Linking Epicardial Adipose Tissue to Atrial Remodeling: Clinical Implications of Strain Imaging
Abstract
:1. Introduction
2. Composition and Functions of Epicardial Adipose Tissue
3. Left Atrial Epicardial Adipose Tissue and Atrial Fibrillation
4. Atrial Strain and Volumetric Assessment as Markers of Atrial Remodeling
5. Clinical Implications of Atrial Dyssynchrony
6. Measurable Parameters of Left Atrial Strain
- Reservoir function (positive strain): Peak atrial longitudinal Strain (PALS) measures the atrial expansion during ventricular systole, when the atrium fills with blood from the pulmonary veins, reflecting atrial compliance and the ability to accommodate pulmonary venous return. Reduced reservoir strain is indicative of impaired atrial compliance, which can result from increased EAT-induced fibrosis or inflammation.
- Conduit function: This assesses the atrium’s role as a conduit during early ventricular diastole, reflecting its capacity to passively transfer blood from the pulmonary veins to the left ventricle. Decreased conduit strain suggests early atrial stiffening or impaired ventricular filling, conditions often exacerbated by EAT-related paracrine dysfunction.
- Contractile strain: Peak atrial contraction strain (PACS) measures the active contraction of the atrium during late diastole. A reduction in contractile strain points to impaired atrial contractility, potentially caused by the mechanical compression and electrical remodeling induced by LA-EAT.
7. Effects of Epicardial Adipose Tissue on Left Atrial Dyssynchrony
8. Effects of Ablation on Atrial Dyssynchrony and Remodeling
9. Therapeutic Implications and Future Directions
10. Advantages of Electroporation for AF Ablation in Patients with Left Atrial Epicardial Adipose Tissue
11. Advanced Imaging
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
EAT | Epicardial adipose tissue |
LA-EAT | Left atrial epicardial adipose tissue |
LAVI | Left atrial volume index |
PALS | Peak atrial longitudinal strain |
PACS | Peak atrial contraction strain |
EPS | Electrophysiological study |
TTP | Time to peak |
References
- Chen, M.A. Multimorbidity in Older Adults with Atrial Fibrillation. Clin. Geriatr. Med. 2016, 32, 315–329. [Google Scholar] [CrossRef]
- Takahashi, N.; Abe, I.; Kira, S.; Ishii, Y. Role of epicardial adipose tissue in human atrial fibrillation. J. Arrhythm. 2023, 39, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, A.M.; Montecucco, F.; Sahebkar, A.; Dallegri, F.; Carbone, F. Epicardial adipose tissue and cardiovascular diseases. Int. J. Cardiol. 2019, 278, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.; Petraglia, L.; Cabaro, S.; Valerio, V.; Poggio, P.; Pilato, E.; Attena, E.; Russo, V.; Ferro, A.; Formisano, P.; et al. Epicardial Adipose Tissue and Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 932262. [Google Scholar] [CrossRef]
- Vyas, V.; Hunter, R.J.; Longhi, M.P.; Finlay, M.C. Inflammation and adiposity: New frontiers in atrial fibrillation. Europace 2020, 22, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Couselo-Seijas, M.; Rodríguez-Mañero, M.; González-Juanatey, J.R.; Eiras, S. Updates on epicardial adipose tissue mechanisms on atrial fibrillation. Obes. Rev. 2021, 22, e13277. [Google Scholar] [CrossRef] [PubMed]
