef]
- Ferrario, C.M. Addressing the theoretical and clinical advantages of combination therapy with inhibitors of the renin-angiotensin-aldosterone system: Antihypertensive effects and benefits beyond BP control. Life Sci. 2010, 86, 289–299. [Google Scholar] [CrossRef]
- Ziff, O.J.; Covic, A.; Goldsmith, D. Calibrating the impact of dual RAAS blockade on the heart and the kidney—Balancing risks and benefits. Int. J. Clin. Pract. 2016, 70, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.S.; Tostes, R.C.; Paradis, P.; Schiffrin, E.L. Aldosterone, Inflammation, Immune System, and Hypertension. Am. J. Hypertens. 2021, 34, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999, 341, 709–717. [Google Scholar] [CrossRef] [PubMed]
- de Denus, S.; Leclair, G.; Dubé, M.P.; St-Jean, I.; Zada, Y.F.; Oussaïd, E.; Jutras, M.; Givertz, M.M.; Mentz, R.J.; Tang, W.H.W.; et al. Spironolactone metabolite concentrations in decompensated heart failure: Insights from the ATHENA-HF trial. Eur. J. Heart. Fail. 2020, 22, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Remme, W.; Zannad, F.; Neaton, J.; Martinez, F.; Roniker, B.; Bittman, R.; Hurley, S.; Kleiman, J.; Gatlin, M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003, 348, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; McMurray, J.J.; Krum, H.; van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pocock, S.J.; Pitt, B. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011, 364, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Rangaswami, J.; Bhalla, V.; Blair, J.E.A.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement from the American Heart Association. Circulation 2019, 139, E840–E878. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Sugimura, K.; Sakata, Y.; Miyata, S.; Tadaki, S.; Yamauchi, T.; Onose, T.; Tsuji, K.; Abe, R.; Oikawa, T.; et al. Prognostic impact of loop diuretics in patients with chronic heart failure—Effects of addition of renin-angiotensin-aldosterone system inhibitors and β-blockers. Circ. J. 2016, 80, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Shlipak, M.G.; Browner, W.S.; Noguchi, H.; Massie, B.; Frances, C.D.; McClellan, M. Comparison of the Effects of Angiotensin Converting-enzyme Inhibitors and Beta Blockers on Survival in Elderly Patients with Reduced Left Ventricular Function after Myocardial Infarction. Am. J. Med. 2001, 110, 425–433. [Google Scholar] [CrossRef]
- Banerjee, D.; Rosano, G.; Herzog, C.A. Management of Heart Failure Patient with CKD. Clin. J. Am. Soc. Nephrol. 2021, 16, 1131–1139. [Google Scholar] [CrossRef]
- Tang, J.; Ye, L.; Yan, Q.; Zhang, X.; Wang, L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Water and Sodium Metabolism. Front. Pharmacol. 2022, 13, 800490. [Google Scholar] [CrossRef] [PubMed]
- Kambara, T.; Shibata, R.; Osanai, H.; Nakashima, Y.; Asano, H.; Murohara, T.; Ajioka, M. Importance of sodium-glucose cotransporter 2 inhibitor use in diabetic patients with acute heart failure. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719894509. [Google Scholar] [CrossRef]
- Jackson, A.M.; Dewan, P.; Anand, I.S.; Bělohlávek, J.; Bengtsson, O.; de Boer, R.A.; Böhm, M.; Boulton, D.W.; Chopra, V.K.; DeMets, D.L.; et al. Dapagliflozin and Diuretic Use in Patients with Heart Failure and Reduced Ejection Fraction in DAPA-HF. Circulation 2020, 142, 1040–1054. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Sattar, N.; Brueckmann, M.; Jamal, W.; Cotton, D.; et al. Empagliflozin in Patients with Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. J. Am. Coll. Cardiol. 2021, 77, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Arnott, C.; Li, J.W.; Cannon, C.P.; de Zeeuw, D.; Neuen, B.L.; Heerspink, H.J.L.; Charytan, D.M.; Agarwal, A.; Huffman, M.D.; Figtree, G.A.; et al. The effects of canagliflozin on heart failure and cardiovascular death by baseline participant characteristics: Analysis of the CREDENCE trial. Diabetes Obes. Metab. 