- Tzeis, S.; Gerstenfeld, E.P.; Kalman, J.; Saad, E.; Shamloo, A.S.; Andrade, J.G.; Barbhaiya, C.R.; Baykaner, T.; Boveda, S.; Calkins, H.; et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J. Interv. Card. Electrophysiol. 2024, 67, 921–1072. [Google Scholar] [CrossRef]
- O’Neill, T.; Kang, P.; Hagendorff, A.; Tayal, B. The Clinical Applications of Left Atrial Strain: A Comprehensive Review. Medicina 2024, 60, 693. [Google Scholar] [CrossRef] [PubMed]
- Mannina, C.; Ito, K.; Jin, Z.; Yoshida, Y.; Russo, C.; Nakanishi, K.; Elkind, M.S.V.; Rundek, T.; Homma, S.; Di Tullio, M.R. Left Atrial Strain and Incident Atrial Fibrillation in Older Adults. Am. J. Cardiol. 2023, 206, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Le Jemtel, T.H.; Samson, R.; Ayinapudi, K.; Singh, T.; Oparil, S. Epicardial Adipose Tissue and Cardiovascular Disease. Curr. Hypertens. Rep. 2019, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.G.; Renu, K.; Gopalakrishnan, A.V.; Jayaraj, R.; Dey, A.; Vellingiri, B.; Ganesan, R. Epicardial adipose tissue and cardiac lipotoxicity: A review. Life Sci. 2023, 328, 121913. [Google Scholar] [CrossRef] [PubMed]
- Chechi, K.; Richard, D. Thermogenic potential and physiological relevance of human epicardial adipose tissue. Int. J. Obes. Suppl. 2015, 5 (Suppl. S1), S28–S34. [Google Scholar] [CrossRef]
- Doukbi, E.; Soghomonian, A.; Sengenès, C.; Ahmed, S.; Ancel, P.; Dutour, A.; Gaborit, B. Browning Epicardial Adipose Tissue: Friend or Foe? Cells 2022, 11, 991. [Google Scholar] [CrossRef]
- Matloch, Z.; Cinkajzlova, A.; Mraz, M.; Haluzik, M. The Role of Inflammation in Epicardial Adipose Tissue in Heart Diseases. Curr. Pharm. Des. 2018, 24, 297–309. [Google Scholar] [CrossRef]
- Berg, G.; Miksztowicz, V.; Morales, C.; Barchuk, M. Epicardial Adipose Tissue in Cardiovascular Disease. Adv. Exp. Med. Biol. 2019, 1127, 131–143. [Google Scholar] [CrossRef]
- Zain, S.; Shamshad, T.; Kabir, A.; Khan, A.A. Epicardial Adipose Tissue and Development of Atrial Fibrillation (AFIB) and Heart Failure With Preserved Ejection Fraction (HFpEF). Cureus 2023, 15, e46153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, H.; Chen, J.; Zhao, L. Epicardial adipose tissue and atrial fibrillation: Possible mechanisms, potential therapies, and future directions. Pacing Clin. Electrophysiol. 2020, 43, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G. Aging Effects on Epicardial Adipose Tissue. Front. Aging 2021, 2, 666260. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. J. Am. Coll. Cardiol. 2015, 66, 1–11. [Google Scholar] [CrossRef]
- Ernault, A.C.; Verkerk, A.O.; Bayer, J.D.; Aras, K.; Montañés-Agudo, P.; Mohan, R.A.; Veldkamp, M.; Rivaud, M.R.; de Winter, R.; Kawasaki, M.; et al. Secretome of atrial epicardial adipose tissue facilitates reentrant arrhythmias by myocardial remodeling. Heart Rhythm 2022, 19, 1461–1470. [Google Scholar] [CrossRef]