2021, 23, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, M.; Wada, H.; Martínez, F.; Hasegawa, K. When Should We Start Sodium-Glucose Co-transporter Inhibitors in Patients with Heart Failure? The Importance of Early Intervention. Eur. Cardiol. 2023, 18, e41. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, Y.; Matsue, Y.; Nogi, K.; Onitsuka, K.; Okumura, T.; Hoshino, M.; Shibata, T.; Nitta, D.; Yoshida, K.; Sato, S.; et al. Early treatment with a sodium-glucose co-transporter 2 inhibitor in high-risk patients with acute heart failure: Rationale for and design of the EMPA-AHF trial. Am. Heart. J. 2023, 257, 85–92. [Google Scholar] [CrossRef]
- Simhadri, P.K.; Vaitla, P.; Sriperumbuduri, S.; Chandramohan, D.; Singh, P.; Murari, U. Sodium-glucose Co-transporter-2 Inhibitors Causing Candida tropicalis Fungemia and Renal Abscess. JCEM Case Rep. 2024, 2, luae010. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Claggett, B.L.; Jhund, P.S.; Cunningham, J.W.; Pedro Ferreira, J.; Zannad, F.; Packer, M.; Fonarow, G.C.; McMurray, J.J.V.; Solomon, S.D. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: A comparative analysis of three randomised controlled trials. Lancet 2020, 396, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.L.; Ziesche, S.; Yancy, C.; Carson, P.; D’Agostino, R., Jr.; Ferdinand, K.; Taylor, M.; Adams, K.; Sabolinski, M.; Worcel, M.; et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med. 2004, 351, 2049–2057. [Google Scholar] [CrossRef]
- Raina, R.; Nair, N.; Chakraborty, R.; Nemer, L.; Dasgupta, R.; Varian, K. An Update on the Pathophysiology and Treatment of Cardiorenal Syndrome. Cardiol. Res. 2020, 11, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Laslett, D.B.; Cooper, J.M.; Greenberg, R.M.; Yesenosky, G.A.; Basil, A.; Gangireddy, C.; Whitman, I.R. Electrolyte abnormalities in patients presenting with ventricular arrhythmia (from the LYTE-VT Study). Am. J. Cardiol. 2020, 129, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.R.; Sang, Y.; Leddy, J.; Yahya, T.; Kirchner, H.L.; Inker, L.A.; Matsushita, K.; Ballew, S.H.; Coresh, J.; Grams, M.E. Antihypertensive Medications and the Prevalence of Hyperkalemia in a Large Health System. Hypertension 2016, 67, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Anker, S.D.; Lund, L.H.; Coats, A.J.S.; Filippatos, G.; Siddiqi, T.J.; Friede, T.; Fabien, V.; Kosiborod, M.; Metra, M.; et al. Patiromer for the management of hyperkalemia in heart failure with reduced ejection fraction: The DIAMOND trial. Eur. Heart J. 2022, 43, 4362–4373. [Google Scholar] [CrossRef] [PubMed]
- Spinowitz, B.S.; Fishbane, S.; Pergola, P.E.; Roger, S.D.; Lerma, E.V.; Butler, J.; von Haehling, S.; Adler, S.H.; Zhao, J.; Singh, B.; et al. Sodium Zirconium Cyclosilicate among Individuals with Hyperkalemia: A 12-Month Phase 3 Study. Clin. J. Am. Soc. Nephrol. 2019, 14, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Pliquett, R.U.; Schlump, K.; Wienke, A.; Bartling, B.; Noutsias, M.; Tamm, A.; Girndt, M. Diabetes prevalence and outcomes in hospitalized cardiorenal-syndrome patients with and without hyponatremia. BMC Nephrol. 2020, 21, 393. [Google Scholar] [CrossRef]
- Dunlap, M.E.; Hauptman, P.J.; Amin, A.N.; Chase, S.L.; Chiodo, J.A., 3rd; Chiong, J.R.; Dasta, J.F. Current Management of Hyponatremia in Acute Heart Failure: A Report from the Hyponatremia Registry for Patients with Euvolemic and Hypervolemic Hyponatremia (HN Registry). J. Am. Heart Assoc. 2017, 6, e005261. [Google Scholar] [CrossRef] [PubMed]
- Adrogué, H.J.; Tucker, B.M.; Madias, N.E. Diagnosis and Management of Hyponatremia: A Review. JAMA 2022, 328, 280–291. [Google Scholar] [CrossRef]
- Tang, A.S.; Wells, G.A.; Talajic, M.; Arnold, M.O.; Sheldon, R.; Connolly, S.; Hohnloser, S.H.; Nichol, G.; Birnie, D.H.; Sapp, J.L. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 2010, 363, 2385–2395. [Google Scholar] [CrossRef]