- Kim, M.Y.; Coyle, C.; Tomlinson, D.R.; Sikkel, M.B.; Sohaib, A.; Luther, V.; Leong, K.M.; Malcolme-Lawes, L.; Low, B.; Sandler, B.; et al. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study. Heart Rhythm 2022, 19, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Musikantow, D.R.; Reddy, V.Y.; Skalsky, I.; Shaburishvili, T.; van Zyl, M.; O’Brien, B.; Coffey, K.; Reilly, J.; Neuzil, P.; Asirvatham, S.; et al. Targeted ablation of epicardial ganglionated plexi during cardiac surgery with pulsed field electroporation (NEURAL AF). J. Interv. Card. Electrophysiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Moñivas-Palomero, V.; Mingo-Santos, S.; Andersen, Ø.S.; Gude, E.; et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 61–70, Erratum in Eur. Heart J. Cardiovasc. Imaging 2022, 23, 136. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Mandoli, G.E.; Loiacono, F.; Sparla, S.; Iardino, E.; Mondillo, S. Left atrial strain: A useful index in atrial fibrillation. Int. J. Cardiol. 2016, 220, 208–213. [Google Scholar] [CrossRef]
- Cho, G.Y.; Jo, S.H.; Kim, M.K.; Park, W.J.; Choi, Y.J.; Hong, K.S.; Oh, D.J.; Rhim, C.Y. Left atrial dyssynchrony assessed by strain imaging in predicting future development of atrial fibrillation in patients with heart failure. Int. J. Cardiol. 2009, 134, 336–341. [Google Scholar] [CrossRef]
- Sánchez, F.J.; Gonzalez, V.A.; Farrando, M.; Baigorria Jayat, A.O.; Segovia-Roldan, M.; García-Mendívil, L.; Ordovás, L.; Prado, N.J.; Pueyo, E.; Diez, E.R. Atrial Dyssynchrony Measured by Strain Echocardiography as a Marker of Proarrhythmic Remodeling and Oxidative Stress in Cardiac Surgery Patients. Oxid. Med. Cell. Longev. 2020, 2020, 8895078. [Google Scholar] [CrossRef]
- Mohamed Ibrahim, I.; Taha Hassanin, M.; El Zaki, M.M. Tissue Doppler-derived atrial dyssynchrony predicts new-onset atrial fibrillation during hospitalization for ST-elevation myocardial infarction. Echocardiography 2019, 36, 1799–1805. [Google Scholar] [CrossRef]
- Njoku, A.; Kannabhiran, M.; Arora, R.; Reddy, P.; Gopinathannair, R.; Lakkireddy, D.; Dominic, P. Left atrial volume predicts atrial fibrillation recurrence after radiofrequency ablation: A meta-analysis. Europace 2018, 20, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Cacciapuoti, F.; Scognamiglio, A.; Paoli, V.D.; Romano, C.; Cacciapuoti, F. Left Atrial Volume Index as Indicator of Left Ventricular Diastolic Dysfunction: Comparation between Left Atrial Volume Index and Tissue Myocardial Performance Index. J. Cardiovasc. Ultrasound 2012, 20, 25–29. [Google Scholar] [CrossRef]
- Qiu, D.; Peng, L.; Ghista, D.N.; Wong, K.K.L. Left Atrial Remodeling Mechanisms Associated with Atrial Fibrillation. Cardiovasc. Eng. Technol. 2021, 12, 361–372. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, J.; Zhou, Z.; Guo, X.; Xu, Y.; Huang, T.; Meng, S.; Cao, Z.; Xu, D.; Zhao, Q.; et al. Persistent hypertension induces atrial remodeling and atrial fibrillation through DNA damage and ATM/CHK2/p53 signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167534. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Borlaug, B.A.; Gersh, B.J. Management of Atrial Fibrillation Across the Spectrum of Heart Failure With Preserved and Reduced Ejection Fraction. Circulation 2022, 146, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.L.; Liu, X.Y.; Li, X.Y.; Yang, F.; Wang, R.X. Effects of Electrical Remodeling on Atrial Fibrillation in Diabetes Mellitus. Rev. Cardiovasc. Med. 2023, 24, 3. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, Z.T.; Anderson, K.C.; Quintana, J.A.; O’Neill, M.J.; Sims, R.A.; Glazer, A.M.; Shaffer, C.M.; Crawford, D.M.; Stricker, T.; Ye, F.; et al. Early-Onset Atrial Fibrillation and the Prevalence of Rare Variants in Cardiomyopathy and Arrhythmia Genes. JAMA Cardiol. 2021, 6, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.A.; Chen, H.; Hill, M.; Sirdhar, A. A Titin Missense Variant Causes Atrial Fibrillation. Preprint. medRxiv 2024. [Google Scholar] [CrossRef]
- Lin, Y.K.; Chen, Y.A.; Lee, T.I.; Chen, Y.C.; Chen, S.A.; Chen, Y.J. Aging Modulates the Substrate and Triggers Remodeling in Atrial Fibrillation. Circ. J. 2018, 82, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.L.F.; Almeida, F.V.D.S.; Souza, K.P.; Brito, F.C.F.; Rodrigues, G.D.; Scaramello, C.B.V. Reviewing Atrial Fibrillation Pathophysiology from a Network Medicine Perspective: The Relevance of Structural Remodeling, Inflammation, and the Immune System. Life 2023, 13, 1364. [Google Scholar] [CrossRef]
- Buggey, J.; Hoit, B.D. Left atrial strain: Measurement and clinical application. Curr. Opin. Cardiol. 2018, 33, 479–485. [Google Scholar] [CrossRef]
- Pathan, F.; Zainal Abidin, H.A.; Vo, Q.H.; Zhou, H.; D’Angelo, T.; Elen, E.; Negishi, K.; Puntmann, V.O.; Marwick, T.H.; Nagel, E. Left atrial strain: A multi-modality, multi-vendor comparison study. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 102–110. [Google Scholar] [CrossRef]
- Sørensen, E.; Myrstad, M.; Solberg, M.G.; Øie, E.; Platonov, P.G.; Carlson, J.; Tveit, A.; Aarønaes, M. Left atrial dyssynchrony in veteran endurance athletes with and without paroxysmal atrial fibrillation. Echocardiography 2023, 40, 679–686. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Okura, H.; Kobayashi, Y.; Okawa, K.; Banba, K.; Hirohata, A.; Tamada, T.; Obase, K.; Hayashida, A.; Yoshida, K. Assessment of atrial synchrony in paroxysmal atrial fibrillation and impact of pulmonary vein isolation for atrial dyssynchrony and global strain by three-dimensional strain echocardiography. J. Am. Soc. Echocardiogr. 2014, 27, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Ciuffo, L.; Tao, S.; Gucuk Ipek, E.; Zghaib, T.; Balouch, M.; Lima, J.A.C.; Nazarian, S.; Spragg, D.D.; Marine, J.E.; Berger, R.D.; et al. Intra-Atrial Dyssynchrony During Sinus Rhythm Predicts Recurrence After the First Catheter Ablation for Atrial Fibrillation. JACC Cardiovasc. Imaging 2019, 12, 310–319. [Google Scholar] [CrossRef]
- Wu, A.; Yang, Z.; Zhang, X.; Lin, Z.; Lu, H. Association Between Epicardial Adipose Tissue and Left Atrial and Ventricular Function in Patients With Heart Failure: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2023, 48, 101979. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Hung, C.L.; Tay, W.T.; Soon, D.; Sim, D.; Sung, K.T.; Loh, S.Y.; Lee, S.; Jaufeerally, F.; Ling, L.H.; et al. Epicardial adipose tissue related to left atrial and ventricular function in heart failure with preserved versus reduced and mildly reduced ejection fraction. Eur. J. Heart Fail. 2022, 24, 1346–1356. [Google Scholar] [CrossRef] [PubMed]