- Chandramohan, D.; Rajasekaran, R.; Konda, R.; Pujari, A.; Avula, S.; Bell, M.; Palleti, S.K.; Deotare, A.; Naik, R.; Bali, A.; et al. Cardiac Magnetic Resonance Imaging Findings in Patients with Chronic Kidney Disease and End-Stage Kidney Disease: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e51672. [Google Scholar] [CrossRef] [PubMed]
- Pun, P.H.; Al-Khatib, S.M.; Han, J.Y.; Edwards, R.; Bardy, G.H.; Bigger, J.T.; Buxton, A.E.; Moss, A.J.; Lee, K.L.; Steinman, R. Implantable cardioverter-defibrillators for primary prevention of sudden cardiac death in CKD: A meta-analysis of patient-level data from 3 randomized trials. Am. J. Kidney Dis. 2014, 64, 32–39. [Google Scholar] [CrossRef]
- Baldetti, L.; Pagnesi, M.; Gramegna, M.; Belletti, A.; Beneduce, A.; Pazzanese, V.; Calvo, F.; Sacchi, S.; Van Mieghem, N.M.; den Uil, C.A. Intra-aortic balloon pumping in acute decompensated heart failure with hypoperfusion: From pathophysiology to clinical practice. Circ. Heart Fail. 2021, 14, e008527. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Flaherty, M.P.; Pant, S.; Patel, S.V.; Kilgore, T.; Dassanayaka, S.; Loughran, J.H.; Rawasia, W.; Dawn, B.; Cheng, A.; Bartoli, C.R. Hemodynamic support with a microaxial percutaneous left ventricular assist device (Impella) protects against acute kidney injury in patients undergoing high-risk percutaneous coronary intervention. Circ. Res. 2017, 120, 692–700. [Google Scholar] [CrossRef] [PubMed]
- O’NEILL, W.W.; Schreiber, T.; Wohns, D.H.; Rihal, C.; Naidu, S.S.; Civitello, A.B.; Dixon, S.R.; Massaro, J.M.; Maini, B.; Ohman, E.M. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: Results from the USpella Registry. J. Interv. Cardiol. 2014, 27, 1–11. [Google Scholar] [CrossRef]
- Peura, J.L.; Colvin-Adams, M.; Francis, G.S.; Grady, K.L.; Hoffman, T.M.; Jessup, M.; John, R.; Kiernan, M.S.; Mitchell, J.E.; O’Connell, J.B.; et al. Recommendations for the use of mechanical circulatory support: Device strategies and patient selection: A scientific statement from the American Heart Association. Circulation 2012, 126, 2648–2667. [Google Scholar] [CrossRef]
- Brisco, M.A.; Kimmel, S.E.; Coca, S.G.; Putt, M.E.; Jessup, M.; Tang, W.W.; Parikh, C.R.; Testani, J.M. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ. Heart Fail. 2014, 7, 68–75. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Auguste, B.L.; Brown, E.; Chang, A.R.; Chertow, G.M.; Hannan, M.; Herzog, C.A.; Nadeau-Fredette, A.-C.; Tang, W.H.W.; Wang, A.Y.-M. Cardiovascular effects of home dialysis therapies: A scientific statement from the American Heart Association. Circulation 2022, 146, e146–e164. [Google Scholar] [CrossRef]
- Chandramohan, D.; Lapsiwala, B.; Simhadri, P.K.; Patel, D.; Singh, P.; Avula, S.; Jena, N.; Chandramohan, D. Outcomes of Acute Kidney Injury among Hospitalized Patients with Infective Endocarditis: A National Inpatient Sample Analysis. J. Clin. Med. 2024, 13, 4262. [Google Scholar] [CrossRef] [PubMed]
- Okonko, D.O.; Mandal, A.K.; Missouris, C.G.; Poole-Wilson, P.A. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J. Am. Coll. Cardiol. 2011, 58, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Nanas, J.N.; Matsouka, C.; Karageorgopoulos, D.; Leonti, A.; Tsolakis, E.; Drakos, S.G.; Tsagalou, E.P.; Maroulidis, G.D.; Alexopoulos, G.P.; Kanakakis, J.E. Etiology of anemia in patients with advanced heart failure. J. Am. Coll. Cardiol. 2006, 48, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
- Gale, E.; Torrance, J.; Bothwell, T. The quantitative estimation of total iron stores in human bone marrow. J. Clin. Investig. 1963, 42, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; van der Harst, P.; Hillege, H.L.; Lang, C.C.; Ter Maaten, J.M.; Ng, L.; et al. A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure: Rationale, design, and baseline characteristics of BIOSTAT-CHF. Eur. J. Heart Fail. 2016, 18, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Grote Beverborg, N.; van der Wal, H.H.; Klip, I.T.; Anker, S.D.; Cleland, J.; Dickstein, K.; van Veldhuisen, D.J.; Voors, A.A.; van der Meer, P. Differences in Clinical Profile and Outcomes of Low Iron Storage vs. Defective Iron Utilization in Patients with Heart Failure: Results From the DEFINE-HF and BIOSTAT-CHF Studies. JAMA Cardiol. 2019, 4, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Makmettakul, S.; Tantiworawit, A.; Phrommintikul, A.; Piriyakhuntorn, P.; Rattanathammethee, T.; Hantrakool, S.; Chai-Adisaksopha, C.; Rattarittamrong, E.; Norasetthada, L.; Fanhchaksai, K.; et al. Cardiorenal syndrome in thalassemia patients. BMC Nephrol. 2020, 21, 325. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Lv, X.; Gao, W.; Wang, J.; Yang, Z.; Wang, S.; Zhang, J.; Yan, J. Bone mineral density in patients with chronic heart failure: A meta-analysis. Clin. Interv. Aging 2018, 13, 343–353. [Google Scholar] [CrossRef]
- Lo, K.B.; Garvia, V.; Stempel, J.M.; Ram, P.; Rangaswami, J. Bicarbonate use and mortality outcome among critically ill patients with metabolic acidosis: A meta analysis. Heart Lung 2020, 49, 167–174. [Google Scholar] [CrossRef]
- Shoemaker, M.J.; Dias, K.J.; Lefebvre, K.M.; Heick, J.D.; Collins, S.M. Physical therapist clinical practice guideline for the management of individuals with heart failure. Phys. Ther. 2020, 100, 14–43. [Google Scholar] [CrossRef]
- Rogers, J.G.; Butler, J.; Lansman, S.L.; Gass, A.; Portner, P.M.; Pasque, M.K.; Pierson, R.N., 3rd. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: Results of the INTrEPID Trial. J. Am. Coll. Cardiol. 2007, 50, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Braun, L.T.; Grady, K.L.; Kutner, J.S.; Adler, E.; Berlinger, N.; Boss, R.; Butler, J.; Enguidanos, S.; Friebert, S.; Gardner, T.J.; et al. Palliative Care and Cardiovascular Disease and Stroke: A Policy Statement from the American Heart Association/American Stroke Association. Circulation 2016, 134, e198–e225. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.; Liu, P.; Wu, H.; Su, G. A nomogram to predict the in-hospital mortality of patients with congestive heart failure and chronic kidney disease. ESC Heart Fail. 2022, 9, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
Study, Year | Study Design; Patients and Controls | Total, n | Inclusion and Exclusion Criteria | Outcomes Measured | Main Findings |
---|---|---|---|---|---|
DOSE [28], 2011 | Design: randomized control trial Patients and controls: 1:1:1:1 randomization into low-dose vs. high-dose furosemide as a bolus or continuous infusions | 308 | Inclusion criteria: history of CHF and prior use of an oral loop diuretic Exclusion criteria: systolic BP < 90 mmhg, serum creatinine >3 mg/dL | Primary: improvement in symptoms, creatinine change in 72 h Secondary: changes in body weight, treatment failure, death, readmissions | No significant changes were noted to the patient’s symptoms or renal function between bolus vs. continuous infusions or low-dose vs. high-dose groups. High-dose strategy was associated with more diuresis but also had transient worsening of creatinine. |
ALLHAT [30], 2002 | Design: randomized control trial Patients and controls: randomized to receive chlorthalidone, amlodipine, or lisinopril | 42,418 | Inclusion criteria: ≥55 years Exclusion criteria: EF < 35%, serum creatinine > 2 mg/dL | Primary: fatal acute coronary syndrome Secondary: all-cause mortality, stroke, heart failure, and end-stage renal disease | Treatment with chlorthalidone prevented cardiovascular events as effective as amlodipine and lisinopril. Chlorthalidone was superior to amlodipine or lisinopril in preventing CHF. |