- Pathan, F.; D’Elia, N.; Nolan, M.T.; Marwick, T.H.; Negishi, K. Normal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2017, 30, 59–70.e8. [Google Scholar] [CrossRef] [PubMed]
- Chahine, Y.; Chamoun, N.; Kassar, A.; Bockus, L.; Macheret, F.; Akoum, N. Atrial fibrillation substrate and impaired left atrial function: A cardiac MRI study. Europace 2024, 26, euae258. [Google Scholar] [CrossRef]
- Hopman, L.H.G.A.; Mulder, M.J.; van der Laan, A.M.; Bhagirath, P.; Demirkiran, A.; von Bartheld, M.B.; Kemme, M.J.B.; van Rossum, A.C.; Allaart, C.P.; Götte, M.J.W. Left atrial strain is associated with arrhythmia recurrence after atrial fibrillation ablation: Cardiac magnetic resonance rapid strain vs. feature tracking strain. Int. J. Cardiol. 2023, 378, 23–31. [Google Scholar] [CrossRef]
- Brás, P.G.; Cunha, P.S.; Timóteo, A.T.; Portugal, G.; Galrinho, A.; Laranjo, S.; Cruz, M.C.; Valente, B.; Rio, P.; Delgado, A.S.; et al. Evaluation of left atrial strain imaging and integrated backscatter as predictors of recurrence in patients with paroxysmal, persistent, and long-standing persistent atrial fibrillation undergoing catheter ablation. J. Interv. Card. Electrophysiol. 2024, 67, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.B.; Skaarup, K.G.; Djernæs, K.; Hauser, R.; San José Estépar, R.; Sørensen, S.K.; Ruwald, M.H.; Hansen, M.L.; Worck, R.H.; Johannessen, A.; et al. Left atrial contractile strain predicts recurrence of atrial tachyarrhythmia after catheter ablation. Int. J. Cardiol. 2022, 358, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Kwan, E.; Bergquist, J.A.; Steinberg, B.A.; Dosdall, D.J.; DiBella, E.V.R.; MacLeod, R.S.; Bunch, T.J.; Ranjan, R. Ablation-induced left atrial mechanical dysfunction recovers in weeks after ablation. J. Interv. Card. Electrophysiol. 2024, 67, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Chyou, J.Y.; Barkoudah, E.; Dukes, J.W.; Goldstein, L.B.; Joglar, J.A.; Lee, A.M.; Lubitz, S.A.; Marill, K.A.; Sneed, K.B.; Streur, M.M.; et al. Atrial Fibrillation Occurring During Acute Hospitalization: A Scientific Statement from the American Heart Association. Circulation 2023, 147, e676–e698, Erratum in Circulation 2023, 147, e717. [Google Scholar] [CrossRef] [PubMed]
- Kuklik, P.; Schäffer, B.; Hoffmann, B.A.; Ganesan, A.N.; Schreiber, D.; Moser, J.M.; Akbulak, R.Ö.; Sultan, A.; Steven, D.; Maesen, B.; et al. Local Electrical Dyssynchrony During Atrial Fibrillation: Theoretical Considerations and Initial Catheter Ablation Results. PLoS ONE 2016, 11, e0164236. [Google Scholar] [CrossRef]
- Patel, K.H.K.; Hwang, T.; Se Liebers, C.; Ng, F.S. Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H129–H144. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Linz, D.; Sanders, P. New Findings in Atrial Fibrillation Mechanisms. Card. Electrophysiol. Clin. 2019, 11, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.W.; Li, W.C.; Wang, H.; Song, N.P.; Zhong, L. Does types of atrial fibrillation matter in the impairment of global and regional left ventricular mechanics and intra-ventricular dyssynchrony? Front. Cardiovasc. Med. 2022, 9, 1019472. [Google Scholar] [CrossRef]