ADVOR [35], 2022 | Design: multicenter randomized control trial Patients and controls: 1:1 randomization to receive intravenous acetazolamide or placebo | 519 | Inclusion criteria: acute CHF and elevated natriuretic peptide levels Exclusion criteria: use of other proximal tubular diuretics, SGLT2i | Primary: absence of fluid overload Secondary: all-cause mortality, readmissions in 3 months | The addition of acetazolamide increased the chances of decongestion compared to placebo. |
TACTICS-HF [36], 2017 | Design: multicenter randomized control trial Patients and controls: 1:1 randomization to receive tolvaptan or placebo | 257 | Inclusion criteria: acute decompensated CHF, BNP > 400 pg/mL or NT-proBNP > 2000 pg/mL Exclusion criteria: systolic BP < 90 mmhg, serum creatinine >3.5 mg/dL | Primary: decreased mortality, improvement of dyspnea Secondary: change in body weight, worsening renal function, total length of hospital stays | Adding tolvaptan to standard diuretic therapy did not lead to significantly improved outcomes. |
Study, Year | Study Design; Patients and Controls | Total, n | Inclusion and Exclusion Criteria | Outcomes Measured | Main Findings |
---|---|---|---|---|---|
CARRESS-HF [43], 2012 | Design: randomized control trial Patients and controls: randomized to ultrafiltration or stepped-up pharmacological diuretic therapy | 188 | Inclusion criteria: acute decompensated CHF, an increase in serum creatinine of at least 0.3 mg/dL within 12 weeks before admission Exclusion criteria: serum creatinine level > 3.5 mg/dL, intravenous vasodilators or inotropes | Primary: change in serum creatinine and body weight Secondary: rapidity of decongestion | Ultrafiltration was associated with a significant worsening of renal function compared to pharmacologic therapy but showed no significant difference in weight loss. Ultrafiltration also led to higher rates of serious adverse events. |
UNLOAD [45], 2007 | Design: multicenter, randomized control trial Patients and controls: 1:1 randomized to early ultrafiltration or. diuretics | 200 | Inclusion criteria: acute decompensated CHF, EF ≤ 40% Exclusion criteria: serum creatinine > 3.0 mg/dL, systolic BP < 90 mm Hg | Primary: change in body weight and dyspnea Secondary: net volume removal at 48 h, readmissions, electrolytes | Ultrafiltration resulted in greater weight and net volume removal at 48 h than diuretics. There were fewer readmissions within 90 days. The incidence of adverse events was similar between the groups, with no significant difference in serum creatinine levels |
AVOID-HF [44], 2016 | Design: randomized, unblinded control trial Patients and controls: 1:1 randomized to adjustable ultrafiltration or adjustable loop diuretics | 224 | Inclusion criteria: acute decompensated CHF Exclusion criteria: contraindications to ultrafiltration | Primary: recurrence of heart failure within 90 days of discharge Secondary: clinical improvement at 30 and 90 days, adverse effects | There were no significant differences in the recurrence of heart failure between the groups. More adverse events were noted in the ultrafiltration group |
Study, Year | Study Design; Patients and Controls | Total, n | Inclusion and Exclusion Criteria | Outcomes Measured | Main Findings |
---|---|---|---|---|---|
ROSE-AHF [3], 2016 | Design: multicenter randomized control trial Patients and controls: randomized to low-dose dopamine vs. low-dose nesiritide vs. placebo | 360 | Inclusion criteria: acute CHF Exclusion criteria: systolic BP < 90 mmhg, serum creatinine >3 mg/dL, use of intravenous vasodilators or inotropes | Primary: urine output over 72 h, changes to renal renal function determined by cystatin-C Secondary: change in body weight, changes in NT-proBNP levels | Significant improvements in CHF and renal function were not seen in both dopamine and nesiritide groups. Adverse effects were similar in both groups |
Post hoc analysis of ALARM-HF study, 2011 [48] | Design: multicenter retrospective study Patients and controls: propensity-based groups were created to compare groups receiving inotropes along with diuretics | 4953 | Inclusion criteria: acute decompensated CHF | Primary: all-cause mortality, length of hospital stays Secondary: | Dopamine, dobutamine, norepinephrine, and epinephrine were associated with increased in-hospital mortality. |
OPTIME-CHF [50], 2003 | Design: randomized control trial Patients and controls: randomized to receive milrinone or placebo | 949 | Inclusion criteria: acute decompensated CHF Exclusion criteria: systolic BP < 80 mm Hg, serum creatinine >3.0 mg/d, arrhythmias | Primary: length of hospitalized days Secondary: mortality at 60 days, ability to reach maximum dosing of ACEi | Patients treated with milrinone had longer hospitalizations. Patients with ischemic heart failure had worse outcomes, but patients with non-ischemic heart failure had good outcomes |
LIDO [53], 2002 |
Design: randomized control trial Patients and controls: Randomized to receive levosimendan or dobutamine | 203 | Inclusion criteria: EF < 35%, cardiac index < 2.5 L/min/m2 Exclusion criteria: severe renal or hepatic failure, restrictive or hypertrophic cardiomyopathy |
Primary: hemodynamic improvement in 24 h Secondary: improvement of heart failure symptoms, time to development of worsening heart failure or death | Treatment with levosimendan improved hemodynamics when compared to dobutamine. The levosimendan group had less mortality at 180 days. |
Study, Year | Study Design; Patients and Controls | Total, n | Inclusion and Exclusion Criteria | Outcomes Measured | Main Findings |
---|---|---|---|---|---|
Analysis of data from SOLVD [57], 2019 | Design: multicenter randomized control trial Patients and controls: randomized to receive enalapril or placebo | 6245 | Inclusion criteria: symptomatic or asymptomatic CHF Exclusion criteria: serum creatinine level of >2.5 mg/dL, age > 80 years, uncontrolled HTN | Primary: all-cause mortality over 3 to 5 years Secondary: cardiovascular-related deaths and CHF readmissions | Patients with HFrEF treated with enalapril had a decreased risk of mortality and CHF hospitalizations. After initiating enalapril, a moderate decrease in eGFR was noted and was acceptable. |
PARADIGM-HF [58], 2014 | Design: multicenter randomized control trial Patients and controls: 1:1 randomization to receive LCZ696 or enalapril | 10,521 | Inclusion criteria: NYHA class II-IV symptoms, EF ≤ 35%, and elevated BNP or NT-proBNP levels Exclusion criteria: systolic BP < 100 mmhg, eGFR <30 mL/min/1.73 m2, serum potassium > 5.4 mmol/L | Primary: death due to cardiovascular causes, CHF hospitalization Secondary: time to death from all causes, new onset of atrial fibrillation, worsening renal function | ARNi reduced deaths due to cardiovascular causes and CHF hospitalizations by 20% compared to enalapril. The risk of death from all causes was also decreased. |
PIONEER-HF [60], 2019 | Design: multicenter randomized control trial Patients and controls: 1:1 randomization to receive sacubitril–valsartan or enalapril | 887 | Inclusion criteria: EF ≤ 40%, elevated BNP or NT-proBNP levels Exclusion criteria: severe renal impairment, symptomatic hypotension | Primary: change in NT-proBNP concentration Secondary: worsening renal function, hyperkalemia, symptomatic hypotension | Treatment with sacubitril–valsartan caused a higher reduction in the NT-proBNP concentration. The rates of hyperkalemia or worsening renal function did not differ significantly between the groups. |
RALES [65], 1999 | Design: randomized control trial Patients and controls: 1:1 randomization to receive spironolactone or placebo | 1663 | Inclusion criteria: NYHA class III or IV symptoms, EF ≤ 35% Exclusion criteria: serum creatinine > 2.5 mg/dL, serum potassium > 5 mmol/L | Primary: all-cause mortality Secondary: death due to cardiovascular causes, CHF hospitalizations | Treatment with spironolactone significantly reduced the risk of all-cause mortality who were receiving standard therapy, which included an ACEi. |