- Xie, J.M.; Fang, F.; Zhang, Q.; Chan, J.Y.-S.; Yip, G.W.K.; Sanderson, J.E.; Lam, Y.-Y.; Yan, B.P.-Y.; Yu, C.M. Atrial dysfunction and interatrial dyssynchrony predict atrial high rate episodes: Insight into the distinct effects of right atrial appendage pacing. J. Cardiovasc. Electrophysiol. 2012, 23, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Karsum, E.H.; Andersen, D.M.; Modin, D.; Biering-Sørensen, S.R.; Mogelvang, R.; Jensen, G.; Schnohr, P.; Gislason, G.; Biering-Sørensen, T. The prognostic value of left atrial dyssynchrony measured by speckle tracking echocardiography in the general population. Int. J. Cardiovasc. Imaging 2021, 37, 1679–1688. [Google Scholar] [CrossRef]
- Liao, J.N.; Chao, T.F.; Hung, C.L.; Chen, S.A. The decrease in peak atrial longitudinal strain in patients with atrial fibrillation as a practical parameter for stroke risk stratification. Heart Rhythm 2021, 18, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Weijs, B.; Bemelmans, N.M.A.A.; Mügge, A.; Eckardt, L.; Crijns, H.J.G.M.; Bax, J.J.; Linz, D.; den Uijl, D.W. Echocardiography-derived total atrial conduction time (PA-TDI duration): Risk stratification and guidance in atrial fibrillation management. Clin. Res. Cardiol. 2021, 110, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, I.; Kousta, M.; Kossyvakis, C.; Paraskevaidis, N.T.; Vrachatis, D.; Deftereos, S.; Giannopoulos, G. Epicardial Adipose Tissue and Atrial Fibrillation Recurrence following Catheter Ablation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 6369. [Google Scholar] [CrossRef]
- Chen, J.; Mei, Z.; Yang, Y.; Dai, C.; Wang, Y.; Zeng, R.; Liu, Q. Epicardial adipose tissue is associated with higher recurrence risk after catheter ablation in atrial fibrillation patients: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2022, 22, 264. [Google Scholar] [CrossRef]
- Meulendijks, E.R.; Al-Shama, R.F.M.; Kawasaki, M.; Fabrizi, B.; Neefs, J.; Wesselink, R.; Ernault, A.C.; Piersma, S.; Pham, T.V.; Jimenez, C.R.; et al. Atrial epicardial adipose tissue abundantly secretes myeloperoxidase and activates atrial fibroblasts in patients with atrial fibrillation. J. Transl. Med. 2023, 21, 366. [Google Scholar] [CrossRef]
- Nalliah, C.J.; Bell, J.R.; Raaijmakers, A.J.A.; Waddell, H.M.; Wells, S.P.; Bernasochi, G.B.; Montgomery, M.K.; Binny, S.; Watts, T.; Joshi, S.B.; et al. Epicardial Adipose Tissue Accumulation Confers Atrial Conduction Abnormality. J. Am. Coll. Cardiol. 2020, 76, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Poggi, A.L.; Gaborit, B.; Schindler, T.H.; Liberale, L.; Montecucco, F.; Carbone, F. Epicardial fat and atrial fibrillation: The perils of atrial failure. Europace 2022, 24, 1201–1212. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, X.; Wang, Y.; Yao, J.; Shi, C.; Du, J.; Bai, R. The Effect of Liraglutide on Epicardial Adipose Tissue in Type 2 Diabetes. J. Diabetes Res. 2021, 2021, 5578216. [Google Scholar] [CrossRef] [PubMed]
- Cacciapuoti, F.; Mauro, C.; D’Andrea, D.; Capone, V.; Liguori, C.; Cacciapuoti, F. Epicardial adipose tissue and residual cardiovascular risk: A comprehensive case analysis and therapeutic insights with Liraglutide. J. Cardiovasc. Med. 2024, 25, 637–641. [Google Scholar] [CrossRef]