ATHENA-HF [66], 2020 | Design: multicenter randomized control trial Patients and controls: randomized to receive high dose (100 mg of spironolactone or low dose spironolactone (25 mg) or placebo | 112 | Inclusion criteria: acute decompensated CHF, elevated BNP or NT-proBNP levels | Primary: change in NT-proBNP concentration at 96 h Secondary: change in body weight, net urine volume, dyspnea relief | Treatment with high-dose spironolactone did not significantly improve NT-proBNP concentrations or the other secondary endpoints compared to low-dose spironolactone or placebo. |
EPHESUS [67], 2003 | Design: multicenter randomized control trial Patients and controls: 1:1 randomization to receive eplerenone or placebo | 6642 | Inclusion criteria: patients with myocardial infarction, EF ≤ 40%, symptomatic CHF Exclusion criteria: serum creatinine > 2.5 mg/dL, serum potassium > 5 mmol/L | Primary: All-cause mortality Secondary: death due to cardiovascular causes | Treatment with eplerenone significantly reduced all-cause mortality, other cardiovascular events, and CHF hospitalizations. The risk of hyperkalemia was higher in the eplerenone group. |
EMPEROR [7], 2020 | Design: randomized control trial Patients and controls: 1:1 randomization to receive empagliflozin or placebo | 3730 | Inclusion criteria: NYHA class III or IV symptoms, EF ≤ 40% | Primary: death due to cardiovascular causes, worsening CHF Secondary: CHF hospitalizations, worsening of eGFR | Treatment with empagliflozin significantly reduced death due to cardiovascular causes, CHF hospitalizations and rate of eGFR decline. |
Analysis of data from CREDENCE [77], 2021 | Design: randomized control trial Patients and controls: 1:1 randomization to receive canagliflozin or placebo | 4401 | Inclusion criteria: HbA1c levels between 6.5% and 12.0%, and chronic kidney disease with eGFR of 30 to less than 90 mL/min/1.73 m2 and albuminuria between 300 to 5000 mg/g | Primary: death due to renal or cardiovascular causes, doubling of serum creatinine Secondary: death due to cardiovascular causes and CHF hospitalizations | Canagliflozin significantly reduced the risk of end-stage kidney disease, doubling serum creatinine, and renal or cardiovascular death. It also reduced the risk of heart failure hospitalizations and cardiovascular death by 31%. |
EMPULSE [80], 2022 | Design: multicenter randomized control trial Patients and controls: 1:1 randomization to receive empagliflozin or placebo | 530 | Inclusion criteria: Acute decompensated CHF Exclusion criteria: cardiogenic shock, eGFR of 20 mL/min/1.73 m2 | Primary: all-cause mortality, number and time to first heart failure event Secondary: death due to cardiovascular cause, CHF hospitalizations, change in NT-proBNP concentrations | Empagliflozin showed a significant clinical benefit over a placebo when started in patients with acute CHF. Empagliflozin had fewer adverse effects than placebo. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandramohan, D.; Simhadri, P.K.; Jena, N.; Palleti, S.K. Strategies for the Management of Cardiorenal Syndrome in the Acute Hospital Setting. Hearts 2024, 5, 329-348. https://doi.org/10.3390/hearts5030024
Chandramohan D, Simhadri PK, Jena N, Palleti SK. Strategies for the Management of Cardiorenal Syndrome in the Acute Hospital Setting. Hearts. 2024; 5(3):329-348. https://doi.org/10.3390/hearts5030024
Chicago/Turabian StyleChandramohan, Deepak, Prathap Kumar Simhadri, Nihar Jena, and Sujith Kumar Palleti. 2024. "Strategies for the Management of Cardiorenal Syndrome in the Acute Hospital Setting" Hearts 5, no. 3: 329-348. https://doi.org/10.3390/hearts5030024
APA StyleChandramohan, D., Simhadri, P. K., Jena, N., & Palleti, S. K. (2024). Strategies for the Management of Cardiorenal Syndrome in the Acute Hospital Setting. Hearts, 5(3), 329-348. https://doi.org/10.3390/hearts5030024