- Manubolu, V.S.; Lakshmanan, S.; Kinninger, A.; Ahmad, K.; Susarla, S.; Seok, H.J.; Hamal, S.; Dahal, S.; Roy, S.K.; Budoff, M.J. Effect of Semaglutide on Epicardial Adipose Tissue in Type 2 Diabetes: Insights From the STOP (Semaglutide Treatment effect On coronary atherosclerosis Progression) Randomized Trial. J. Am. Coll. Cardiol. 2024, 84, 865–867. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Maleki, M.; Nasimi, F.; Jamialahmadi, T.; Stanford, F.C.; Sahebkar, A. Benefits of GLP-1 Mimetics on Epicardial Adiposity. Curr. Med. Chem. 2023, 30, 4256–4265. [Google Scholar] [CrossRef]
- Yu, Z.X.; Yang, W.; Yin, W.S.; Peng, K.X.; Pan, Y.L.; Chen, W.W.; Du, B.B.; He, Y.Q.; Yang, P. Clinical utility of left atrial strain in predicting atrial fibrillation recurrence after catheter ablation: An up-to-date review. World J. Clin. Cases 2022, 10, 8063–8075. [Google Scholar] [CrossRef]
- Andrade, J.G.; Champagne, J.; Dubuc, M.; Deyell, M.W.; Verma, A.; Macle, L.; Leong-Sit, P.; Novak, P.; Badra-Verdu, M.; Sapp, J.; et al. Cryoballoon or Radiofrequency Ablation for Atrial Fibrillation Assessed by Continuous Monitoring: A Randomized Clinical Trial. Circulation 2019, 140, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Cherian, T.S.; Callans, D.J. Recurrent Atrial Fibrillation After Radiofrequency Ablation: What to Expect. Card. Electrophysiol. Clin. 2020, 12, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Nodera, M.; Ishida, T.; Hasegawa, K.; Kakehashi, S.; Mukai, M.; Aoyama, D.; Miyazaki, S.; Uzui, H.; Tada, H. Epicardial adipose tissue density predicts the presence of atrial fibrillation and its recurrence after catheter ablation: Three-dimensional reconstructed image analysis. Heart Vessel. 2024, 39, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Li, F.; Sang, C.; Shen, J.; Shao, Y.; Chen, W.; Hu, X.; Li, C.; Hu, C.; Zhang, C.; et al. Combination of Epicardial Adipose Tissue and Left Atrial Low-Voltage Areas Predicting Atrial Fibrillation Recurrence after Radiofrequency Ablation. Cardiology 2024, 1–8. [Google Scholar] [CrossRef]
- Tabaja, C.; Younis, A.; Hussein, A.A.; Taigen, T.L.; Nakagawa, H.; Saliba, W.I.; Sroubek, J.; Santangeli, P.; Wazni, O.M. Catheter-Based Electroporation: A Novel Technique for Catheter Ablation of Cardiac Arrhythmias. JACC Clin. Electrophysiol. 2023, 9, 2008–2023. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Haines, D.E.; Boersma, L.V.; Sood, N.; Natale, A.; Marchlinski, F.E.; Calkins, H.; Sanders, P.; Packer, D.L.; Kuck, K.H.; et al. Pulsed Field Ablation for the Treatment of Atrial Fibrillation: PULSED AF Pivotal Trial. Circulation 2023, 147, 1422–1432. [Google Scholar] [CrossRef] [PubMed]
- Matos, C.D.; Hoyos, C.; Miranda-Arboleda, A.F.; Diaz, J.C.; Hincapie, D.; Patino, C.; Hernadez, R.H.; Zei, P.C.; Romero, J.E.; Osorio, J. Pulsed Field Ablation of Atrial Fibrillation: A Comprehensive Review. Rev. Cardiovasc. Med. 2023, 24, 337. [Google Scholar] [CrossRef] [PubMed]
- Leo, L.A.; Paiocchi, V.L.; Schlossbauer, S.A.; Ho, S.Y.; Faletra, F.F. The Intrusive Nature of Epicardial Adipose Tissue as Revealed by Cardiac Magnetic Resonance. J. Cardiovasc. Echogr. 2019, 29, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xu, Y.D.; Shao, S.; Zhai, L.S.; Qian, B.; Zhang, F.F.; Wang, J.F.; Shao, X.L.; Wang, Y.T. Association between inflammation activity of left atrial epicardial adipose tissue measured by 18F-FDG PET/CT and atrial fibrillation. Zhonghua Xin Xue Guan Bing Za Zhi 2021, 49, 1213–1219. [Google Scholar] [CrossRef]
- Markman, T.M.; Khoshknab, M.; Santangeli, P.; Marchlinski, F.E.; Nazarian, S. Feasibility of Computed Tomography-Guided Cardioneuroablation for Atrial Fibrillation. JACC Clin. Electrophysiol. 2022, 8, 1449–1450. [Google Scholar] [CrossRef] [PubMed]
Inflammatory Marker | Role in Inflammation and AF |
---|---|
Interleukin-6 (IL-6) | Atrial fibrosis, systemic inflammation, oxidative stress. |
TNF-α | Apoptosis, fibrosis, and atrial remodeling. |
IL-1β | Oxidative stress and atrial structural changes. |
IL-8 | Recruits neutrophils, amplifying inflammation. |
MCP-1 | Attracts monocytes, sustaining chronic inflammation. |
TGF-β | Stimulates atrial fibrosis. |
CRP | Reflects systemic and localized inflammation. |
IL-10 | Counteracts inflammation but is often insufficient. |
Parameter | Healthy Patients | Abundant LA-EAT |
---|---|---|
Reservoir strain (%) | 35–45% | 20–30% |
Conduit strain (%) | 18–25% | 12–18% |
Contractile strain (%) | 10–15% | <8% |
Atrial stiffness (mmHg/mL) | 0.1–0.2 mmHg/mL | 0.2–0.4 mmHg/mL |
Left atrial volume (mL) | 20–40 mL | 40–60 mL |
Emptying fraction (%) | 50–70% | 40–55% |
Parameter | Healthy Patients | Abundant LA-EAT |
---|---|---|
Time to peak strain (ms) | 50–70 ms | 80–100 ms |
Intersegmental delay (ms) | <20 ms | >30 ms |
Standard deviation of time to peak strain (ms) | <10 ms | >20 ms |
Atrial dyssynchrony index (%) | <15% | >20% |
Early systolic strain delay (ms) | <5 ms | >10 ms |
Peak strain variability (between segments, %) | <10% | >15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciapuoti, F.; Caso, I.; Crispo, S.; Verde, N.; Capone, V.; Gottilla, R.; Materazzi, C.; Volpicelli, M.; Ziviello, F.; Mauro, C.; et al. Linking Epicardial Adipose Tissue to Atrial Remodeling: Clinical Implications of Strain Imaging. Hearts 2025, 6, 3. https://doi.org/10.3390/hearts6010003
Cacciapuoti F, Caso I, Crispo S, Verde N, Capone V, Gottilla R, Materazzi C, Volpicelli M, Ziviello F, Mauro C, et al. Linking Epicardial Adipose Tissue to Atrial Remodeling: Clinical Implications of Strain Imaging. Hearts. 2025; 6(1):3. https://doi.org/10.3390/hearts6010003
Chicago/Turabian StyleCacciapuoti, Fulvio, Ilaria Caso, Salvatore Crispo, Nicola Verde, Valentina Capone, Rossella Gottilla, Crescenzo Materazzi, Mario Volpicelli, Francesca Ziviello, Ciro Mauro, and et al. 2025. "Linking Epicardial Adipose Tissue to Atrial Remodeling: Clinical Implications of Strain Imaging" Hearts 6, no. 1: 3. https://doi.org/10.3390/hearts6010003
APA StyleCacciapuoti, F., Caso, I., Crispo, S., Verde, N., Capone, V., Gottilla, R., Materazzi, C., Volpicelli, M., Ziviello, F., Mauro, C., & Caso, P. (2025). Linking Epicardial Adipose Tissue to Atrial Remodeling: Clinical Implications of Strain Imaging. Hearts, 6(1), 3. https://doi.org/10.3390/hearts6010003